
WEAK SHARP MINIMA IN MULTICRITERIA LINEAR
PROGRAMMING∗

SIEN DENG† AND X. Q. YANG‡

SIAM J. OPTIM. c© 2004 Society for Industrial and Applied Mathematics
Vol. 15, No. 2, pp. 456–460

Abstract. In this short note, we study the existence of weak sharp minima in multicriteria
linear programming. It is shown that weak sharp minimality holds for certain residual functions and
gap functions.
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1. Introduction. Consider the following multicriteria linear programming (MCLP)
problem:

min Cx(P)

s.t. x ∈ X,

where Cx = (cT1 x, . . . , c
T
mx)T , and X ⊂ R

n is a nonempty polyhedral convex set.
Let W = R

m\(−int R
m
+ ), where int denotes interior. A vector x̄ ∈ X is a weakly

efficient solution of problem (P) if and only if

Cx− Cx̄ ∈ W ∀x ∈ X.

Denote by Ew the set of all weakly efficient solutions to problem (P).
Weak sharp minima play important roles in mathematical programming. They

have been well studied for scalar minimization problems. See [2, 3, 9] and references
therein. In this short note, we study weak sharp minima for MCLP problems. In
scalar convex optimization, as is well known, weak sharp minimality holds for linear
programming, certain quadratic programming, and linear complementarity problems
[2]; it is shown that convexity and polyhedrality of solution sets are very important for
the existence of weak sharp minima. Unlike the scalar case, for MCLP problems, Ew

is not convex in general. However, Ew is a finite union of polyhedral convex sets. By
examining such structures carefully, we are able to show that weak sharp minimality
holds for certain natural residual functions associated with the underlying MCLP
problems. Specifically, we obtain weak sharp minima of the solution set for the natural
residual function dist (Cx | CEw) and for the associated gap function, respectively.
To the best of our knowledge, these results are new and should be useful in sensitivity
analysis and in designing algorithms for solving multicriteria optimization problems.

The notation that we employ is for the most part the same as that in [7, 8]. A
partial list is provided below for the reader’s convenience.
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We denote the set {1, 2, . . . ,m} by [1,m]. For any J ⊂ [1,m], we define CJ to
be the matrix obtained from C by removing rows whose indexes are in [1,m]\J . For
any given J ⊂ [1,m], the subproblem minCJx s.t. x ∈ X, and its solution set, are
denoted by (P(J )) and Ew(J), respectively.

2. Weak sharp minima. In this section, we discuss two existence results of
weak sharp minima. We begin by reviewing a basic result on structures of solution
sets for MCLP that was given in [1]. See also [6, Thm. 3.3, p. 96].

Theorem 2.1 (see [1]). Let Λ be the canonical simplex in R
m [8, p. 318]. Then

there are finitely many vectors λ(1), . . . , λ(r) of Λ such that Ew = ∪r
k=1Sλ(k), where

Sλ(k) = arg minx∈Xλ(k)TCx.

2.1. Weak sharp minima for dist (Cx | CEw). For y ∈ R
n, define

dist (Cy | CEw) = inf
x∈Ew

max
i∈[1,m]

|ciy − cix|.

It is easy to verify that dist (Cx | CEw) = 0 and x ∈ X if and only if x ∈ Ew. So
dist (Cx | CEw) serves as a natural residual function for problem (P). When m = 1
(the scalar linear programming case), dist (Cx | CEw) = Cx− fmin for x ∈ X, where
fmin is the optimal value of (P). We say that Ew is a set of weak sharp minima for
the function dist (Cx | CEw) if there is some positive constant τ such that

dist (x | Ew) ≤ τdist (Cx | CEw) ∀x ∈ X,

where dist (x | Ew) = infz∈Ew maxi∈[1,m] |zi − xi|.
The first main result of this note follows.
Theorem 2.2. Suppose that Ew is nonempty. Then Ew is a set of weak sharp

minima for dist (Cx | CEw).
Proof. For any y �∈ Ew, there is some x̄ ∈ Ew such that dist (Cy | CEw) =

maxi∈[1,m] |ciy − cix̄|. By Theorem 2.1, there is some λ(j) ∈ {λ(1), . . . , λ(r)} such
that

x̄ ∈ arg minx∈Xλ(j)TCx.

Hence, by Hoffman’s lemma [5], we have

dist (y | Ew) ≤ dist (y | Sλ(j))

≤ τ(j)λ(j)T (Cy − Cx̄)

≤ τ ||λ(j)||1||Cy − Cx̄||∞
≤ τdist (Cy | CEw),

where || · ||1 and || · ||∞ are l1 and l∞ norms, respectively, and τ = maxr
i=1 τ(i). The

last inequality follows from ||λ(j)||1 = 1.

2.2. Weak sharp minima for the gap function. For any y ∈ X, define the
gap function as follows:

g(y) = max
x∈X

{
min

i∈[1,m]
(ciy − cix)

}
.

The gap function was first introduced in [4]. The gap function gJ for the subproblem
(P(J )) is defined accordingly. It is easy to see that g(y) ≥ 0 for any y ∈ X, and
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g(y) = 0 if and only if y ∈ Ew. This gap function can also be expressed as follows:

g(y) = max
x∈X

{
min

i∈[1,m]
(ciy − cix)

}

= max
x∈X

{
− max

i∈[1,m]
(cix− ciy)

}

= −min
x∈X

{
max

i∈[1,m]
(cix− ciy)

}
.

The following proposition gives some basic properties of gap functions.
Proposition 2.3. Suppose that Ew is nonempty. Then the following is true for

subproblems (P(J )) and gap functions:
(a) g is a finite concave function.
(b) minJ⊂[1,m] gJ(y) = g(y) for all y ∈ X, and the following inequality holds:

g(y) ≥ min
J⊂[1,m]

dist (CJy | CJ(Ew(J))) ∀y ∈ X.(1)

Proof. (a) Since cix− ciy is jointly convex in x and y, so is maxi∈[1,m](cix− ciy).
This, along with the nonemptiness of Ew, implies that

min
x∈X

max
i∈[1,m]

(cix− ciy)

is a finite convex function in y. So g is a finite concave function.
(b) For any J ⊂ [1,m], by definition, we always have gJ(y) ≥ g(y) for all y ∈ X.

On the other hand, for any given y ∈ X, let f(x) = maxi∈[1,m](cix− ciy). Then f is
bounded below on X since Ew �= ∅. But f is piecewise linear. So arg minx∈Xf(x) is
nonempty. Suppose that x̂ ∈ arg minx∈Xf(x). Then

0 ∈ ∂f(x̂) + NX(x̂),

where ∂f(x̂) = coi∈I{ci} and I = {i ∈ [1,m] | cix̂− ciy = f(x̂)}. It follows that there
is some λ ∈ Λ(I) (the canonical simplex in R

|I|) such that x̂ ∈ arg minx∈XλTCIx.
This implies that x̂ ∈ Ew(I) ⊂ Ew, which, in turn, implies that

g(y) = − min
x∈Ew

{
max

i∈[1,m]
(cix− ciy)

}
.

Let fI(x) = maxi∈I(cix− ciy). Then

0 ∈ ∂fI(x̂) + NX(x̂).

So g(y) = gI(y). This shows that

g(y) = min
J⊂[1,m]

gJ(y) ∀y ∈ X.

With this given x̂ and the choice of I, we have g(y) = ciy − cix̂ for any i ∈ I. Thus,
for any λ ∈ Λ(I),

g(y) = λT (CIy − CI x̂) = ||CIy − CI x̂||∞.
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Inequality (1) follows from

||CIy − CI x̂||∞ ≥ dist (CIy | CI(Ew(I))) ≥ min
J⊂[1,m]

dist (CJy | CJ(Ew(J))).

We say that Ew is a set of weak sharp minima for the gap function g if there is
some positive constant γ such that

dist (x | Ew) ≤ γg(x) ∀x ∈ X.

To prove the second main result of this note, we need to use the following result on
structures of solution sets for multicriteria convex programming problems.

Proposition 2.4. For any J ⊂ [1,m], let Ew(J) be the set of weakly efficient
solutions to minimizing CJx s.t. x ∈ X. Then

∪J⊂[1,m]Ew(J) = Ew.

The second main result now follows.
Theorem 2.5. Suppose that Ew is nonempty. Then Ew is a set of weak sharp

minima for the gap function g.
Proof. For any given I ⊂ [1,m] with Ew(I) nonempty, by Theorem 2.2 there is a

τ(I) > 0 such that

dist (y | Ew(I)) ≤ τ(I)dist (CIy | CIEw(I)) ∀y ∈ X.

By Proposition 2.4, we have Ew = ∪I⊂[1,m]Ew(I), and it follows that for any
y ∈ X,

dist (y | Ew) ≤ min
I⊂[1,m]

dist (y | Ew(I)).

So

dist (y | Ew) ≤ min
I⊂[1,m]

dist (y | Ew(I))

≤ min
I⊂[1,m]

(τ(I)dist (CIy | CIEw(I)))

≤
(

max
I⊂[1,m]

τ(I)

)(
min

I⊂[1,m]
dist (CIy | CIEw(I))

)

≤
(

max
I⊂[1,m]

τ(I)

)
g(y) (by (1) in Proposition 2.3).

Setting τ̂ = maxI⊂[1,m] τ(I) yields the desired result.
Note. It is easy to see that dist (Cy | CEw) ≥ minI⊂[1,m] dist (CIy | CIEw(I)).

However, we don’t know how g(y) and dist (Cy | CEw) are related to each other.
We conclude this section with the following example, which illustrates that the

technique of parametric linear programming will not yield the sharp results in Theo-
rems 2.2 and 2.5.

Consider the following MCLP:

min Cx(Q)

s.t. Ax ≤ 0,
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where C =
(

1 1
1 −1

)
and A =

(−1 1
−1 −1

)
. Its associated scalar linear programming prob-

lems are to minimize cTµx s.t. Ax ≤ 0, where

cµ = µ

(
1
1

)
+ (1 − µ)

(
1
−1

)
=

(
1

2µ− 1

)
,

and 0 ≤ µ ≤ 1. Then

Sµ =

⎧⎨
⎩

R+(1, 1) if µ = 0,
(0, 0) if 0 < µ < 1,
R+(1,−1) if µ = 1.

For 0 < µ < 1, consider the distance between the vector x̄ = (a, a)T , where a > 0 and
Sµ = (0, 0). We have dist (x̄ | Sµ) = a, and cTµ x̄ = 2µa. So

τ(µ) ≥ dist (x̄ | Sµ)

cTµ x̄
= (2µ)−1 → ∞ as µ ↓ 0.
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