155 research outputs found

    Improving the Eco-system of Passwords

    Get PDF
    Password-based authentication is perhaps the most widely used method for user authentication. Passwords are both easy to understand and use, and easy to implement. With these advantages, password-based authentication is likely to stay as an important part of security in the foreseeable future. One major weakness of password-based authentication is that many users tend to choose weak passwords that are easy to guess. In this dissertation, we address the challenge and improve the eco-system of passwords in multiple aspects. Firstly, we provide methodologies that help password research. To be more specific, we propose Probability Threshold Graphs, which is superior to Guess Number Graphs when comparing password models and password datasets. We also introduce rich literature of statistical language modeling into password modeling and show that if used correctly, whole-string Markov models outperform Probabilistic Context Free Grammar models. Secondly, we improve password policies and practice used by websites by studying how to best check weak passwords. We model different password strength checking methods as Password Ranking Algorithms (PRAs), and introduce two methods for comparing different PRAs: the ÎČ-Residual Strength Graph and the Normalized ÎČ-Residual Strength Graph. Finally, we examine the security and usability of commonly suggested password generation strategies. We find that for mnemonic sentence-based strategies, differences in the exact instructions have a tremendous impact on the security level of the resulting passwords. For word-based strategies, security of the resulting passwords mainly depends on the number of words required, and requiring at least 3 words is likely to result in passwords stronger than the general passwords chosen by typical users

    Using Context-Based Password Strength Meter to Nudge Users' Password Generating Behavior: A Randomized Experiment

    Get PDF
    Encouraging users to create stronger passwords is one of the key issues in password-based authentication. It is particularly important as prior works have highlighted that most passwords are weak. Yet, passwords are still the most commonly used authentication method. This paper seeks to mitigate the issue of weak passwords by proposing a context-based password strength meter. We conduct a randomized experiment on Amazon MTurk and observe the change in users’ behavior. The results show that our proposed method is significantly effective. Users exposed to our password strength meter are more likely to change their passwords after seeing the warning message, and those new passwords are stronger. Furthermore, users are willing to invest their time to learn about creating a stronger password, even in a traditional password strength meter setting. Our findings suggest that simply incorporating contextual information to password strength meters could be an effective method in promoting more secure behaviors among end users

    Using Context-Based Password Strength Meter to Nudge Users\u27 Password Generating Behavior: A Randomized Experiment

    Get PDF
    Encouraging users to create stronger passwords is one of the key issues in password-based authentication. It is particularly important as prior works have highlighted that most passwords are weak. Yet, passwords are still the most commonly used authentication method. This paper seeks to mitigate the issue of weak passwords by proposing a context-based password strength meter. We conduct a randomized experiment on Amazon MTurk and observe the change in users’ behavior. The results show that our proposed method is significantly effective. Users exposed to our password strength meter are more likely to change their passwords after seeing the warning message, and those new passwords are stronger. Furthermore, users are willing to invest their time to learn about creating a stronger password, even in a traditional password strength meter setting. Our findings suggest that simply incorporating contextual information to password strength meters could be an effective method in promoting more secure behaviors among end users

    A Knowledge-Driven Cross-view Contrastive Learning for EEG Representation

    Full text link
    Due to the abundant neurophysiological information in the electroencephalogram (EEG) signal, EEG signals integrated with deep learning methods have gained substantial traction across numerous real-world tasks. However, the development of supervised learning methods based on EEG signals has been hindered by the high cost and significant label discrepancies to manually label large-scale EEG datasets. Self-supervised frameworks are adopted in vision and language fields to solve this issue, but the lack of EEG-specific theoretical foundations hampers their applicability across various tasks. To solve these challenges, this paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2), which integrates neurological theory to extract effective representations from EEG with limited labels. The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity. Sequentially, inter-view and cross-view contrastive learning pipelines in combination with various augmentation methods are applied to capture neural features from different views. By modeling prior neural knowledge based on homologous neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations. Experimental results on different downstream tasks demonstrate that our method outperforms state-of-the-art methods, highlighting the superior generalization of neural knowledge-supported EEG representations across various brain tasks.Comment: 14pages,7 figure

    Improving Zero-shot Visual Question Answering via Large Language Models with Reasoning Question Prompts

    Full text link
    Zero-shot Visual Question Answering (VQA) is a prominent vision-language task that examines both the visual and textual understanding capability of systems in the absence of training data. Recently, by converting the images into captions, information across multi-modalities is bridged and Large Language Models (LLMs) can apply their strong zero-shot generalization capability to unseen questions. To design ideal prompts for solving VQA via LLMs, several studies have explored different strategies to select or generate question-answer pairs as the exemplar prompts, which guide LLMs to answer the current questions effectively. However, they totally ignore the role of question prompts. The original questions in VQA tasks usually encounter ellipses and ambiguity which require intermediate reasoning. To this end, we present Reasoning Question Prompts for VQA tasks, which can further activate the potential of LLMs in zero-shot scenarios. Specifically, for each question, we first generate self-contained questions as reasoning question prompts via an unsupervised question edition module considering sentence fluency, semantic integrity and syntactic invariance. Each reasoning question prompt clearly indicates the intent of the original question. This results in a set of candidate answers. Then, the candidate answers associated with their confidence scores acting as answer heuristics are fed into LLMs and produce the final answer. We evaluate reasoning question prompts on three VQA challenges, experimental results demonstrate that they can significantly improve the results of LLMs on zero-shot setting and outperform existing state-of-the-art zero-shot methods on three out of four data sets. Our source code is publicly released at \url{https://github.com/ECNU-DASE-NLP/RQP}

    3D Textured Shape Recovery with Learned Geometric Priors

    Full text link
    3D textured shape recovery from partial scans is crucial for many real-world applications. Existing approaches have demonstrated the efficacy of implicit function representation, but they suffer from partial inputs with severe occlusions and varying object types, which greatly hinders their application value in the real world. This technical report presents our approach to address these limitations by incorporating learned geometric priors. To this end, we generate a SMPL model from learned pose prediction and fuse it into the partial input to add prior knowledge of human bodies. We also propose a novel completeness-aware bounding box adaptation for handling different levels of scales and partialness of partial scans.Comment: 5 pages, 3 figures, 2 table

    Effect of the heating rate on the thermal explosion behavior and oxidation resistance of 3D-structure porous NiAl intermetallic

    Get PDF
    Porous NiAl intermetallic compounds demonstrate great potential in various applications by their high porosity and excellent oxidation resistance. However, to obtain a controllable NiAl intermetallic structure by tuning different process parameters remains unclear. In this work, porous NiAl intermetallic compounds were fabricated by economic and energy-saving thermal explosion (TE) reaction. The relationship between microstructure and process parameters was revealed using three-dimensional X-ray microscopy (3D-XRM) with high resolution and non-destructive characteristics. The geometrical features and quantitative statistics of the porous NiAl obtained at different heating rates (2, 10, 20 \ub0C min−1) were compared. The result of the closed porosity calculation showed that a lower heating rate (2 \ub0C min−1) promoted the Kirkendall reaction between Ni and Al, resulting in a high closed porosity (5.25%). However, at a higher heating rate (20 \ub0C min−1), a homogeneous NiAl phase was observed using the threshold segmentation method, indicating uniform and complete TE reaction can be achieved at a high heating rate. The result of the 3D fluid simulation showed that the sample heated at 10 \ub0C min−1 had the highest permeability (2434.6 md). In this study, we systematically investigated the relationship between the heating rates and properties of the porous NiAl intermetallic, including the phase composition, porosity, exothermic mechanism, oxidation resistance, and compression resistance. Our work provides constructive directions for designing and tailoring the performance of porous NiAl intermetallic compounds
    • 

    corecore