73 research outputs found

    Mutual Information-Based Brain Network Analysis in Post-stroke Patients With Different Levels of Depression

    Get PDF
    Post-stroke depression (PSD) is the most common stroke-related emotional disorder, and it severely affects the recovery process. However, more than half cases are not correctly diagnosed. This study was designed to develop a new method to assess PSD using EEG signal to analyze the specificity of PSD patients' brain network. We have 107 subjects attended in this study (72 stabilized stroke survivors and 35 non-depressed healthy subjects). A Hamilton Depression Rating Scale (HDRS) score was determined for all subjects before EEG data collection. According to HDRS score, the 72 patients were divided into 3 groups: post-stroke non-depression (PSND), post-stroke mild depression (PSMD) and post-stroke depression (PSD). Mutual information (MI)-based graph theory was used to analyze brain network connectivity. Statistical analysis of brain network characteristics was made with a threshold of 10–30% of the strongest MIs. The results showed significant weakened interhemispheric connections and lower clustering coefficient in post-stroke depressed patients compared to those in healthy controls. Stroke patients showed a decreasing trend in the connection between the parietal-occipital and the frontal area as the severity of the depression increased. PSD subjects showed abnormal brain network connectivity and network features based on EEG, suggesting that MI-based brain network may have the potential to assess the severity of depression post stroke

    Anti-Inflammatory Activities of a Chinese Herbal Formula IBS-20 In Vitro and In Vivo

    Get PDF
    Irritable bowel syndrome (IBS) is a functional bowel disorder and the etiology is not well understood. Currently there is no cure for IBS and no existing medication induces symptom relief in all patients. IBS-20 is a 20-herb Chinese medicinal formula that offers beneficial effects in patients with IBS; however, the underlying mechanisms are largely unknown. This study showed that IBS-20 potently inhibited LPS- or IFNΓ-stimulated expression of pro-inflammatory cytokines, as well as classically activated macrophage marker nitric oxide synthase 2. Similarly, IBS-20 or the component herb Coptis chinensis decreased LPS-stimulated pro-inflammatory cytokine secretion from JAWS II dendritic cells. IBS-20 or the component herbs also blocked or attenuated the IFNΓ-induced drop in transepithelial electric resistance, an index of permeability, in fully differentiated Caco-2 monolayer. Finally, the up-regulation of key inflammatory cytokines in inflamed colon from TNBS-treated mice was suppressed significantly by orally administrated IBS-20, including IFNΓ and IL-12p40. These data indicate that the anti-inflammatory activities of IBS-20 may contribute to the beneficial effects of the herbal extract in patients with IBS, providing a potential mechanism of action for IBS-20. In addition, IBS-20 may be a potential therapeutic agent against other Th1-dominant gut pathologies such as inflammatory bowel disease

    Reply to: Mobility overestimation in MoS2_2 transistors due to invasive voltage probes

    Full text link
    In this reply, we include new experimental results and verify that the observed non-linearity in rippled-MoS2_2 (leading to mobility kink) is an intrinsic property of a disordered system, rather than contact effects (invasive probes) or other device issues. Noting that Peng Wu's hypothesis is based on a highly ordered ideal system, transfer curves are expected to be linear, and the carrier density is assumed be constant. Wu's model is therefore oversimplified for disordered systems and neglects carrier-density dependent scattering physics. Thus, it is fundamentally incompatible with our rippled-MoS2_2, and leads to the wrong conclusion

    Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle

    Get PDF
    The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows’ health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status

    Small RNA-mediated regulation of iPS cell generation

    Get PDF
    The generation of induced pluripotent stem cells is limited by the low reprogramming efficiency of somatic cells. Here, three clusters of miRNAs are shown to enhance reprogramming efficiency by targeting the TGF-β and p53 pathways, which inhibit the process

    Numerical simulation study on the influence of pulverized coal particle size on boiler combustion characteristics

    No full text
    The influence of pulverized coal particle size on combustion and NOx formation of 660MW tangential combustion ultra-supercritical boiler in a power plant was studied by using commercial software FLUENT. The average particle size of pulverized coal was set at 61μm, 71μm and 80μm, respectively. The results show that with the decrease of pulverized coal particle size, the overall temperature level of the boiler increases, the average temperature of the main combustion zone increases, the temperature of the upper part of the main combustion zone decreases, and the combustion of pulverized coal is more incomplete. However, the probability of particles sticking to the wall and the probability of coking and slagging of the boiler increases. The amount of NOx produced in the main combustion zone decreases, while the amount of NOx produced in the upper part of the main combustion zone increases, while the overall amount of NOx produced increases slightly

    Cyclonic and Anticyclonic Asymmetry of Reef and Atoll Wakes in the Xisha Archipelago

    No full text
    A high-resolution (∼500 m) numerical model was used to study the reef and atoll wakes in the Xisha Archipelago (XA) during 2009. Statistical analyses of simulation data indicated strong cyclonic dominance in the mixing layer (above ∼35 m) and weak anticyclonic dominance in the subsurface layer (35∼160 m) for both eddies and filaments in the XA. The intrinsic dynamical properties of the flow, such as the vertical stratification and velocity magnitude, and the terrain of reefs and atolls had a significant effect on the asymmetry. Without considering the existence of reefs and atolls, the “background cyclonic dominance” generated under local planetary rotation (f≈4.1×10−5 s−1) and vertical stratification (with mean Brunt–Väisälä frequency N = 0.02 s−1 at 75 m) was stronger for filaments than eddies in the upper layer from 0∼200 m, and the larger vorticity amplitude in the cyclonic filaments could greatly enhance the cyclonic wake eddies. Furthermore, inertial–centrifugal instability induced selective destabilization of anticyclonic wake eddies in different water layers. As the Rossby number (Ro) and core vorticity (Burger number, Bu) decreased (increased) with the water depth, a more stable state was achieved for the anticyclonic wake eddies in the deeper layer. The stratification and slipping reefs and atolls also led to vertical decoupled shedding, which intensified the asymmetry

    Effect of Unsaturated Fatty Acid Ratio In Vitro on Rumen Fermentation, Methane Concentration, and Microbial Profile

    No full text
    It is well known that dairy cows are fed diets with high fat content, which can adversely affect rumen fermentation. However, whether the effects of high fat content on rumen fermentation are related to the composition of fatty acids (FA) is for further study. We explored the effects of unsaturated fatty acid (UFA) ratios in vitro on rumen, methane concentration and microbial composition under the same fat levels. The experiment included a low-unsaturated group (LU, UFA proportion: 42.8%), a medium-unsaturated group (MU, UFA proportion: 56.9%), and a high-unsaturated group (HU, UFA proportion: 70.9%). The incubation fluid pH and NH3-N levels were not significantly different in the three groups. Total volatile fatty acid (TVFA), acetate, propionate, butyrate, and valerate in the MU group had a decreased trend compared to the LU group (0.05 < p < 0.1), and no difference was found in other volatile fatty acids (VFAs) among the three groups. Furthermore, gas production kinetic parameters among the three groups did not differ significantly. The LU group’s CH4 concentration was significantly higher than the HU group (p < 0.05). The CO2 concentration in the LU group was also significantly higher than the MU and LU groups (p < 0.05). Additionally, 16S rRNA microbial sequencing results showed that the Shannon diversity value significantly increased in the MU group (p < 0.05) compared to the LU group. Other alpha diversity indices (Chao 1, observed species, and ACE) did not differ among the three groups. The increased proportion of UFA significantly decreased the relative abundance of Succinivibrionaceae_UCG_001 and Fibrobacter (p < 0.05). Meanwhile, the multiple Lachnospiraceae bacteria significantly increased in the MU group (p < 0.05). Overall, our findings indicated that the microbial community in the incubation system could be affected by elevating proportions of UFA, affecting the yield of VFA, whereas the CH4 concentration was reduced

    Altering Methane Emission, Fatty Acid Composition, and Microbial Profile during In Vitro Ruminant Fermentation by Manipulating Dietary Fatty Acid Ratios

    No full text
    This study evaluated the effects of different dietary n‐6/n‐3 polyunsaturated fatty acid (PUFA) ratios on in vitro ruminant fermentation. Methane production, fatty acid composition, and microbial profiles were compared after the in vitro fermentation of rumen fluid collected from cows that had been fed isoenergetic and isoproteic experimental diets at three different n‐6/n‐3 ratios: 3.04 (HN6, high n‐6 source), 2.03 (MN6, medium n‐6 source), and 0.8 (LN6, low n‐6 source). The fermented rumen fluid pH and total volatile fatty acid (VFA) levels were significantly decreased (p < 0.05) in the HN6 group as compared with those in the MN6 and LN6 groups. Additionally, the HN6 group produced a significantly lower (p < 0.05) proportion of methane than the MN6 group during in vitro fermentation. The MN6 and LN6 groups had significantly increased (p < 0.05) levels of C18:2n6 and C18:3n3 in the fermented rumen fluid, respectively, as compared with the HN6 group. The Chao 1 diversity index value was lower (p < 0.05) in the HN6 group than in the MN6 and LN6 groups. The observed species richness was significantly lower (p < 0.05) in the HN6 group than in the MN6 group. The reduced relative abundances of Lachnospiraceae UCG‐006 and Selenomonas in the HN6 group resulted in lower pH and VFA levels (i.e., acetate, propionate, butyrate, and total VFA) during in vitro fermentation. Furthermore, n‐6 and n‐3 PUFAs were toxic to Butyrivibrio_2 growth, resulting in high levels of incomplete biohydrogenation. Taken together, the study findings suggest that supplementation of high‐forage diets with high levels of n‐6 PUFAs could reduce methane emissions, whereas both VFA concentration and pH are reduced
    corecore