58 research outputs found

    Flood mitigation by permeable pavements in Chinese sponge city construction

    Get PDF
    It is important to evaluate the effectiveness of permeable pavements on flood mitigation at different spatial scales for their effective application, for example, sponge city construction in China. This study evaluated the effectiveness of three types of permeable pavements (i.e., permeable asphalts (PA), permeable concretes (PC), and permeable interlocking concrete pavers (PICP)) on flood mitigation at a community scale in China using a hydrological model. In addition, the effects of clogging and initial water content in permeable pavements on flood mitigation performance were assessed. The results indicated that in 12 scenarios, permeable pavements reduced total surface runoff by 1–40% and peak flow by 7–43%, respectively. The hydrological performance of permeable pavements was limited by clogging and initial water content. Clogging resulted in the effectiveness on total surface runoff reduction and peak flow reduction being decreased by 62–92% and 37–65%, respectively. By increasing initial water content at the beginning of the simulation, the effectiveness of total runoff reduction and peak flow reduction decreased by 57–85% and 37–67%, respectively. Overall, among the three types of permeable pavements, PC without clogging had the best performance in terms of flood mitigation, and PICP was the least prone to being clogged. Our findings demonstrate that both the type and the maintenance of permeable pavements have significant effects on their performance in the flood mitigation

    A Hybrid Full-Discretization Method of Multiple Interpolation Polynomials and Precise Integration for Milling Stability Prediction

    No full text
    As milling chatter can lead to poor machining quality and limit the efficiency of productivity, it is of great significance to learn about milling chatter stability and research the effective and fast prediction of milling stability. In this study, a hybrid full-discretization method of multiple interpolation polynomials and precise integration (HFDM) is proposed for milling stability prediction. Firstly, the third-order Newton interpolation polynomial, third-order Hermite interpolation polynomial and linear interpolation are applied to approximate the state term, delay term and periodic coefficient matrix, respectively. Meanwhile, the matrix exponentials can be calculated based on the precise integration algorithm, which can improve computational accuracy and efficiency. The numerical simulation results indicate that the proposed method can not only effectively generate a stability lobe diagram (SLD) but also obtain better prediction accuracy and computation efficiency. A milling experiment is offered to demonstrate the feasibility of the method

    Adaptive Cooperative Control of Multiple Urban Rail Trains with Position Output Constraints

    No full text
    This paper studies the distributed adaptive cooperative control of multiple urban rail trains with position output constraints and uncertain parameters. Based on an ordered set of trains running on the route, a dynamic multiple trains movement model is constructed to capture the dynamic evolution of the trains in actual operation. Aiming at the position constraints and uncertainties in the system, different distributed adaptive control algorithms are designed for all trains by using the local information about the position, speed and acceleration of the train operation, so that each train can dynamically adjust its speed through communicating with its neighboring trains. This control algorithm for each train is designed to track the desired position and speed curve, and the headway distance between any two neighboring trains is stable within a preset safety range, which guarantee the safety of tracking operation of multiple urban rail trains. Finally, the effectiveness of the designed scheme is verified by numerical examples

    Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization

    No full text
    Linear tool path is widely used in high-speed NC machining. However, the geometrical discontinuity of the corner between the linear tool paths will lead to fluctuations in speed, acceleration and jerk, which can excite machinery vibration and reduce the machining efficiency and surface quality. To solve these problems, a novel corner smoothing method based on error feasible area and curvature optimization is proposed in this paper. Compared with most traditional corner smoothing methods using higher-order curves with all control points lying in the straight segment and inside of the tool path, the proposed method constructs B-spline transition curves with smaller curvatures to smooth the corners by reasonably distributing the curve control points inside and outside the straight line segment of the tool path (i.e., error feasible area). Furthermore, the corner transition curve is optimized by the minimum curve curvature extreme to improve the smoothness of the corner transition curve and reduce fluctuation in the kinematic profiles while respecting the G3 continuity (i.e., curvature-smooth), transition length limits and the uniqueness of curvature extremum. Finally, the simulation results show that the proposed method can reduce the curvature value and improve the smoothness of the curve and the minimum transitional velocity of the corner, which means that it can enhance machining efficiency and weaken machining vibration. The feasibility and effectiveness of the method are also verified

    Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization

    No full text
    Linear tool path is widely used in high-speed NC machining. However, the geometrical discontinuity of the corner between the linear tool paths will lead to fluctuations in speed, acceleration and jerk, which can excite machinery vibration and reduce the machining efficiency and surface quality. To solve these problems, a novel corner smoothing method based on error feasible area and curvature optimization is proposed in this paper. Compared with most traditional corner smoothing methods using higher-order curves with all control points lying in the straight segment and inside of the tool path, the proposed method constructs B-spline transition curves with smaller curvatures to smooth the corners by reasonably distributing the curve control points inside and outside the straight line segment of the tool path (i.e., error feasible area). Furthermore, the corner transition curve is optimized by the minimum curve curvature extreme to improve the smoothness of the corner transition curve and reduce fluctuation in the kinematic profiles while respecting the G3 continuity (i.e., curvature-smooth), transition length limits and the uniqueness of curvature extremum. Finally, the simulation results show that the proposed method can reduce the curvature value and improve the smoothness of the curve and the minimum transitional velocity of the corner, which means that it can enhance machining efficiency and weaken machining vibration. The feasibility and effectiveness of the method are also verified

    Adaptive Cooperative Control of Multiple Urban Rail Trains with Position Output Constraints

    No full text
    This paper studies the distributed adaptive cooperative control of multiple urban rail trains with position output constraints and uncertain parameters. Based on an ordered set of trains running on the route, a dynamic multiple trains movement model is constructed to capture the dynamic evolution of the trains in actual operation. Aiming at the position constraints and uncertainties in the system, different distributed adaptive control algorithms are designed for all trains by using the local information about the position, speed and acceleration of the train operation, so that each train can dynamically adjust its speed through communicating with its neighboring trains. This control algorithm for each train is designed to track the desired position and speed curve, and the headway distance between any two neighboring trains is stable within a preset safety range, which guarantee the safety of tracking operation of multiple urban rail trains. Finally, the effectiveness of the designed scheme is verified by numerical examples

    Research on a Visual Sensing and Tracking System for Distance Education

    No full text
    With Microsoft’s motion sensor Kinect and a customized 3-axis pan-tilt-roll machinery connected together, a new intelligent sensing and tracking system comes into being. In order to simulate human natural visual sensing behavior, this system adopts the sensing function from Kinect placed upon the 3-axis motion machinery, controlled by a proposed expert PID control algorithm based on the adaptive Kalman filter, so as to guarantee automatic real-time visual tracking and to observe human movements and receive his/her position information. Experimental results indicate that this new system is capable of tracking one individual’s real-time movements with relatively high accuracy. Though this system is designed to be applied directly to distance education, it has great potential of functioning as a basic platform where many other human-computer natural interactions can be extended

    Novel Tool Path Generation Method for Pocket Machining Using Sound Field Synthesis Theory

    No full text
    Contour parallel tool paths have been proved to be a preferred machining strategy for their advantage of less tool retractions and less sharp turns. The traditional geometrical algorithm-based tool path generation method often makes it hard to simply and simultaneously solve the problems of self-intersection, no residual, and smoothness at the same time due to their contradictions. To address this issue, a contoured parallel tool path generation method for pocket machining is developed in this study. It is based on sound field synthesis theory inspired by the phenomenon of sound wave propagation. Firstly, the simplified medial axis (SMA) tree of the pocket is extracted and the propagation direction of each SMA segment is calculated on account of the geometric characteristics of the pocket boundary. Secondly, the final tool path is obtained through the synthesis of the sound field. Finally, the novel method is verified on five different pockets to generate a contoured parallel milling tool path. After machining these pockets and measuring the machining time, roughness, and cutting force, the experimental results demonstrate that the tool path obtained by the novel method has advantages in improving machining quality and efficiency
    corecore