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Abstract. In this paper we study nonlinear Lagrangian functions for constrained optimization
problems which are, in general, nonlinear with respect to the objective function. We establish an
equivalence between two types of zero duality gap properties, which are described using augmented
Lagrangian dual functions and nonlinear Lagrangian dual functions, respectively. Furthermore, we
show the existence of a path of optimal solutions generated by nonlinear Lagrangian problems and
show its convergence toward the optimal set of the original problem. We analyze the convergence of
several classes of nonlinear Lagrangian problems in terms of their first and second order necessary
optimality conditions.
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1. Introduction. It is well known that unconstrained optimization methods,
such as the Lagrangian dual and penalty methods, have been extensively studied in
order to solve constrained optimization problems. A zero duality gap can be guaran-
teed if conventional Lagrangian functions are used to define the dual problem under
convexity or generalized convexity assumptions. Nevertheless, for a nonconvex con-
strained optimization problem, a nonzero duality gap may occur between the original
problem and the conventional Lagrangian dual problem. To overcome this drawback,
various approaches have been proposed in the literature. The convex conjugate frame-
work in [16] was extended in [3, 13] for nonconvex optimization problems. In [17], a
general augmented Lagrangian function was introduced, and it was shown that the
general augmented dual problem constructed with an appropriately selected pertur-
bation function yields a zero duality gap result. Recently, nonlinear Lagrangian func-
tions were introduced using increasing functions for solving constrained optimization
problems. A zero duality gap result is established between a nonconvex constrained
optimization problem and the dual problem defined by using a nonlinear Lagrangian
function in [10, 14, 18, 19]. In passing, we mention that exact penalization-type
results were established for the augmented Lagrangian function in [17], for nonlinear
Lagrangian functions under generalized calmness-type conditions for scalar optimiza-
tion problems in [19], and for vector optimization problems in [12].

Noting the fact that, for nonconvex constrained optimization problems, both zero
duality gap results in terms of augmented Lagrangian dual functions in [17] and
nonlinear Lagrangian dual functions in [19] were established under very mild condi-
tions, it is interesting to investigate whether there is a connection between these two

∗Received by the editors May 5, 2000; accepted for publication (in revised form) November 11,
2000; published electronically May 16, 2001. This work was partially supported by the Research
Grants Council of Hong Kong (grant PolyU B-Q359).

http://www.siam.org/journals/siopt/11-4/37180.html
†Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong

Kong (mayangxq@polyu.edu.hk).
‡Department of Mathematics and Computer Science, Chongqing Normal University, Chongqing

400047, China. Current address: Department of Applied Mathematics, The Hong Kong Polytechnic
University, Kowloon, Hong Kong (mahuangx@polyu.edu.hk).

1119

D
ow

nl
oa

de
d 

08
/0

1/
13

 to
 1

58
.1

32
.1

61
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61026609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1120 X. Q. YANG AND X. X. HUANG

results. Therefore, the first goal of this paper is to establish an equivalence between
zero duality gap properties, which are described using a class of augmented Lagrangian
functions with specially structured perturbation functions, and nonlinear Lagrangian
functions, respectively.

Recently, a wide class of penalty and barrier methods was studied in [2], including
a number of specific functions in the literature (see [5, 9]). For convex programming
problems, the existence of a path of optimal solutions generated by these penalty
methods was established and its convergence toward the optimal set of the original
problem was given. Hence, the second goal of this paper is to show, for noncon-
vex inequality constrained optimization problems, the existence of a path of optimal
solutions generated by a general nonlinear Lagrangian function and to show its con-
vergence toward the optimal set of the original problem. Moreover, we illustrate that
this result can be specialized to convex programming problems, and thus a parallel
result to that in [2] is obtained.

We then investigate the convergence analysis of nonlinear Lagrangian methods in
terms of first and second order necessary optimality conditions, where the multipliers
are independent of vectors in the tangential subspace of the active constraints. This
follows the usual method, as in [1, 22]. Thus we need to derive, for example, corre-
sponding second order necessary conditions for nonlinear Lagrangian problems. How-
ever, for cases where nonlinear Lagrangian functions are not twice differentiable, the
derivation of this type of second order optimality condition of nonlinear Lagrangian
problems is by no means an easy task. For example, one of the nonlinear Lagrangian
functions to be considered is of the minimax type. Thus, the resulting problem is an
unconstrained minimax optimization problem or, more generally, a convex composite
optimization problem. Second order necessary conditions for convex composite op-
timization problems were established in [4, 7, 13, 23]. However, in these conditions
the multipliers depend on the choice of the vector in the tangential subspace of the
active constraints. These second order conditions are not applicable in our cases.
Nevertheless, we are able to derive the required first and second order necessary con-
ditions for these nonlinear Lagrangian problems by means of a higher order smooth
approximation and the smooth approximate variational principle in [6, 8].

The outline of the paper is as follows. In section 2, we review the zero duality
gap properties, which are obtained using augmented Lagrangian functions and non-
linear Lagrangian functions. In section 3, we show that if the dual problem which is
constructed with an augmented Lagrangian and a specially structured perturbation
function yields a zero duality gap, then the dual problem defined by nonlinear La-
grangian dual functions also yields a zero duality gap, and vice versa. In section 4, we
show the existence of a path of optimal solutions generated by nonlinear Lagrangian
problems and show its convergence to the optimal set of the original problem. In sec-
tion 5, we carry out convergence analysis of this method for several classes of nonlinear
Lagrangians in terms of first and second order necessary optimality conditions.

2. Zero duality gaps. In this section, we introduce some definitions and re-
call the zero duality gap properties, which are described by augmented Lagrangian
functions and nonlinear Lagrangian functions, respectively. Consider the following
inequality constrained optimization problem (P):

inf f(x)
s.t. x ∈ X, gj(x) ≤ 0, j = 1, . . . , q,
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1121

where X ⊂ Rp is a nonempty and closed set, and f, gj : X → R1 (j = 1, . . . , q) are
real-valued functions. Denote by MP the infimum of (P) and by X0 the feasible set
of (P):

X0 = {x ∈ X : gj(x) ≤ 0 ∀j = 1, . . . , q}.

In this paper, we assume that X0 �= ∅.
Throughout this paper, we also assume that

f(x) ≥ 0 ∀x ∈ X.

Note that this assumption is not very restrictive. Otherwise, we may replace the
objective function f(x) with 1+ef(x), which satisfies the assumption; infx∈X f(x) > 0
also holds; and the resulting constrained optimization problem has the same set of
(local) solutions as that of (P).

Let c : R1
+ × Rq → R1 be a real-valued function. c is said to be increasing on

R1
+ × Rq if, for any y1, y2 ∈ R1

+ × Rq, y2 − y1 ∈ Rq+1
+ implies that c(y1) ≤ c(y2).

We will consider increasing and lower semicontinuous (l.s.c.) functions c defined on
R1

+ ×Rq, which enjoy the following properties:
(A) There exist positive real numbers aj , j = 1, . . . , q, such that, for any y =

(y0, y1, . . . , yq) ∈ R1
+ ×Rq, we have

c(y) ≥ max{y0, a1y1, . . . , aqyq}.

(B) For any y0 ∈ R1
+,

c(y0, 0, . . . , 0) = y0.

Let y+ = max{y, 0} for y ∈ R. The following are some examples of function c
(see [18]):

c(y) = max{y0, y1, . . . , yq},

c(y) =


yk0 +

q∑
j=1

y+
j

k




1/k

, k ∈ (0,+∞).

The convergence analysis of optimality conditions for nonlinear Lagrangian dual prob-
lems defined by these functions (see below) will be given in section 5.

Let c be an increasing function defined as above, and

F (x, d) = (f(x), d1g1(x), . . . , dqgq(x)) ∀x ∈ X, d = (d1, . . . , dq) ∈ Rq
+.

The function defined by

L(x, d) = c(F (x, d))

is called a nonlinear Lagrangian corresponding to c.
The nonlinear Lagrangian dual function for (P) corresponding to c is defined by

φ(d) = inf
x∈X

L(x, d), d ∈ Rq
+.
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1122 X. Q. YANG AND X. X. HUANG

The nonlinear Lagrangian dual problem (DN ) for (P) corresponding to c is
defined by

sup
d∈Rq

+

φ(d).

Denote by MN the supremum of problem (DN ). It can be easily verified [18, 19] that
the following weak duality result holds:

MN ≤ MP .(1)

Definition 2.1. Let c be an increasing function satisfying properties (A) and
(B). The zero duality gap property with respect to c between (P) and (DN ) is said to
hold if MN =MP .

Definition 2.2 (see [2]). Let X ⊂ Rp be unbounded. The function h : X → R1

is said to be 0-coercive on X if

lim
x∈X,‖x‖→+∞

h(x) = +∞.

Let

G(x) = max{g1(x), . . . , gq(x)}, x ∈ X,

h(x) = max{f(x), G(x)}, x ∈ X.(2)

Theorem 2.3. Suppose that h, defined by (2), is 0-coercive if X is unbounded.
If the functions f, g1, . . . , gq are l.s.c., then the zero duality gap property with respect
to c between (P) and (DN ) holds.

Proof. It is clear that L(x, d) is an increasing function of d. The result follows
from Theorem 4.2 in section 4.

Let us recall the definition of the augmented Lagrangian function for (P) (for
details, see Chapter 11, section K∗ in [17]). Let ϕ : Rp → R1

⋃{+∞}:

ϕ(x) =

{
f(x) if x ∈ X0;
+∞ otherwise.

Let f : Rp × Rq → R1
⋃{+∞} be a perturbation function [17, p. 519] such that

f(x, 0) = ϕ(x), x ∈ Rp. Let σ be an augmenting function, namely, a proper, l.s.c.,
and convex function with the unique minimum at 0 and σ(0) = 0. The corresponding
augmented Lagrangian l : Rp × Rq × (0,+∞) → R1

⋃{+∞,−∞} with parameter
r > 0 is defined by

l(x, y, r) = inf{f(x, u) + rσ(u)− 〈y, u〉 : u ∈ Rq},

where 〈y, u〉 denotes the inner product of y and u.
The corresponding augmented Lagrangian dual function is

ψ(y, r) = inf{l(x, y, r) : x ∈ Rp},

and the augmented Lagrangian dual problem (DA) is

sup
(y,r)∈Rq×(0,+∞)

ψ(y, r).
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1123

Let MA denote the supremum of the dual problem (DA). The following weak duality
for (P) and (DA) holds (see [17]):

MA ≤ MP .(3)

Definition 2.4. Let f : Rp × Rq → R1
⋃{+∞} be a perturbation function and

σ be an augmenting function. The zero duality gap property with respect to f and σ
between (P) and (DA) is said to hold if MA =MP .

Definition 2.5 (see [17]). A function h : Rp × Rq → R1
⋃{+∞,−∞} with

values h(x, u) is said to be level-bounded in x and locally uniform in u if, for each
u ∈ Rq and α ∈ R1, there exists a neighborhood V (u) of u, along with a bounded set
D ⊂ Rp, such that {x ∈ Rp : h(x, v) ≤ α} ⊂ D ∀v ∈ V (u).

Theorem 2.6 (see [17]). Assume that the perturbation function f : Rp × Rq →
R1

⋃{+∞} is proper and l.s.c., and that f(x, u) is level-bounded in x and locally
uniform in u. Let σ be an augmenting function. Suppose further that there exist
y ∈ Rq and r > 0 such that

inf{f(x, u) + rσ(u)− 〈y, u〉 : x ∈ Rp, u ∈ Rq} > −∞.(4)

Then MA =MP .

3. Equivalence of zero duality gaps. In this section, we establish an equiv-
alence of zero duality gap properties between a class of augmented Lagrangian dual
problems and the nonlinear Lagrangian dual problem.

Denote the indicator function of a set D ⊂ Rq by

δD(y) =
{
0 if y ∈ D;
+∞ otherwise.

It is easy to check that (P) is equivalent to the following problem:

inf
x∈X

f(x) + δRq
−
(g1(x), . . . , gq(x))

in the sense that the two problems have the same sets of (locally) optimal solutions
and optimal values. Let

H(x) = (g1(x), . . . , gq(x)),

f(x, u) = f(x) + δRq
−
(H(x) + u) + δX(x).(5)

Then, for x ∈ Rp, f(x, 0) = ϕ(x). Thus, f(x, u) is a perturbation function.

Lemma 3.1. Let the perturbation function be defined by (5), σ an augmenting
function, and v = (v1, . . . , vq). Then

l(x, y, r) =


f(x) +

q∑
j=1

yjgj(x) + inf
v≥0




q∑
j=1

yjvj + rσ(−g1(x)− v1, . . . ,−gq(x)− vq)


 if x ∈ X,

+∞ otherwise.
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1124 X. Q. YANG AND X. X. HUANG

Proof. Let x ∈ X.

l(x, y, r) = inf{f(x, u) + rσ(u)− 〈y, u〉 : u ∈ Rq}

= inf
v≥0


f(x) +

q∑
j=1

yj(gj(x) + vj) + rσ(−g1(x)− v1, . . . ,−gq(x)− vq)




= f(x) +

q∑
j=1

yjgj(x) + inf
v≥0




q∑
j=1

yjvj + rσ(−g1(x)− v1, . . . ,−gq(x)− vq)


 .

Let x �∈ X. It is clear that f(x, u) = +∞. Thus l(x, y, r) = +∞.
The following proposition summarizes some properties of augmented Lagrangian

l, where f is defined by (5), and the nonlinear Lagrangian L.
Lemma 3.2. Let the perturbation function f(x, u) be defined by (5). Then, the

following properties of augmented Lagrangian function l hold:
(I) l(x, y, r) ≤ f(x) ∀x ∈ X0, y ∈ Rq, r > 0, and l(x, 0, r) = f(x) ∀x ∈ X0,

r > 0.
(II) l(x, 0, r) ≥ f(x) ∀x ∈ X.
(III) For any x ∈ X\X0, y ∈ Rq, l(x, y, r)→ +∞ as r → +∞,

and the following properties of nonlinear Lagrangian function L hold:
(I′) L(x, d) = f(x) ∀x ∈ X0.
(II′) L(x, d) ≥ f(x) ∀x ∈ X.
(III′) For any x ∈ X\X0, L(x, d)→ +∞ as d → +∞.

Here the notation d = (d1, . . . , dq) → +∞ means that dj → +∞ for each j ∈
{1, . . . , q}.

It follows from Lemma 3.2 that l(x, 0, r) behaves very similarly to L(x, re), where
e = (1, . . . , 1) ∈ Rq

+. For any x ∈ Rp, let

J+(x) = {j ∈ {1, . . . , q} : gj(x) > 0}, J(x) = {j ∈ {1, . . . , q} : gj(x) = 0}.
Proposition 3.3. Let augmenting function σ be a finite and l.s.c. function which

attains its minimum 0 at 0 ∈ Rq. Let the perturbation function f(x, u) defining the
augmented Lagrangian be selected as (5). If MA =MP , then MN =MP .

Proof. IfMN =MP fails to hold by weak duality (1) of the nonlinear Lagrangian,
then there exists ε0 > 0 such that MN ≤ MP − ε0.

By the assumption, we get

MA = sup
(y,r)∈Rq×(0,+∞)

inf
x∈X

l(x, y, r) =MP .

Then, for ε0
4 > 0, there exist ȳ ∈ Rq and r̄ > 0 such that l(x, ȳ, r̄) ≥ MP − ε0

4 ∀x ∈ X.
That is, for any x ∈ X,

(6)

f(x) +

q∑
j=1

ȳjgj(x) + inf
v≥0




q∑
j=1

ȳjvj + r̄σ(−g1(x)− v1, . . . ,−gq(x)− vq)


 ≥ MP − ε0

4
.

Let dn = (d1,n, . . . , dq,n)→ +∞. Thus,
inf
x∈X

L(x, dn) = q(dn) ≤ MP − ε0.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1125

There then exists xn ∈ X, such that

0 ≤ f(xn) ≤ L(xn, dn) ≤ MP − ε0
2

(7)

and

0 < max {a1d1,ng1(xn), . . . , aqdq,ngq(xn)} ≤ L(xn, dn) ≤ MP − ε0
2
.(8)

Equation (7) implies

f(x) +

q∑
j=1

ȳjgj(x) +

q∑
j=1

ȳjvj + r̄σ(−g1(x)− v1, . . . ,−gq(x)− vq)(9)

≥ MP − ε0
4

∀v ≥ 0.

Let x = xn in (9), vj,n = −gj(xn) if gj(xn) ≤ 0, and vj,n = 0 if gj(xn) > 0,
j = 1, . . . , q. We get

f(xn) +
∑

j∈J+(xn)

ȳjgj(xn) + r̄σ(−v∗1,n, . . . ,−v∗q,n) ≥ MP − ε0
4
,(10)

where v∗j,n = gj(xn), j ∈ J+(xn), and v
∗
j,n = 0 otherwise.

By the assumption on σ, we know that σ is locally Lipschitz around 0 ∈ Rq.
Equation (8) and dn → +∞ yield that 0 < maxj∈J+(xn){gj(xn)} → 0 as n → +∞.
Therefore, there exist β > 0 and n0 > 0 such that for n ≥ n0,

σ(−v∗1,n, . . . ,−v∗q,n) ≤ β

q∑
j=1

|v∗j |.

Consequently, the facts above and (10) jointly yield

f(xn) +


 ∑

j∈J+(xn)

(|ȳj |+ r̄β)


 max

j∈J+(xn)
gj(xn)

≥ f(xn) +
∑

j∈J+(xn)

(ȳj + r̄β)gj(xn)

= f(xn) +
∑

j∈J+(xn)

ȳjgj(xn) + r̄β

m∑
j=1

|v∗j |

≥ f(xn) +
∑

j∈J+(xn)

ȳjgj(xn) + r̄σ(−v∗1,n, . . . ,−v∗q,n)

≥ MP − ε0
4
.

Let γ =
∑q

j=1 |ȳj |+ qr̄β. Then

f(xn) + γ max
j∈J+(xn)

{gj(xn)} ≥ MP − ε0
4
.(11)

On the other hand, let λn = min1≤j≤q{ajdj,n}. It follows from (8) that

λn max {g1(xn), . . . , gq(xn)} ≤ L(xn, dn) ≤ MP − ε0/2.
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1126 X. Q. YANG AND X. X. HUANG

Thus,

max
j∈J+(xn)

{gj(xn)} ≤ MP − ε0/2

λn
.

By (11), we have

MP − ε0
4

≤ f(xn) +
γ

λn

(
MP − ε0

2

)
≤ MP − ε0

2
+

γ

λn

(
MP − ε0

2

)
,

where the last inequality follows from (7).
Noticing that λn → +∞ as n → ∞ and letting n → ∞, we obtain

MP − ε0
4

≤ MP − ε0
2
,

which is a contradiction.
Proposition 3.4. Let function c defining the nonlinear Lagrangian L be contin-

uous. If MP =MN , then MP =MA.
Proof. By the weak duality (3) of the augmented Lagrangian,MA ≤ MP . Suppose

to the contrary that there exists ε0 > 0 such that

MA = sup
(y,r)∈Rq×(0,+∞)

inf
x∈X

l(x, y, r) ≤ MP − ε0.

Thus,

inf
x∈X

l(x, y, r) ≤ MP − ε0 ∀(y, r) ∈ Rq × (0,+∞).

In particular,

inf
x∈X

l(x, 0, r) ≤ MP − ε0 ∀r ∈ (0,+∞).

Let rn → +∞. There then exists n0 > 0 such that, for n ≥ n0 and some xn ∈ X,
l(xn, 0, rn) ≤ MP − ε0

2 . Thus,

f(xn) + inf
v∈Rq

+

{rnσ(−g1(xn)− v1, . . . ,−gq(xn)− vq)} ≤ MP − ε0
2
.

Furthermore, there exists vn = (v1,n, . . . , vq,n) ∈ Rq
+ such that

f(xn) + rnσ(−g1(xn)− v1,n, . . . ,−gq(xn)− vq,n) ≤ MP − ε0
4
, n ≥ n0.(12)

Noticing that f(xn) ≥ 0 ∀n, we deduce from (12) that

σ(−g1(xn)− v1,n, . . . ,−gq(xn)− vq,n) ≤ MP − ε0/4

rn
.

Thus

lim sup
n→+∞

σ(−g1(xn)− v1,n, . . . ,−gq(xn)− vq,n) = 0.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1127

Since σ is a convex function with a unique minimum at 0 with σ(0) = 0, it follows
that

gj(xn) + vj,n → 0 as n → +∞, (j = 1, . . . , q).

Let εn = max1≤j≤q gj(xn). Then εn > 0 and εn → 0 as n → +∞. It follows from (12)
and f(xn) ≥ 0 that

0 ≤ f(xn) ≤ MP − ε0
4
, n ≥ n0.(13)

Without loss of generality, we assume that

f(xn)→ t0 ≥ 0 as n → +∞.(14)

The combination of (13) and (14) yields 0 ≤ t0 ≤ MP − ε0
4 . Let d = (d1, . . . , dq) ∈ Rq

+.
Then, by the monotonicity of c,

c(f(xn), d1g1(xn), . . . , dqgq(xn)) ≤ c(f(xn), dεn, . . . , dεn).

Taking the upper limit as n → +∞ and applying the continuity of c, we obtain

lim sup
n→+∞

c(f(xn), d1g1(xn), . . . , dqgq(xn)) ≤ c(t0, 0, . . . , 0) = t0 ≤ MP − ε0
4
.

Hence, for each d ∈ Rq
+, ∃n(d) > 0 such that

c(f(xn(d)), d1g1(xn(d)), . . . , dqgq(xn(d))) ≤ MP − ε0
8
.

It follows that

inf
x∈X

c(f(x), d1g1(x), . . . , dqgq(x)) ≤ MP − ε0
8
.

As d ∈ Rq
+ is arbitrary, we conclude that MN ≤ MP − ε0

8 , which contradicts the
assumption MN =MP . The proof is complete.

The relationships are summarized below between the zero duality properties of
the augmented Lagrangian dual problem (DA), with the perturbation function f(x, u)
selected as (5), and the nonlinear Lagrangian dual problem (DN ).

Theorem 3.5. Consider the problem (P), the nonlinear Lagrangian dual problem
(DN ), and the augmented Lagrangian dual problem (DA). If the function c defining the
nonlinear Lagrangian L is continuous, the perturbation function f(x, u) defining the
augmented Lagrangian is selected as (5), and the augmenting function σ is finite, l.s.c.,
and convex, attaining its minimum 0 at 0 ∈ Rq, then the following two statements are
equivalent:

(i) MA =MP ;
(ii) MN =MP .
The following example verifies Theorem 3.5.
Example 3.1. Consider the problem

inf f(x)
s.t. x ∈ X, g(x) ≤ 0,

where X = [0,+∞), f(x) = 1/(x + 1) ∀x ∈ X; g(x) = x − 1 if 0 ≤ x ≤ 1; g(x) =
1/
√
x− 1/x if 1 < x < +∞. Then MP = 1/2.
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1128 X. Q. YANG AND X. X. HUANG

Let c(y1, y2) = max{y1, y2} ∀y1 ≥ 0, y2 ∈ R1. It is easy to check that MN = 0.
Hence MN < MP .

Let

f(x, u) = f(x) + δR1
−
(g(x) + u) + δX(x)

be defined as in (5). Let σ(u) = 1/2u2, u ∈ R1. ThenMA = 0. Indeed, by Lemma 3.1,

l̄(x, y, r) = f(x) + yg(x) + inf
v≥0

{yv + r/2(g(x) + v)2} ∀x ∈ X, y ∈ R1, r > 0.(15)

By the definition of MA, for any ε > 0, there exist ȳ ∈ R1 and r̄ > 0 such that

MA < l̄(x, ȳ, r̄) + ε ∀x ∈ X.(16)

The combination of (15) and (16) yields

MA < f(x) + ȳ(g(x) + v) + r̄/2(g(x) + v)2 + ε ∀x ∈ X, v ≥ 0.(17)

Setting v = 0 in (17) gives us

MA < f(x) + ȳg(x) + r̄/2g2(x) + ε ∀x ∈ X.(18)

Note that, for any x ∈ (1,+∞), (18) becomes

MA <
1

x+ 1
+

(
1√
x
− 1

x

)
ȳ + r̄/2

(
1√
x
− 1

x

)2

+ ε.(19)

Taking the limit in (19) as x → +∞, we obtain MA ≤ ε. By the arbitrariness of
ε > 0, we deduce that MA ≤ 0. However, it is obvious that MA ≥ 0. Hence MA = 0.
Consequently, MA < MP . Thus, Theorem 3.5 is verified.

It is worth noting that the following conditions in Theorems 2.3 and 2.6 are not
satisfied:

(i) The condition limx∈X,‖x‖→+∞max{f(x), g(x)} → +∞ in Theorem 2.3 does
not hold.

(ii) f(x, u) is not level-bounded in x and locally uniform in u. In fact, for any
sufficiently small ε > 0, we cannot find a bounded set D0 ⊂ R1 such that {x ∈ X :
f(x, u) ≤ 1} ⊂ D0 holds for all u satisfying |u| < ε.

The following examples show that, if the perturbation function is not defined by
(5), then Theorem 3.5 may not hold.

Example 3.2. Consider the same problem as in Example 3.1. Then MN <
MP . But if we let ϕ(x) = f(x), if x ∈ X0, and ϕ(x) = +∞ otherwise. Define
f(x, u) = ϕ(x); if x ∈ X0 and u = 0, f(x, u) = +∞ otherwise. It is then easy to
check that f(x, u) is a perturbation function, but is different from (5). On the other
hand, the augmented Lagrangian l(x, y, r) = f(x) ∀x ∈ X0, y ∈ R1, r > 0, and
l(x, y, r) = +∞, x /∈ X0. Thus MA =MP .

Example 3.3. Let p = q = 1. Let X = [0,+∞), f(x) = x, x ∈ X, and g(x) =
x− 1, x ∈ X. Then we have

σ(u) = |u| ∀u ∈ R1,

f(x, u) =

{
f(x)− u2 if g(x) ≤ u, x ∈ X;
+∞ otherwise.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1129

It is easy to verify that

f(x, 0) =

{
f(x) if x ∈ X0 = [0, 1];
+∞ otherwise.

Let us look at the augmented Lagrangian function

l(x, y, r) = inf{f(x)− (v + g1(x))
2 + r|v + g1(x)| − y(g1(x) + v) : v ≥ 0} ≡ −∞.

Thus, (4) does not hold andMA = −∞. However,MP = 0. It follows thatMA < MP .
On the other hand, MN = 0. Hence MN =MP .

4. A nonlinear Lagrangian method. Let d ∈ Rq
+. Consider the following

unconstrained optimization problem (Qd):

inf
x∈X

L(x, d),

where L(x, d) is a nonlinear Lagrangian function. Under certain conditions, we show
the existence of a path of optimal solutions generated by unconstrained optimiza-
tion problems (Qdk) (where {dk} ⊂ Rq

+ and dk → +∞ as k → +∞) and show its
convergence to the optimal set of (P).

Let S denote the optimal solution set of (P), Sd the optimal solution set of (Qd),
and vd the optimal value of (Qd).

Lemma 4.1 (see [12]). Let d ∈ Rq
+. If the functions defining (P) are l.s.c., then

L(·, d) is l.s.c. on X.
Theorem 4.2. Consider the problem (P). Let h(x) defined by (2) be 0-coercive

on X if X is unbounded. Then S is nonempty and compact. For each d ∈ Rq
+ + e,

Sd is nonempty and compact. Furthermore, for each selection xd ∈ Sd as d → +∞,
{xd} is bounded, its limit points belong to S, and limd→+∞ vd =MP .

Proof. Let x ∈ X0. By the 0-coercivity and l.s.c. of h,

X1 = {x ∈ X0 : f(x) ≤ f(x)} = {x ∈ X : h(x) ≤ f(x)} ∩X0

is nonempty and compact. It follows that S is nonempty. In addition, S ⊂ X1;
therefore, S is bounded. As S =

⋂
x∈X0

[{x∗ ∈ X : f(x∗) ≤ f(x)}⋂X0] is closed by
the lower semicontinuity of f , S is nonempty and compact.

Let h1(x) = max{f(x), [min1≤j≤q aj ]g(x)}. Then
L(x, d) ≥ max{f(x), a1d1g1(x), . . . , aqdqgq(x)} ≥ h1(x) ∀x ∈ X, d ∈ Rq

+ + e.

It is easy to see that h1(x) is l.s.c. and 0-coercive. Let X2 = {x ∈ X : h1(x) ≤
f(x)}. Then X2 is nonempty and compact. For each d ∈ Rq

+ + e, let Xd = {x ∈
X : L(x, d) ≤ L(x, d)}. By Lemma 3.2(I′), we have Xd = {x ∈ X : L(x, d) ≤ f(x)}.
Moreover, since L(x, d) ≥ h1(x) ∀x ∈ X, it follows that Xd ⊆ X2 is nonempty and
compact. Hence, Sd is nonempty and bounded. It follows from Lemma 4.1 that L(·, d)
is l.s.c. on X. Thus, Sd is closed. So Sd is nonempty and compact for any d ∈ Rq

++e.
Moreover,

Sd ⊆ Xd ⊆ X2 ∀d ∈ Rq
+ + e.

It follows that, for each selection xd ∈ Sd, {xd} is bounded. Suppose that x∗ is a
limit point of {xd}, namely, ∃dk = (dk1 , . . . , d

k
m) → +∞ and xdk → x∗ as k → +∞.

Arbitrarily fix an x ∈ X0. Then we have

max{f(xdk), a1d
k
1g1(xdk), . . . , aqd

k
qgq(xdk)} ≤ L(xdk , dk) ≤ L(x, dk) = f(x).(20)
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1130 X. Q. YANG AND X. X. HUANG

Thus,

f(xdk) ≤ f(x)(21)

and [
min

1≤j≤q
aj

]
·
[
min

1≤j≤q
dkj

]
· g(xdk) ≤ f(x).(22)

Equation (22) implies

g(xdk) ≤ f(x)[
min

1≤j≤q
aj

]
·
[
min

1≤j≤q
dkj

] .

Taking the lower limit and using the lower semicontinuity of g, we have g(x) ≤ 0, i.e.,
x ∈ X0. Taking the lower limit in (21) and applying the lower semicontinuity of f , we
obtain f(x∗) ≤ f(x). By the arbitrariness of x ∈ X0, we conclude that x

∗ ∈ S.
Furthermore, arbitrarily taking {dk} ⊂ Rq

+ + e with dk → +∞ as k → +∞,
suppose that xdk → x∗ ∈ S. It follows from (20) (setting x = x∗) that f(xdk) ≤ vdk ≤
f(x∗). Therefore,

v = f(x∗) ≤ lim inf
k→+∞

f(xdk) ≤ lim inf
k→+∞

vdk

and lim supk→+∞ vdk ≤ f(x∗) = MP . Consequently, limk→+∞ vdk = MP . Thus
limd→+∞ vd =MP .

Remark 4.1. It is clear that if f is 0-coercive on X, then h is also 0-coercive.
Theorem 4.2 holds if the 0-coercivity of h is replaced with the 0-coercivity of f .

As a byproduct, we apply Theorem 4.2 to obtain a corollary for the case that
(P) is a convex programming problem, which is parallel to [2, Theorem 2.2]. In the
following, we assume that f , gj are finite, l.s.c., and convex functions defined on a
nonempty, closed, and convex set X ⊆ Rp. Let F : Rp → R1

⋃{+∞} be an extended
real-valued convex function. The recession function F∞ of F is defined by

epi(F∞) = [epi(F )]∞,

where epi(F ) = {(x, r) ∈ Rp × R1 : F (x) ≤ r} is the epigraph of F . It is known [2]
that

F∞(y) = inf
{
lim inf
k→+∞

F (tkxk)

tk
: tk → +∞, xk → y

}
,

where {tk} and {xk} are sequences in R1 and Rp, respectively.
Lemma 4.3. Let f , gj be finite, l.s.c., and convex functions defined on a nonempty,

closed, and convex set X. If the optimal solution set S of (P) is nonempty and com-
pact, then h(x) is a finite, l.s.c., convex, and 0-coercive function on X.

Proof. Let us set

f̂(x) =

{
f(x) if x ∈ X;
+∞ otherwise,

ĝj(x) =

{
gj(x) if x ∈ X;
+∞ otherwise.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1131

Then (P) is equivalent to the following convex programming problem (P ′):

min{f̂(x) : x ∈ C},
where C = {x ∈ Rp : ĝj(x) ≤ 0, j = 1, . . . , q}.

It follows from the assumptions and [2] that S is nonempty and compact if and
only if

f̂∞(w) ≤ 0, (ĝj)∞(w) ≤ 0, j = 1, . . . , q, w ∈ Rp ⇒ w = 0.(23)

Since S is nonempty and compact, (23) holds.
Now we show by contradiction that h is 0-coercive. Suppose that there exists

{xk} ⊂ X such that ‖xk‖ → +∞ and h(xk) ≤ M for some M > 0. Then f(xk) ≤
M ∀k and gj(xk) ≤ M ∀j, k. Since { xk

‖xk‖} is bounded, without loss of generality we
assume that wk =

xk

‖xk‖ → w as k → +∞. Clearly, w �= 0 since ‖w‖ = 1. It follows

from the definition of a recession function that

f̂∞(w) ≤ lim inf
k→+∞

f(‖xk‖wk)

‖xk‖ ≤ lim
k→+∞

M

‖xk‖ = 0,(24)

(ĝj)∞(w) ≤ lim inf
k→+∞

gj(‖xk‖wk)

‖xk‖ ≤ lim
k→+∞

M

‖xk‖ = 0.(25)

Thus, w �= 0, and (24) and (25) contradict (23).
Remark 4.2. Let f, gj , X be as in Lemma 4.3. If X is unbounded, then S is

nonempty and compact if and only if h is 0-coercive. This can be regarded as a
characterization of the nonemptiness and compactness of the optimal solution set S
of the constrained convex programming problem (P).

Corollary 4.4. Let X be a nonempty, closed, and convex subset of Rp. Let f ,
gj be finite, l.s.c., and convex functions on X. If S is nonempty and compact, then
for each d ∈ Rq

+ + e, Sd is nonempty and compact. Furthermore, for each selection
xd ∈ Sd, {xd} is bounded and its limit points belong to S and limd→+∞ vd =MP .

Proof. The proof follows from Theorem 4.2 and Lemma 4.3.
Next we apply Theorem 4.2 to develop a method to seek a so-called ε-quasi-

solution of (P) when (P) may not have an optimal solution.
Let ε > 0. The following various definitions of approximate solutions are cited

from [15].
Definition 4.5. x∗ ∈ X0 is called an ε-solution of (P) if

f(x∗) ≤ f(x) + ε ∀x ∈ X0.

Definition 4.6. x∗ ∈ X0 is called an ε-quasi-solution of (P) if

f(x∗) ≤ f(x) + ε‖x− x∗‖ ∀x ∈ X0.

Remark 4.3. An ε-quasi-solution is also a local ε-solution. In fact, x∗ is an
ε-solution of f on {x ∈ X0 : ‖x− x∗‖ ≤ 1}.

Definition 4.7. Let ε > 0. If x∗ ∈ X0 is both an ε-solution and an ε-quasi-
solution of (P), we say that x∗ is a regular ε-solution of (P).

Vavasis [20] gave an algorithm for seeking a local approximate solution via the
Ekeland variational principle to a problem that contains only box constraints. Specif-
ically, the following optimization problem (P ′′) is considered:

min f(x)
s.t. αi ≤ xi ≤ βi, i = 1, . . . , p,
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1132 X. Q. YANG AND X. X. HUANG

where αi, βi, i = 1, . . . , p, are real numbers and x = (x1, . . . , xp). The algorithm in [20]
attempted to find a feasible solution x∗, such that ‖�f(x∗)‖ ≤ ε, which is a necessary
condition for x∗ to be an ε-quasi-solution of (P ′′), where ε > 0 is a given precision
value.

In the following, we give a model algorithm to find an ε-quasi-solution by using a
nonlinear Lagrangian. Let ε > 0 and x0 ∈ X. Define

f1(x) = f(x) + ε‖x− x0‖, x ∈ X.

Consider the following optimization problem (Pε):

min f1(x)
s.t. x ∈ X, gj(x) ≤ 0, j = 1, . . . , q,

and the following unconstrained optimization problem (Qε
d):

minL(x, d) s.t. x ∈ X,

where L(x, d) = c(f1(x), d1g1(x), . . . , dqgq(x)) ∀x ∈ X, d = (d1, . . . , dq) ∈ Rq
+, and c

is defined as in section 2.
Let Sε and S

ε

d denote the optimal solution sets of (Pε) and (Q
ε
d), respectively.

Let vε and v
ε
d denote the optimal values of (Pε) and (Q

ε
d), respectively.

Theorem 4.8. Let f(x) be 0-coercive on X if X is unbounded. We have the
following:

(i) Sε is a nonempty and compact set and, for each d ∈ Rq
++e, S

ε

d is a nonempty
and compact set.

(ii) Let xd ∈ S
ε

d, d ∈ Rq
+. Then {xd} is bounded, every limit point belongs to Sε,

and limd→+∞ vεd = vε.
(iii) Furthermore, any x∗ ∈ Sε is an ε-quasi-solution of (P).
(iv) If x0 ∈ X0, then

f(x∗) ≤ f(x0)− ε‖x0 − x∗‖.(26)

Proof. It is clear that f1 is 0-coercive on X if X is unbounded. Applying Theo-
rem 4.2 by replacing f with f1, (P) with (Pε), and (Qd) with (Q

ε
d), we conclude that

Sε is nonempty and compact; that for each d ∈ Rq
++e, S

ε

d is nonempty and compact;

that for each selection xd ∈ S
ε

d, {xd} is bounded; and that each limit point of {xd}
belongs to Sε and limd→+∞ vεd = vε. Thus (i) and (ii) hold.

Furthermore, for x∗ ∈ Sε, we have

f(x∗) + ε‖x∗ − x0‖ ≤ f(x) + ε‖x− x0‖ ∀x ∈ X0.(27)

It follows that

f(x∗) ≤ f(x) + ε(‖x− x0‖ − ‖x∗ − x0‖) ≤ f(x) + ε‖x− x∗‖ ∀x ∈ X0.

That is, x∗ is an ε-quasi-solution of (P). Thus, (iii) holds. Moreover, if x0 ∈ X0, then
by (27) (taking x = x0), we get (26). The proof is complete.

Remark 4.4. The last assertion (26) tells us that even if we already obtained an
ε-quasi-solution x0 of (P), it is still possible to apply Theorem 4.8 to seek a “better”
ε-quasi-solution x∗ of (P) (if the resulting x∗ �= x0).
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1133

5. Convergence analysis of the nonlinear Lagrangian method in terms
of necessary optimality conditions. In this section, we investigate the conver-
gence of first and second order necessary optimality conditions that are obtained from
nonlinear Lagrangian problems. Specifically, we shall consider the following classes of
nonlinear Lagrangians:

(i) L∞(x, d) = max{f(x), d1g1(x), . . . , dqgq(x)}, x ∈ X;

(ii) Lk(x, d) = (f(x)k +
∑q

j=1 d
k
j g

+
j (x)

k
)1/k, x ∈ X, where 2 ≤ k < ∞;

(iii) Lk(x, d) is as in (ii) with 0 < k < 2,
where properties (A) and (B) are satisfied with aj = 1, j = 1, . . . , q.

Throughout this section, we further assume
(A1) X = Rp;
(A2) β = infx∈Rp f(x) > 0;
(A3) f, gj , j = 1, . . . , q, are C1,1, namely, they are differentiable and their

gradients are locally Lipschitz; and
(A4) max{f(x), g1(x), . . . , gq(x)} → +∞ as ‖x‖ → +∞.
Let f be a C1,1 function. We denote by ∂2f(x) the generalized Hessian of f

at x; see [11, 23]. It is noted that the set-valued mapping x → ∂2f(x) is upper
semicontinuous.

We consider the following type of optimality conditions which were derived in
[11, 21]. It is worth noting that in these conditions the multipliers do not depend on
the choice of vectors in the tangential subspace of the active constraints.

Definition 5.1. Let x∗ ∈ X0. The first order necessary condition of (P) is said
to hold at x∗ if there exist λ, µj ≥ 0, j ∈ J(x∗), such that

λ� f(x∗) +
∑

j∈J(x∗)

µj � gj(x
∗) = 0.(28)

The second order necessary condition of (P) is said to hold at x∗ if (28) holds and,
for any u∗ ∈ Rp satisfying

�gj(x
∗)�u∗ = 0, j ∈ J(x∗),(29)

there exist F ∈ ∂2f(x∗), Gj ∈ ∂2gj(x
∗), j ∈ J(x∗), such that

u∗T


λF +

∑
j∈J(x∗)

µjGj


u∗ ≥ 0.(30)

We need the following lemma.
Lemma 5.2. Let k ∈ (0,+∞], z ∈ X0, and dn = (d1,n, . . . , dq,n)(∈ Rq

+) → +∞
as n → +∞. If the sequence {xn} ⊂ X satisfies Lk(xn, dn) ≤ f(z) ∀n, then {xn} is
bounded and its limit points belong to X0.

Proof. It is known that max{f(xn), d1,ng1(xn), . . . , dq,ngq(xn)} ≤ Lk(xn, dn).
Thus,

max{f(xn), d1,ng1(xn), . . . , dq,ngq(xn)} ≤ f(z).(31)

Suppose that {xn} is unbounded. Without loss of generality, assume that ‖xn‖ →
+∞. By assumption (A4), we get

max{f(xn), g1(xn), . . . , gq(xn)} → +∞ as n → +∞.(32)
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1134 X. Q. YANG AND X. X. HUANG

Since dj,n → +∞ as n → +∞ (j = 1, . . . , q), we see that dj,n > 1 (j = 1, . . . , q) when
n is sufficiently large. Hence, for sufficiently large n,

max{f(xn), g1(xn), . . . , gq(xn)} ≤ max{f(xn), d1,ng1(xn), . . . , dq,ngq(xn)}.

This fact, combined with (32), contradicts (31). So the sequence {xn} is bounded.
Now we show that any limit point of {xn} belongs to X0. Without loss of gener-

ality, we assume that xn → x∗. Suppose that x∗ �∈ X0. There exists γ0 > 0 such that
max{g1(x∗), . . . , gq(x∗)} ≥ γ0 > 0. It follows that max{g1(xn), . . . , gq(xn)} ≥ γ0/2
for sufficiently large n. Moreover, it follows from (31) that

f(z) ≥ Lk(xn, dn) ≥ max{d1,ng1(xn), . . . , dq,ngq(xn)}
≥ min

1≤j≤q
{dj,n}max{g1(xn), . . . , gq(xn)} ≥ γ0

2
min

1≤j≤q
{dj,n},

which is impossible, as n → +∞.

Define

J∗(x) =




J+(x) ∪ J(x) if k ∈ (0, 2),
J(x) if k ∈ [2,∞),
J+(x) if k =∞.

Lemma 5.3 (see [22]). Suppose that {∇gj(x)}j∈J∗(x) is linearly independent for
any x ∈ X0 and that xn → x∗ as n → +∞ and x∗ ∈ X0. Then, for u∗ ∈ Rp

satisfying (29), there exists a sequence {un} ⊂ Rp such that �gj(xn)
�un = 0, j ∈

J∗(x∗), and un → u∗.
As shown in [1, 22], if x ∈ X0 and xn → x, then, for sufficiently large n,

J(xn) ⊆ J(x), J+(xn) ⊆ J(x).(33)

We shall carry out the convergence analysis by considering the following two cases.

Case 1. 2 ≤ k < +∞.
Case 2. k = +∞ or k ∈ (0, 2).
5.1. Case 1. 2 ≤ k < +∞. When 2 ≤ k < +∞, the nonlinear Lagrangian

function Lk(x, d) is C1,1. Thus, the first and second order necessary optimality con-
ditions of (Qdn) can be easily derived.

Let dn = (d1,n, . . . , dq,n)(∈ Rq
+)→ +∞ as n → +∞.

Let xn be a local minimum of (Qdn). Thus, the first order necessary condition
for xn to be a local minimum of (Qdn

) can be written as ∇Lk(xn, dn) = 0, or

a
1
k−1
n


fk−1(xn)� f(xn) +

∑
j∈J+(xn)

dkj,n(g
+
j (xn))

k−1 � gj(xn)


 = 0,(34)

where an = [L
k(xn, dn)]

k.

The second order necessary condition is that, for every u ∈ Rp, u�Mu ≥ 0 for
some M ∈ ∂2Lk(xn, dn); thus there exist Fn ∈ ∂2f(xn), Gj,n ∈ ∂2gj(xn), j ∈ J+(xn),
such that
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1135

(
1

k
− 1

)
a

1
k−2
n


α(n)(�f(xn)

�u)2 +
∑

j∈J+(xn)

βj,1(n)(�gj(xn)
�u)2

+
∑

j∈J+(xn)

βj,2(n)(�f(xn)
�u)(�gj(xn)

�u)

+
∑

i∈J+(xn)

∑
j∈J+(xn)

βj,3(n)(�gi(xn)
�u)(�gj(xn)

�u)




+ a
1
k−1
n (k − 1)


ξ(n)(�f(xn)

�u)2 +
∑

j∈J(xn)

ηj,1(n)[(�gj(xn)
�u)+]2

+
∑

j∈J+(xn)

ηj,2(n)(�gj(xn)
�u)2




+ a
1
k−1
n uT


fk−1(xn)Fn +

∑
j∈J+(xn)

dkj,n(g
+
j (xn))

k−1Gj,n


u ≥ 0,(35)

where α(n), βi,1(n), βi,2(n), βi,3(n), ξ(n), ηi,1(n), and ηi,2(n) are real numbers.
We have the following convergence result.
Theorem 5.4. Suppose that {∇gj(x)}j∈J(x) is linearly independent for any x ∈

X0. Let 2 ≤ k < +∞ and dn ∈ Rq
+ be such that dn → +∞. Let xn be generated by

some descent method for (Qdn) starting from a point z ∈ X0 and xn satisfy first order
necessary condition (34) and second order necessary condition (35). Then {xn} is
bounded and every limit point of {xn} is a point of X0 satisfying first order necessary
optimality condition (28) and second order necessary optimality condition (30) of (P).

Proof. It follows from Lemma 5.2 that {xn} is bounded and every limit point of
{xn} belongs to X0. Without loss of generality, we assume that xn → x∗. Let

an = [L
k(xn, dn)]

k > 0; bn = a
1
k−1
n


fk−1(xn) +

∑
j∈J+(xn)

dkj,ng
+
j (xn)

k−1


 > 0.

Thus,

a
1
k−1
n fk−1(xn)

bn
+

∑
j∈J+(xn)

a
1
k−1
n dkj,n(g

+
j (xn))

k−1

bn
= 1.

Without loss of generality, we assume that

a
1
k−1
n fk−1(xn)

bn
→ λ,(36)

a
1
k−1
n dkj,n(g

+
j (xn))

k−1

bn
→ µj , j ∈ J(x∗).(37)

Then by (33),

λ ≥ 0, µj ≥ 0, j ∈ J(x∗), and λ+
∑

j∈J(x∗)

µj = 1.(38)
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1136 X. Q. YANG AND X. X. HUANG

Dividing (34) by bn and taking the limit, we obtain

λ� f(x∗) +
∑

j∈J(x∗)

µj � gj(x
∗) = 0.

Since {�gj(x
∗)}j∈J(x∗) is linearly independent, it follows that λ > 0.

By Lemma 5.3, we deduce that, for any u∗ ∈ Rp satisfying (29), we can find
un ∈ Rp such that

�gj(xn)
�un = 0, j ∈ J(x∗)(39)

and

un → u∗.(40)

Furthermore, for every un satisfying (39) and (40), we can find Fn ∈ ∂2f(xn), Gj,n ∈
∂2gj(xn), j ∈ J+(xn), such that (35) holds with u replaced by un.

Substituting (39) into (34), we get

�f(xn)
�un = 0.(41)

Substituting (39)–(41) into (35), we have

a
1
k−1
n u�n


fk−1(xn)Fn +

∑
j∈J+(xn)

dkj,n(g
+
j (xn))

k−1Gj,n


un ≥ 0.(42)

Since xn → x∗ as n → ∞, ∂2f(·), ∂2gj(·) are upper semicontinuous at x∗ and
∂2f(x∗), ∂2gj(x

∗) are compact, without loss of generality we can assume that

Fn → F ∈ ∂2f(x∗), Gj,n → Gj ∈ ∂2gj(x
∗), j ∈ J(x∗).(43)

Dividing (42) by bn and taking the limit, applying (36), (37), (40), and (43), we obtain

u∗T


λF +

∑
j∈J(x∗)

µjGj


u∗ ≥ 0 and λ > 0.

5.2. Case 2. k = +∞ or k ∈ (0, 2). When k = +∞, problem (Qdn) is a
minimax optimization problem and thus a convex composite optimization problem.
However, the second order necessary conditions for a convex composite optimization
problem given in [4, 23] are not applicable, as the multipliers depend on the choice of
the vector in the tangential subspace of the active constraints. When k ∈ (0, 2), func-
tion g+

j (x)
k and thus Lk(x, d) is not C1,1. Thus, the existing optimality conditions in

the literature are not applicable. However, we are able to derive optimality conditions
for (Qdn

) by applying the smooth approximate variational principle, which is due to
Borwein and Preiss [6] (see also [8, Theorem 5.2]).

Lemma 5.5 (approximate smooth variational principle [8, Theorem 5.2]). Let
X be a Hilbert space. Let g : X → (−∞,+∞] be l.s.c. and bounded below with
dom(g) �= ∅. Let x be a point such that g(x) < infx∈X g(x)+ ε, where ε > 0. Then, for
any λ > 0, there exist yε, zε with ‖yε − zε‖ < λ, ‖zε − x‖ < λ, g(yε) < infx∈X g(x) + ε,
and having the property that the function y → g(y) + (ε/λ2)‖y − zε‖2 has a unique
minimum over X at y = yε.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1137

Remark 5.1. If the Hilbert space X in Lemma 5.5 is replaced with a nonempty
and closed subset X1, then the conclusion also holds. As a matter of fact, if g : X1 →
(−∞,+∞] is l.s.c. and bounded below on X1, we can define a function g : X →
(−∞,+∞] as follows: g(x) = g(x) if x ∈ X1 and g(x) = +∞ otherwise. It is easy
to verify that g is l.s.c. and bounded below on X. Applying Lemma 5.3 to g, the
conclusion for g follows.

Next we present first and second order necessary conditions for x to be a local
minimum of Lk(x, d) under the linear independence assumption. The proof is given
in the appendix.

Proposition 5.6. Let k ∈ (0, 2) or k = +∞. Let x be a local minimum of
Lk(x, d) and {�gj(x)}j∈J∗(x) be linearly independent. Then there exist λ > 0, µj ≥
0, j ∈ J∗(x), with λ+

∑
j∈J∗(x) µj = 1 such that

λ� f(x) +
∑

j∈J∗(x)

µj � gj(x) = 0.

Furthermore, for each u ∈ Rp satisfying

�gj(x)
�u = 0, j ∈ J∗(x),(44)

there exist F ∈ ∂2f(x), Gj ∈ ∂2gj(x), j ∈ J∗(x), such that

uT


λF +

∑
j∈J∗(x)

µjGj


u ≥ 0.

Theorem 5.7. Suppose that {∇gj(x)}j∈J∗(x) is linearly independent for any
x ∈ X0. Let k ∈ (0, 2) or k = +∞. Let dn(∈ Rq

+) → +∞ as n → +∞. Let xn be
generated by some descent method for (Qdn) starting from a point z ∈ X0. Then {xn}
is bounded and every limit point of {xn} is a point of X0 satisfying first order necessary
condition (28) and second order necessary condition (30) of (P), respectively.

Proof. It follows from Lemma 5.2 that {xn} is bounded and every limit point
of {xn} belongs to X0. Without loss of generality, suppose that xn → x∗ ∈ X0

and that J+(xn) ∪ J(xn) ⊂ J(x∗) for sufficiently large n. That {�gj(x
∗)}j∈J(x∗) is

linearly independent implies that {�gj(xn)}j∈J+(xn)∪J(xn) is linearly independent
when n is sufficiently large. In other words, the assumptions in Proposition 5.6
hold (with x replaced by xn) when n is sufficiently large. Thus, we assume that
{�gj(xn)}j∈J+(xn)∪J(xn) is linearly independent for all n.

The first order necessary optimality conditions in Proposition 5.6 can be written
as

λn � f(xn) +
∑

j∈J(x∗)

µj,n � gj(xn) = 0,(45)

where λn > 0, µj,n ≥ 0, j ∈ J(x∗), with µj,n = 0 ∀j ∈ J(x∗)\J(xn) and λn +∑
j∈J(x∗) µj = 1. Without loss of generality, we assume that λn → λ, µj,n → µj , j ∈

J(x∗), as n → +∞. Taking the limit in (45) gives us

λ� f(x∗) +
∑

j∈J(x∗)

µj � gj(x
∗) = 0.

By the linear independence of {�gj(x
∗)}j∈J(x∗), we see that λ > 0. That is, (28)

holds.
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1138 X. Q. YANG AND X. X. HUANG

Let u∗ ∈ Rp satisfy (29). Since {�gj(x
∗)}j∈J(x∗) is linearly independent and

xn → x∗, by Lemma 5.3, we obtain un ∈ Rp such that

�gj(xn)
Tun = 0, j ∈ J(x∗),(46)

and un → u∗.
Thus, if xn satisfies any one of the second order necessary conditions in Propo-

sition 5.6, then, for every un satisfying (46), there exist Fn ∈ ∂2f(xn), Gj,n ∈
∂2gj(xn), j ∈ J(x∗),

un
T


λnFn +

∑
j∈J(x∗)

µj,nGj,n


un ≥ 0,(47)

where λn, µj,n are as in (45).
By the upper semicontinuity of ∂2f(·), ∂2gj(·) and the nonemptiness and com-

pactness of ∂2f(x∗), ∂2gj(x
∗)(j = 1, . . . , q), without loss of generality we assume that

Fn → F ∈ ∂2f(x∗), Gj,n → Gj ∈ ∂2gj(x
∗), j ∈ J(x∗),

as n → +∞. Taking the limit in (47), we get

u∗T


λF +

∑
j∈J(x∗)

µjGj


u∗ ≥ 0,

where λ > 0. Thus, (30) follows. The proof is complete.

Appendix. Proof of Proposition 5.6. We consider the following two cases.
Case 1. k = ∞. In this case, J∗(x) = J+(x). Since x ∈ X, f(x) > 0. Thus,

it follows that L∞(x, d) = max{f(x), djgj(x)}j∈J+(x). Since x is a local minimum of
L∞(x, d), there exists δ > 0 such that

L∞(x, d) ≤ L∞(x, d) = max{f(x), djgj(x)}j∈J+(x) ∀x ∈ Uδ,

where Uδ = {x ∈ Rp : ‖x− x‖ ≤ δ} (X = Rp).
Let m > 0 be an integer and

sm(x) =


fm(x) +

∑
j∈J+(x)

dmj g
m
j (x)




1
m

, x ∈ Uδ,

εm =
[
(q + 1)

1
m − 1

]
L∞(x, d).

Then 0 ≤ sm(x)− L∞(x, d) ∀x ∈ Uδ and sm(x) ≤ [(q + 1) 1
m ]L∞(x, d). Thus,

sm(x) ≤ L∞(x, d) + [(q + 1)
1
m − 1]L∞(x, d)

≤ L∞(x, d) + [(q + 1)
1
m − 1]L∞(x, d)

≤ sm(x) + [(q + 1)
1
m − 1]L∞(x, d)

= sm(x) + εm ∀x ∈ Uδ.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1139

Note that εm ↓ 0 as m → +∞. Without loss of generality, we assume that 2ε
1/4
m <

δ ∀m. Applying Lemma 5.5 by setting λ = ε
1/4
m , we obtain x′m, x

′′
m ∈ Uδ such that

‖x′m − x′′m‖ < ε1/4m and ‖x′′m − x‖ < ε1/4m

and x′m is a unique minimum of the problem

min vm(x) = sm(x) + ε1/2m ‖x− x′′m‖2 s.t. x ∈ Uδ.(48)

Note that ‖x′m − x‖ ≤ ‖x′m − x′′m‖ + ‖x′′m − x‖ ≤ 2ε
1/4
m < δ. It follows that x′m ∈

intUδ. Applying the first order necessary optimality condition to problem (48), we get
�vm(x

′
m) = 0. That is,

(49)

a
1
m−1
m


fm−1(x′m)� f(x′m) +

∑
j∈J+(x)

dmj g
m−1
j (x′m)� gj(x

′
m)


+ 2ε1/2m (x′m − x′′m) = 0,

where am = [sm(x
′
m)]

m.
Let

bm = a
1
m−1
m


fm−1(x′m) +

∑
j∈J+(x)

dmj g
m−1
j (x′m)


 .

It is clear that there exists α > 0 such that bm ≥ α > 0 ∀m. Without loss of
generality, we can assume that

a
1
m−1
m fm−1(x′m)

bm
→ λ,

a
1
m−1
m dmj g

m−1
j (x′m)

bm
→ µj , j ∈ J+(x).(50)

Thus

λ ≥ 0, µj ≥ 0, j ∈ J+(x), and λ+
∑

j∈J+(x)

µj = 1.

Dividing (50) by bm and taking the limit as m → +∞, it follows from (50) that

λ� f(x) +
∑

j∈J+(x)

µj � gj(x) = 0.

Since {�gj(x)}j∈J+(x) is linearly independent, it follows that λ > 0.
Now we apply the second order necessary optimality condition to (48). For any

u ∈ Rp, there exists Vm ∈ ∂2vm(x
′
m) such that u

�Vmu ≥ 0. That is, there exist
Fm ∈ ∂2f(x′m) and Gj,m ∈ ∂2gj(x

′
m), j ∈ J+(x), such that

(
1

m
− 1

)
a

1
m−2
m


fm−1(x′m)� f(x′m)

�u+
∑

j∈J+(x)

dmj g
m−1
j (x′m)� gj(x

′
m)

�u




2

+(m− 1)a 1
m−1
m


fm−2(x′m)(�f(x′m)

�u)2 +
∑

j∈J+(x)

dmj g
m−2
j (x′m)(�gj(x

′
m)

�u)2




+a
1
m−1
m u�


fm−1(x′m)Fm +

∑
j∈J+(x)

dmj (g
+
j (x

′
m))

m−1Gj,m


u+ 2ε1/2m uTu ≥ 0.

(51)
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1140 X. Q. YANG AND X. X. HUANG

Since {�gj(x)}j∈J+(x) is linearly independent and x
′
m → x, from Lemma 5.3, for any

u ∈ Rp satisfying (44), there exists a sequence {um}, such that
�gj(x

′
m)

�um = 0, j ∈ J+(x),(52)

and um → u.
The combination of (51) (setting u = um) and (52) yields(

1

m
− 1

)
a

1
m−2
m

(
fm−1(x′m)� f(x′m)

�um
)2
+ (m− 1)a 1

m−1
m fm−2(x′m)(�f(x′m)

�um)2

+a
1
m−1
m uTm


fm−1(x′m)Fm +

∑
j∈J+(x)

dmj g
m−1
j (x′m)Gj,m


um + 2ε1/2m uTmum ≥ 0.

(53)

From (50) (setting u = um) and (52), we have∣∣∣∣
(
1

m
− 1

)
a

1
m−2
m

(
fm−1(x′m)� f(x′m)

�um
)2
/bm

∣∣∣∣
= 4εm[(x

′
m − x′′m)

�um]2
(
1− 1

m

)
/(a1/m

m bm) ≤ 4ε
3
2
m

(αβ)
‖um‖2.

Therefore,(
1

m
− 1

)
a1/m−2
m

(
fm−1(x′m)� f(x′m)

�um
)2
/bm → 0 as m → ∞.

The first formula in (50) guarantees that, when m is sufficiently large,

a
1
m−1
m fm−1(x′m)/bm > λ/2 > 0.

Thus, the combination of (50) (letting u = um) and (52) also yields

(m− 1)a 1
m−1
m fm−2(x′m)

(�f(x′m)
�um

)2
/bm

=
1

f(x′m)
(m− 1)4εm[(x′m − x′′m)

�um]2/[(a
1
m−1
m fm−1(x′m)/bm)b

2
m]

≤ 1

βα2
‖um‖24(m− 1)ε3/2m /(λ/2).

Noting that

4(m− 1)ε3/2m ≤ 4(m− 1)
(
(q + 1)1/m − 1

)3/2

[L∞(x, d)]3/2,

we deduce that

(m− 1)a 1
m−1
m fm−2(x′m)

(�f(x′m)
�um

)2
/bm → 0 as m → ∞.

Since ∂2f(·), ∂2gj(·) are upper semicontinuous at x and ∂2f(x), ∂2gj(x) are
nonempty and compact, we obtain F ∈ ∂2f(x), Gj ∈ ∂2gj(x), j ∈ J+(x), such
that

Fm → F, Gm → G, j ∈ J+(x) as m → ∞.
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1141

Thus, dividing (53) by bm and taking the limit, we have

uT


λF +

∑
j∈J+(x)

µjGj


u ≥ 0 and λ > 0.

Case 2. k ∈ (0, 2). In this case, J∗(x) = J+(x)
⋃
J(x). Since x is a local minimum

of Lk(x, d), there exists δ > 0 such that Lk(x, d) ≤ Lk(x, d) ∀x ∈ Uδ. Then


fk(x) +

∑
j∈J+(x)∪J(x)

dkj g
+
j

k
(x)




1/k

≤

fk(x) +

∑
j∈J+(x)∪J(x)

dkj g
+
j

k
(x)




1/k

.

Let

tm(x) =


fk(x) +

1

2k

∑
j∈J+(x)∪J(x)

(
djgj(x) +

√
d2
jg

2
j (x) + 1/m

)k




1/k

.

It is not hard to prove that 0 ≤ tm(x)−Lk(x, d) ≤ εm and Lk(x, d) ≤ tm(x) ∀x ∈ Uδ,
where

εm =

{
q
kL

k(x, d)
1
k−1 1

mk/2 if k ∈ (0, 1];
1

2
√
m
q1/k if k ∈ (1, 2).

Thus,

tm(x) ≤ Lk(x, d) + εm ≤ Lk(x, d) + εm ≤ tm(x) + εm ∀x ∈ Uδ.

Since εm ↓ 0 asm → +∞, without loss of generality we assume that 2ε1/4m < δ ∀m.

Applying Lemma 5.5 by setting λ = ε
1/4
m , there exist x′m, x

′′
m ∈ Um with ‖x′m−x′′m‖ <

ε
1/4
m , and ‖x′′m − x‖ < ε

1/4
m , such that x′m is the unique minimum of the optimization

problem

min wm(x) = tm(x) + ε1/2m ‖x− x′′m‖2 s.t. x ∈ Uδ.(54)

Applying the first order necessary optimality condition to wm(x) and noticing that
x′m ∈ intUδ, we have �wm(x

′
m) = 0. That is,

a
1
k−1
m

(
fk−1(x′m)� f(x′m)

+
1

2k

∑
j∈J+(x)∪J(x)

djc
k−1
m (1 + djgj(x

′
m)(d

2
jg

2
j (x

′
m) + 1/m)

−1/2)� gj(x
′
m)

)

+ε1/2m (x′m − x′′m) = 0,(55)

where

am = (tm(x
′
m))

k; cm = djgj(x
′
m) +

√
d2
jg

2
j (x

′
m) + 1/m.
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Let

bm = a
1
k−1
m


fk−1(x′m) +

1

2k

∑
j∈J+(x)∪J(x)

djc
k−1
m

(
1 + djgj(x

′
m)

(
d2
jg

2
j (x

′
m) +

1

m

)−1/2
).

Without loss of generality, we assume that

a
1
k−1
m fk−1(x′m)

bm
→ λ,

cj,m/bm → µj , j ∈ J+(x) ∪ J(x),(56)

where, for j ∈ J+(x) ∪ J(x),

cj,m =
a

1
k−1
m

2k
djc

k−1
m

(
1 + djgj(x

′
m)

(
d2
jg

2
j (x

′
m) +

1

m

)−1/2
)
.

It is easy to see that µj = 0, j ∈ J(x), if k > 1. Thus we obtain λ ≥ 0, µj ≥ 0 with
λ+

∑
j∈J∗(x) µj = 1.

Dividing (55) by bm and taking the limit, we get

λ� f(x) +
∑

j∈J+(x)∪J(x)

µj � gj(x) = 0.

Applying the second order necessary optimality condition to (54), we know that,
for every u ∈ Rp, there exist Fm ∈ ∂2f(x′m), Gj,m ∈ ∂2gj(x

′
m), j ∈ J+(x) ∪ J(x) such

that

(
1

k
− 1

)
a

1
k−2
m


fk−1(x′m)� f(x′m)

�u+
∑

j∈J+(x)∪J(x)

αj(m)� gj(x
′
m)

�u




2

+a
1
k−1
m


(k − 1)fk−2(x′m)(�f(x′m)

�u)2 +
∑

j∈J+(x)∪J(x)

θj(m)(�gj(x
′
m)

�u)2




+a
1
k−1
m u�


fk−1(x′m)Fm +

1

2k

∑
j∈J+(x)∪J(x)

dj

[
djgj(x

′
m) +

√
d2
jg

2
j (x

′
m) +

1

m

]k−1

(
1 + djgj(x

′
m)

√
d2
i g

2
j (x

′
m) +

1

m

)
Gj,m

)
u ≥ 0,(57)

where αj(n), θj(n) are real numbers. Since {�gj(x)}j∈J∗(x) is linearly independent,
i.e., {�gj(x)}j∈J+(x)∪J(x) is linearly independent, and x′m → x, by Lemma 5.3, we
conclude that, for every u ∈ Rp satisfying (44), there exists um ∈ Rp, such that

�gj(x
′
m)

�um = 0, j ∈ J∗(x),(58)

and um → u.
Furthermore, for every um satisfying (58), we obtain Fm ∈ ∂2f(x′m), Gj,m ∈

∂2gj(x
′
m), j ∈ J+(x)

⋃
J(x), such that (57) holds (with u replaced by um).
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NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1143

The combination of (58) and (55) gives us

a
1
k−1
m fk−1(x′m)� f(x′m)

�um = −ε 1
2
m(x

′
m − x′′m)

�um.

Thus ∣∣∣∣
(
1

k
− 1

)
a

1
k−2
m

(
fk−1(x′m)� f(x′m)

�um
)2
∣∣∣∣ ≤ 1

q∗
ε

3
4
m‖um‖2

and ∣∣∣(k − 1)a 1
k−1
m fk−2(x′m)(�f(x′m)

�um)2
∣∣∣ ≤ 1− k

q∗
ε

3
4
m‖um‖2.

Noting that bm ≥ 1, we obtain, as m → +∞,
1

bm

(
1

k
− 1

)
a

1
k−2
m

(
fk−1(x′m)� f(x′m)

�um
)2 → 0,(59)

1

bm
(k − 1)a 1

k−1
m fk−2(x′m)(�f(x′m)

�um)2 → 0.(60)

By the upper semicontinuity of x → ∂2f(x), x → ∂2gj(x)(j = 1, . . . , q) and the
nonemptiness and compactness of ∂2f(x) and ∂2gj(x), without loss of generality we
can assume that Fm → F ∈ ∂2f(x), Gj,m → Gj ∈ ∂2gj(x), j ∈ J+(x) ∪ J(x).

Letting u = um in (57) and substituting (58) into it, dividing (57) by bm and
taking the limit, and applying (56), (59), and (60), we obtain

uT


λF +

∑
j∈J+(x)∪J(x)

µjGj


u ≥ 0,

where λ > 0.
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