19 research outputs found

    Filter-informed Spectral Graph Wavelet Networks for Multiscale Feature Extraction and Intelligent Fault Diagnosis

    Full text link
    Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use of the inductive bias of the interdependencies between the different sensor measurements. However, there are some limitations with these GNN-based fault diagnosis methods. First, they lack the ability to realize multiscale feature extraction due to the fixed receptive field of GNNs. Secondly, they eventually encounter the over-smoothing problem with increase of model depth. Lastly, the extracted features of these GNNs are hard to understand owing to the black-box nature of GNNs. To address these issues, a filter-informed spectral graph wavelet network (SGWN) is proposed in this paper. In SGWN, the spectral graph wavelet convolutional (SGWConv) layer is established upon the spectral graph wavelet transform, which can decompose a graph signal into scaling function coefficients and spectral graph wavelet coefficients. With the help of SGWConv, SGWN is able to prevent the over-smoothing problem caused by long-range low-pass filtering, by simultaneously extracting low-pass and band-pass features. Furthermore, to speed up the computation of SGWN, the scaling kernel function and graph wavelet kernel function in SGWConv are approximated by the Chebyshev polynomials. The effectiveness of the proposed SGWN is evaluated on the collected solenoid valve dataset and aero-engine intershaft bearing dataset. The experimental results show that SGWN can outperform the comparative methods in both diagnostic accuracy and the ability to prevent over-smoothing. Moreover, its extracted features are also interpretable with domain knowledge

    Prompt-to-afterglow transition of optical emission in a long gamma-ray burst consistent with a fireball

    Full text link
    Long gamma-ray bursts (GRBs), which signify the end-life collapsing of very massive stars, are produced by extremely relativistic jets colliding into circumstellar medium. Huge energy is released both in the first few seconds, namely the internal dissipation phase that powers prompt emissions, and in the subsequent self-similar jet-deceleration phase that produces afterglows observed in broad-band electromagnetic spectrum. However, prompt optical emissions of GRBs have been rarely detected, seriously limiting our understanding of the transition between the two phases. Here we report detection of prompt optical emissions from a gamma-ray burst (i.e. GRB 201223A) using a dedicated telescope array with a high temporal resolution and a wide time coverage. The early phase coincident with prompt {\gamma}-ray emissions show a luminosity in great excess with respect to the extrapolation of {\gamma}-rays, while the later luminosity bump is consistent with onset of the afterglow. The clearly detected transition allows us to differentiate physical processes contributing to early optical emissions and to diagnose the composition of the jetComment: Authors' version of article published in Nature Astronomy, see their website for official versio

    Long Noncoding RNA FAM201A Mediates the Radiosensitivity of Esophageal Squamous Cell Cancer by Regulating ATM and mTOR Expression via miR-101

    Get PDF
    Background: The aim of the present study was to identify the potential long non-coding (lnc.)-RNA and its associated molecular mechanisms involved in the regulation of the radiosensitivity of esophageal squamous cell cancer (ESCC) in order to assess whether it could be a biomarker for the prediction of the response to radiotherapy and prognosis in patients with ESCC.Methods: Microarrays and bioinformatics analysis were utilized to screen the potential lncRNAs associated with radiosensitivity in radiosensitive (n = 3) and radioresistant (n = 3) ESCC tumor tissues. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed in 35 ESCC tumor tissues (20 radiosensitive and 15 radioresistant tissues, respectively) to validate the lncRNA that contributed the most to the radiosensitivity of ESCC (named the candidate lncRNA). MTT, flow cytometry, and western blot assays were conducted to assess the effect of the candidate lncRNA on radiosensitivity in vitro in ECA109/ECA109R ESCC cells. A mouse xenograft model was established to confirm the function of the candidate lncRNA in the radiosensitivity of ESCC in vivo. The putative downstream target genes regulated by the candidate lncRNA were predicted using Starbase 2.0 software and the TargetScan database. The interactions between the candidate lncRNA and the putative downstream target genes were examined by Luciferase reporter assay, and were confirmed by PCR.Results: A total of 113 aberrantly expressed lncRNAs were identified by microarray analysis, of which family with sequence similarity 201-member A (FAM201A) was identified as the lncRNA that contributed the most to the radiosensitivity of ESCC. FAM201A was upregulated in radioresistant ESCC tumor tissues and had a poorer short-term response to radiotherapy resulting in inferior overall survival. FAM201A knockdown enhanced the radiosensitivity of ECA109/ECA109R cells by upregulating ataxia telangiectasia mutated (ATM) and mammalian target of rapamycin (mTOR) expression via the negative regulation of miR-101 expression. The mouse xenograft model demonstrated that FAM201A knockdown improved the radiosensitivity of ESCC.Conclusion: The lncRNA FAM201A, which mediated the radiosensitivity of ESCC by regulating ATM and mTOR expression via miR-101 in the present study, may be a potential biomarker for predicting radiosensitivity and patient prognosis, and may be a therapeutic target for enhancing cancer radiosensitivity in ESCC

    A statistical analysis of deep low-mass ratio overcontact binaries

    No full text

    Investigation of a Medical Plant for Hepatic Diseases with Secoiridoids Using HPLC and FT-IR Spectroscopy for a Case of Gentiana rigescens

    No full text
    Secoiridoids could be used as a potential new drug for the treatment of hepatic disease. The content of secoiridoids of G. rigescens varied in different geographical origins and parts. In this study, a total of 783 samples collected from different parts of G. rigescens in Yunnan, Sichuan, and Guizhou Provinces. The content of secoiridoids including gentiopicroside, swertiamarin, and sweroside were determined by using HPLC and analyzed by one-way analysis of variance. Two selected variables including direct selected and variable importance in projection combined with partial least squares regression have been used to establish a method for the determination of secoiridoids using FT-IR spectroscopy. In addition, different pretreatments including multiplicative scatter correction (MSC), standard normal variate (SNV), first derivative and second derivative (SD), and orthogonal signal correction (OSC) were compared. The results indicated that the sample (root, stem, and leaf) with total secoiridoids, gentiopicroside, swertiamarin, and sweroside from west Yunnan had higher content than samples from the other regions. The sample from Baoshan had more total secoiridoids than other samples for the whole medicinal plant. The best performance using FT-IR for the total secoiridoid was with the direct selected variable method involving pretreatment of MSC+OSC+SD in the root and stem, while in leaf, of the best method involved using original data with MSC+OSC+SD. This method could be used to determine the bioactive compounds quickly for herbal medicines

    Biomimetic Synthesis of TiO<sub>2</sub>–SiO<sub>2</sub>–Ag Nanocomposites with Enhanced Visible-Light Photocatalytic Activity

    No full text
    Ternary TiO<sub>2</sub>–SiO<sub>2</sub>–Ag nanocomposites with enhanced visible-light photocatalytic activity have been synthesized through a facile biomimetic approach by utilizing lysozyme as both inducing agent of TiO<sub>2</sub> and reducing agent of Ag<sup>+</sup>. TiO<sub>2</sub> nanoparticles (∼280 nm) are at first fabricated by the inducing of lysozyme. Afterward, SiO<sub>2</sub> layers are formed as “pancakes” stuck out of TiO<sub>2</sub> nanoparticles through a sol–gel process. Finally, Ag nanocrystals (∼24.5 nm) are deposited onto the surface of TiO<sub>2</sub>–SiO<sub>2</sub> composites via the reduction of lysozyme, forming TiO<sub>2</sub>–SiO<sub>2</sub>–Ag nanocomposites. The resultant nanocomposites display a high photocatalytic activity for the degradation of Rhodamine B under the visible-light irradiation, which can be attributed to the synergistic effect of enhanced photon absorption from the surface plasma resonance of Ag nanocrystals and the elevated adsorption capacity for Rhodamine B from the high specific surface area of SiO<sub>2</sub>. This study may provide some inspiration for the rational design and the facile synthesis of composite catalysts with a high and tunable catalytic property through a green, efficient pathway

    Proposed revision of the 8th edition AJCC clinical staging system for esophageal squamous cell cancer treated with definitive chemo-IMRT based on CT imaging

    No full text
    Abstract Purpose To validate and propose revision of the 8th edition American Joint Committee on Cancer (AJCC) clinical staging system for esophageal squamous cell cancer (ESCC) patients treated with definitive intensity-modulated radiation therapy combined with concurrent chemotherapy (Chemo-IMRT) based on computed tomography (CT) imaging. Methods The clinical data of patients with ESCC treated with Chemo-IMRT were collected and retrospectively reviewed. All CT images were independently reevaluated and restaged according to the 8th edition AJCC staging system. The overall survival (OS) rates were analyzed statistically. ROC curves of the various parameters of the primary tumor and metastatic lymph nodes were generated in order to identify the cutoff values correlated to patient survival using the area under curve. Results The gross tumor volume of the primary tumor (GTV-prT) and the clinical N stage (cN) were independent factors that influenced OS. The 5-year OS rate of patients with GTV-prT ≤28 cm3, GTV-prT > 28 and ≤ 56 cm3, and GTV-prT > 56 cm3 were 54.6, 31.1 and 18.6%, respectively. The 5-year OS rate of patients with cN0, cN1 SLNM (−), cN2 SLNM (−), cN3 SLNM (−) and SLNM (+) were 62.8 (P < 0.001), 34.0 (P = 0.16), 20.0 (P = 0.785), 0 (P < 0.001) and 26.9%, respectively. After restaging the SLNM as regional MLNs, the 5-year OS rates of the patients with cN0, 1, 2 and 3 were 62.8, 36.3, 23.7 and 7.8%, respectively. Various GTV-prT were combined with the cN to establish a new clinical TNM staging system: I, GTV-prT1 and cN0; II, GTV-prT2 or 3 and cN0, GTV-prT1 and cN1; III, GTV-prT1 and cN2, GTV-prT2 and cN1,2; Iva, GTV-prT3 and cN1,2; IVb, GTV-prTany and cN3; IVc, TanyNanyM1. Subsequently, the OS differed significantly between the adjacent GTV-prT cN categories, except those of stage I vs. II. Conclusion The SLNM should be dealt with as a regional rather than a distant disease in patients with ESCC when treated with CRT. The proposed nonsurgical staging system based on the GTV-prT and N appears to be a simple and accurate prognosis predictor for patients with ESCC who have undergone definitive Chemo-IMRT
    corecore