2,742 research outputs found

    Dead space effect in space-charge region of collector of AlGaAs/InGaAs p-n-p heterojunction bipolar transistors

    Get PDF
    Hole-initiated avalanche multiplication is investigated using an AlGaAs/InGaAs p-n-p heterojunction bipolar transistor (HBT). Both experimental measurements and theoretical calculation are used to determine the avalanche multiplication factor. A large departure is observed at low electric field when comparison is made between the measured data and theoretical results obtained from the standard ionization model. The comparison shows that the conventional impact ionization model, based on local electric field, substantially overestimates the hole avalanche multiplication factor Mp - 1 in the AlGaAs/InGaAs p-n-p HBT, where a significant dead space effect occurs in the collector space-charge region. A simple correction model for the dead space is proposed, that allows the multiplication to be accurately predicted, even in a heavily doped structure. Based on this model, multiplication characteristics for different threshold energy of the hole are calculated. A threshold energy of 2.5 eV was determined to be suitable for describing the hole-initiated impact ionization process. © 2001 American Institute of Physics.published_or_final_versio

    Temperature-based stiffness identification of que-Ti’s in a historic Tibetan timber building

    Full text link
    © 2017 Taylor & Francis Group, London. Que-Ti, like the corbel brackets connecting beam and column in modern structures, is an important component in typical Tibetan historic timber buildings. It transfers shear, compression and bending moment by slippage and deformation of components as well as limited joint rotation. A rigorous analytical model of Que-Ti is needed for predicting the behaviour of a timber structure under load. However, few researches have been done with this model, particularly on the parameters describing the performances of this joint under load. The equivalent stiffness of a Que-Ti connection in its operating state is determined by using ambient temperature variations as a forcing function in the complete input(temperature)-output(local mechanical strains) relationship when it is incorporated in a finite element model of the structure. The identification is done iteratively via correlating the calculated strain responses with measured data

    High efficiency, low offset voltage InGaP/GaAs power heterostructure-emitter bipolar transistors with advanced thermal management

    Get PDF
    High efficiency, low offset voltage InGaP/GaAs power heterostructure-emitter bipolar transistors (HEBTs) have been demonstrated. The large signal performance of the HEBTs is characterized. Output power of 0.25 W with power added efficiency (PAE) of 63.5% at 1.9 GHz has been achieved from a 26-finger HEBT with total emitter area of 873.6 μm2. Output power of 1.0 W with PAE of 63% has been obtained from the composition of four above-mentioned power cells at the optimum conditions of impedance matching. The thermal performance of HEBT is presented and the results show better thermal management than conventional HBT. The experimental results demonstrate good power performance and capability of HEBTs.published_or_final_versio

    Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD

    Get PDF
    A novel InGaP/GaAs0.92Sb0.08/GaAs double heterojunction bipolar transistor (DHBT) with low turn-on voltage has been fabricated. The turn-on voltage of the DHBT is typically 150 mV lower than that of the conventional InGaP/GaAs HBT, indicating that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs. A current gain of 50 has been obtained for the InGaP/GaAs0.92Sb0.08/GaAs DHBT. The results show that InGaP/GaAsSb/GaAs DHBTs have a great potential for reducing operating voltage and power dissipation.published_or_final_versio

    Thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors

    Get PDF
    The thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors (DHBTs) is investigated. The experimental results show that the current gain in the InGaP/GaAsSb/GaAs DHBTs is nearly independent of the substrate temperature at collector current densities > 10 A/cm2, indicating that the InGaP/GaAsSb/GaAs DHBTs have excellent thermal stability. This finding suggests that the InGaP/GaAsSb/GaAs DHBTs have larger emitter-base junction valence-band discontinuity than traditional GaAs-based HBTs. © 2004 American Institute of Physics.published_or_final_versio

    Current transport mechanism in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors

    Get PDF
    We have developed InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors (DHBTs) with low turn-on voltage and high current gain by using a narrow energy bandgap GaAsSb layer as the base and an InGaP layer as the emitter. The current transport mechanism is examined by measuring both of the terminal currents in forward and reverse mode. The results show that the dominant current transport mechanism in the InGaP/GaAsSb/GaAs DHBTs is the transport of carriers across the base layer. This finding suggests that the bandgap offset produced by incorporating Sb composition into GaAs mainly appears on the valence band and the conduction-band offset in InGaP/GaAsSb heterojunction is very small. © 2004 American Institute of Physics.published_or_final_versio

    InGaP/GaAsSb/GaAs DHBTs with low turn-on voltage and high current gain

    Get PDF
    An InGaP/GaAsSb/GaAs double heterojunction bipolar transistor (DHBT) is presented. It features the use of a fully strained pseudomorphic GaAsSb (Sb composition: 10.4%) as the base layer and an InGaP layer as the emitter, which both eliminates the misfit dislocations and increases the valence band discontinuity at the InGaP/GaAsSb interface. A current gain of 200 has been obtained from the InGaP/GaAsSb/GaAs DHBT, which is the highest value obtained from GaAsSb base GaAs-based HBTs. The turn-on voltage of the device is typically 0.914 V for the 10.4% Sb composition, which is 0.176V tower than that of traditional InGaP/GaAs HBT. The results show that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs.published_or_final_versio

    Synthesis of new dendritic chiral binol ligands and their applications in enantioselective lewis acid catalyzed addition of diethylzinc to aldehydes

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Weak sharp minima in multicriteria linear programming

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A nonlinear Lagrangian approach to constrained optimization problems

    Get PDF
    Author name used in this publication: Yang, X. Q.2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore