
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2016

Improving the Eco-system of Passwords
Weining Yang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Yang, Weining, "Improving the Eco-system of Passwords" (2016). Open Access Dissertations. 888.
https://docs.lib.purdue.edu/open_access_dissertations/888

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/888?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated ����������

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Weining Yang

Improving the Eco-System of Passwords

Doctor of Philosophy

Ninghui Li
Chair

Dan Goldwasser

Robert W. Proctor

Elisa Bertino

Ninghui Li

William J. Gorman 06/24/2016

IMPROVING THE ECO-SYSTEM OF PASSWORDS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Weining Yang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

My deepest gratitude goes to my advisor Dr. Ninghui Li, for his invaluable guidance

and his countless suggestions which cultivating me into an independent researcher. I am

fortunate to have the opportunity to interact with such a productive and respected mentor

who also understood the need for balance. This dissertation would not have been material-

ized without his help.

My appreciation also goes to my Ph.D. committee members, Dr. Elisa Bertino, Dr. Dan

Goldwasser, and Dr. Robert W. Proctor for their helpful advice and suggestions during my

preliminary exam and on my dissertation. I would like to extend my thanks to Dr. William

J. Gorman for his efforts on helping format my dissertation.

Special thanks go to my lab mates, Wahbeh Qardaji, Christopher Gates, Dong Su, Hain-

ing Chen, Wei-Yen Day, Sze Yiu Chau, Huangyi Ge, and Tianhao Wang, for their valuable

collaborations and assistance on my research, as well as for the great friendship.

Finally, I would like to thank my family for their encouragement, understanding, and

limitless support during my Ph.D. studies.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 7

2.1 Password Strength Evaluation Metrics 7

2.2 Evaluating User-chosen Passwords and Password Policies 12

2.3 Password Generation Strategies . 14

3 IMPROVING METHODOLOGY TO HELP PASSWORD RESEARCH . . . 18

3.1 Introduction . 18

3.2 Password Models and Metrics . 22

3.3 Design Space of Password Models . 26

3.3.1 Whole-String Markov Models 27

3.3.2 Template-based Models . 33

3.3.3 Password Generation . 35

3.4 Experimental Methodologies . 37

3.5 Experimental Results . 46

3.6 Conclusions . 57

4 IMPROVING PASSWORD POLICIES AND PRACTICE USED BY WEBSITES 59

4.1 Introduction . 59

4.2 How to Compare PRAs . 62

4.2.1 Guess Number Graph (GNG) 62

4.2.2 The β-Residual Strength Graph (β-RSG) 63

4.2.3 The Normalized β-Residual Strength Graph (β-NRSG) 64

iv

Page

4.2.4 Client versus Server PRAs . 65

4.2.5 PRAs We Consider . 65

4.3 Data Cleansing . 70

4.4 Experimental Results . 75

4.4.1 Experimental Datasets and Settings 75

4.4.2 Experimental Results . 77

4.5 Conclusion . 83

5 UNDERSTANDING MNEMONIC SENTENCE-BASED PASSWORD GEN-
ERATION STRATEGIES . 85

5.1 Introduction . 85

5.2 Study 1: Security . 88

5.2.1 Study Design . 93

5.2.2 Methodology . 94

5.3 Results From Study 1 . 95

5.3.1 Analyzing Passwords Using Probability Models and Password
Strength Meters. 96

5.3.2 Strength of Mnemonic Sentences 98

5.3.3 Cracking Mnemonic Passwords 106

5.4 Study 2: Usability . 111

5.4.1 Study Overview . 112

5.4.2 First Phase Results . 113

5.4.3 Second Phase Results . 116

5.5 Discussion and Conclusion . 118

6 UNDERSTANDING WORD-BASED PASSWORD GENERATION STRATE-
GIES . 120

6.1 Introduction . 120

6.2 Study 1: Security . 121

6.2.1 Study Design . 124

6.3 Results From Study 1 . 125

v

Page

6.3.1 Analyzing Passwords Using Probability Models and Password
Strength Meters. 125

6.3.2 Analyzing Passwords Using Statistical Quantities. 127

6.4 Study 2: Usability . 134

6.4.1 First Phase Results . 135

6.4.2 Second Phase Results . 138

6.5 Conclusion . 139

7 SUMMARY . 141

REFERENCES . 144

VITA . 149

vi

LIST OF TABLES

Table Page

3.1 Design space for probabilistic password models 35

3.2 Results of removing passwords that are too long, too short, and non-ASCII
passwords. 38

3.3 Password count and frequency information of all datasets 39

3.4 Password count and frequency information of American datasets 39

3.5 Password count and frequency information of Chinese datasets 40

3.6 Password length information for English datasets 40

3.7 Password length information for Chinese password datasets 41

3.8 Password characters information . 43

3.9 Password pattern information: L denotes a lower-case sequence, D denotes
a digit sequence, U denotes a upper-case sequence, and S denotes a symbol
sequence; patterns differ from templates in that patterns do not record length
of sequence. 44

3.10 Percentage of password patterns in datasets: L denotes a lower-case sequence,
D denotes a digit sequence, U denotes a upper-case sequence, and S denotes a
symbol sequence; patterns differ from templates in that patterns do not record
length of sequence . 45

3.11 Six experimental scenarios. 46

3.12 ANLL0.8 results for scenarios 1, 2, 3. end, dir, and dis stand for end-symbol,
direct, and distribution-based normalization, respectively. We highlight the
best results within each scenario. 52

3.13 ANLL0.8 results for scenarios 4, 5, 6. end, dir, and dis stand for end-symbol,
direct, and distribution-based normalization, respectively. We highlight the
best results within each scenario. 54

4.1 Server-end PRAs and Client-end PRAs. Xc means reduced-size version of
model X in order to be deployed at the client side. 66

4.2 Model size of Markov models with backoff using different frequency threshold. 67

4.3 Examples of differences in two versions of zxcvbn. 70

vii

Table Page

4.4 Examples of problematic IDs in 178 dataset. 71

4.5 Number of accounts removed after identifying problematic IDs. 72

4.6 Top 10 passwords with most accounts removed from English datasets. pwdr/o
means the original count of pwd in the dataset is o, and r accounts are removed. 74

4.7 Top 10 passwords with most accounts removed from Chinese datasets. pwdr/o
means the original count of pwd in the dataset is o, and r accounts are removed. 74

4.8 Top 20 words in the new dictionary for Chinese passwords used in zxcvbn. . 77

4.9 y values of GNG and β-RSG when x = 104 and x = 106 evaluated on English
datasets. Y+P stands for Yahoo + Phpbb. β = 10 82

4.10 y values of GNG and β-RSG when x = 104 and x = 106 evaluated on Chinese
datasets. β = 10 . 82

5.1 Mnemonic-based strategy description . 88

5.2 Average length of passwords in each strategy as well as Yahoo and Phpbb
datasets. 97

5.3 λ̃1 (top) and λ̃10 (top10) in Control as well as samples with size 800 from
Rockyou, Phpbb, and Yahoo. ESD means the average is E and the standard
deviation is SD. 98

5.4 λ̃1 (top) and λ̃10 (top10) in mnemonic strategies. 99

5.5 Popular passwords and probability for top 5 frequently chosen sentences in
mnemonic strategies. 100

5.6 Potential popular and personalized sentence counts evaluated by Google search
results. 105

5.7 Character usage in mnemonic strategies. 108

5.8 Statistics for first-phase usability study for mnemonic strategies. 114

5.9 Statistics for second-phase usability study for mnemonic strategies. 115

6.1 Word-based strategy description . 122

6.2 Word-based strategies used in each round of the study. 124

6.3 λ̃1 (top) and λ̃10 (top10) in word-based strategies. 128

6.5 Popular passwords and probability for top 5 frequently chosen word combina-
tions in word-based strategies. 129

6.4 Word frequency in word-based strategies. 132

viii

Table Page

6.6 Punctuation frequency in 2WordPunEx and 2WordPun. 133

6.7 Statistics for first-phase usability study for word-based strategies. 135

6.8 Statistics for second-phase usability study for word-based strategies. 136

ix

LIST OF FIGURES

Figure Page

3.1 An example of probability-threshold graph and guess-number graph 24

3.2 Guess number graphs and probability threshold graphs for Scenario 1:
Rock→Ya+Ph. (Part 1) . 47

3.3 Guess number graphs and probability threshold graphs for Scenario 1:
Rock→Ya+Ph. (Part 2) . 48

3.4 Guess number graphs and probability threshold graphs for Scenario 2:
Du+178→CSDN. (Part 1) . 50

3.5 Guess number graphs and probability threshold graphs for Scenario 2:
Du+178→CSDN. (Part 2) . 51

3.6 Guess number graphs and probability threshold graphs for Scenarios 3, 4. . 52

3.7 Guess number graphs and probability threshold graphs for Scenarios 5, 6. . 54

4.1 β-Residual Strength Graph(β-RSG) on original Xato and 178 datasets. A point
(x, y) on a curve means if we want to reject the top x passwords from a PRA,
the strength of the remaining passwords is y. 71

4.2 CDF of − log10 p for all IDs with length 10 in all datasets. p is the probability
of IDs. The dashed lines are CDF of normal distribution with the same mean
and standard deviation . 73

4.3 The Guess Number Graph (GNG), the β-Residual Strength Graph (β-RSG),
and the Normalized β-Residual Strength Graph (β-NRSG) evaluated on Xato

dataset. 78

4.4 The Guess Number Graph (GNG), the β-Residual Strength Graph (β-RSG),
and the Normalized β-Residual Strength Graph (β-NRSG) evaluated on 178

dataset. 79

5.1 Comparison of strength of passwords resulted from different mnemonic strate-
gies using probabilistic models and password strength meters. 96

5.2 Percentage of passwords cracked within 10 attempts for case-insensitive pass-
words, and 20 attempts for case-sensitive passwords. 109

5.3 Guess number graph on passwords created by using mnemonic strategies. . 110

x

Figure Page

5.4 Mean scores of TLX as a function of strategy and subscale for Control,
MneGenEx, and MnePerEx. Error bars represent standard errors of the scores. 116

6.1 Comparison of strength of passwords from different word-based strategies and
datasets using probabilistic models and password strength meters. 126

6.2 Mean scores of TLX as a function of strategy and subscale for Control,
3WordEx, and 4WordEx. Error bars represent standard errors of the scores. . 137

xi

ABSTRACT

Yang, Weining PhD, Purdue University, August 2016. Improving the Eco-system of Pass-
words. Major Professor: Ninghui Li.

Password-based authentication is perhaps the most widely used method for user authen-

tication. Passwords are both easy to understand and use, and easy to implement. With these

advantages, password-based authentication is likely to stay as an important part of security

in the foreseeable future. One major weakness of password-based authentication is that

many users tend to choose weak passwords that are easy to guess. In this dissertation, we

address the challenge and improve the eco-system of passwords in multiple aspects. Firstly,

we provide methodologies that help password research. To be more specific, we propose

Probability Threshold Graphs, which is superior to Guess Number Graphs when compar-

ing password models and password datasets. We also introduce rich literature of statistical

language modeling into password modeling and show that if used correctly, whole-string

Markov models outperform Probabilistic Context Free Grammar models. Secondly, we im-

prove password policies and practice used by websites by studying how to best check weak

passwords. We model different password strength checking methods as Password Rank-

ing Algorithms (PRAs), and introduce two methods for comparing different PRAs: the

β-Residual Strength Graph and the Normalized β-Residual Strength Graph. Finally, we

examine the security and usability of commonly suggested password generation strategies.

We find that for mnemonic sentence-based strategies, differences in the exact instructions

have a tremendous impact on the security level of the resulting passwords. For word-based

strategies, security of the resulting passwords mainly depends on the number of words re-

quired, and requiring at least 3 words is likely to result in passwords stronger than the

general passwords chosen by typical users.

1

1. INTRODUCTION

Password-based authentication is perhaps the most widely used method for user authenti-

cation. Passwords are both easy to understand and use, and easy to implement. With these

advantages, password-based authentication is likely to stay as an important part of security

in the foreseeable future [1]. Considering the large number of systems that require pass-

words and the fact that some systems mandate password changes, it is apparent that many

users will face hundreds or more password-creation situations over a lifetime.

It is well known that there is an inherent tension between the security and usability

of passwords [2, 3]. More precisely, secure passwords tend to be difficult to memorize

(i.e., less usable) whereas passwords that are memorable tend to be predictable. Gener-

ally individuals side with usability of passwords by choosing predictable and weak pass-

words [2, 4–7]. Users tend to choose weak passwords that are easy to guess is a major

weakness of password-based authentication. Addressing this challenge has been an active

and important research area in recent years.

In this research, we improve the eco-system of passwords in multiple aspects.

Providing Methodology to Help Password Research Researchers have studied the

quality of users’ password choices under different scenarios [8–13]. In this area, earlier

work uses either standard password cracking tools such as John the Ripper (JTR) [14], or

ad hoc approaches for estimating the information entropy of a set of passwords. One such

approach is NIST’s recommended scheme [15] for estimating the entropy of one password.

The entropy estimation is mainly based on passwords’ length. Weir et al [16] argued that

entropy estimation methods are inaccurate metrics for password strength. Instead, they sug-

gest measuring the strength of user-chosen passwords by password models and rejecting

passwords with high probabilities.

2

Later, probabilistic model-based methods and guess numbers became the standard

method to measure the strength of passwords. Probabilistic models of passwords work

by assigning a probability to each string. Some models divide a password into several

segments, often by grouping consecutive characters of the same category (e.g., lower-case

letters, digits, etc.) into one segment, and then generate the probability for each segment

independently. Examples include the model in [17], and the Probabilistic Context Free

Grammar (PCFG)-based approach developed in [18]. A whole-string model, on the other

hand, does not divide a password into segments, e.g., the Markov models in [19, 20].

The guess number of a password according to a password model is defined to be the

rank of the password in the order of decreasing probability. To compare two sets of pass-

words, one plots the number of guesses vs. the percentage of passwords cracked by the

corresponding number of guesses in the testing dataset. Such guess-number graphs are

currently the standard tool in password research. Plotting such graphs, however, requires

the computation of guess numbers of passwords, which is computationally expensive. For

many password models, this requires generating all passwords with probability above a

certain threshold and sorting them.

We find the current state of art unsatisfying. First, Markov models are known as n-gram

models in the statistical language literature, and there exist a large number of techniques

developed to improve the performance of such models. However, Password modeling re-

search has not taken advantage of such knowledge and techniques. Second, passwords

differ from statistical language modeling in that passwords have a very definite length dis-

tributions: most passwords are between lengths 6 and 12, and there are very few short and

long passwords. Therefore, assuming uniform length distribution, which is the assumption

in n-gram models is suboptimal. Finally, different password modeling approaches have not

been systematically evaluated or compared against each other.

In Chapter 3, we propose probability-threshold graphs, which have important advan-

tages over guess-number graphs. They are much faster to compute, and at the same time

provide information beyond what is feasible in guess-number graphs. Based on that, we

conduct an extensive empirical study of different password models using 6 real-world plain-

3

text password datasets totaling about 60 million passwords, including 3 from American

websites and 3 from Chinese websites. We consider three different normalization ap-

proaches: direct, which assumes that strings of all lengths are equally likely, distribution-

based, which uses the length distribution in the training dataset, and end-symbol based,

which appends an “end” symbol to each password for training and testing. We consider

Markov chain models of different orders, and with different smoothing techniques. We

compare whole-string models with different instantiation of template-based models, and

find that Markov models, when done correctly, perform significantly better than the Proba-

bilistic Context-Free Grammar model proposed in Weir et al. [18], which has been used as

the state-of-the-art password model in recent research.

Improving Password Policies and Practice Used by Websites To deal with weak and

predictable passwords chosen by users, the most common approach is to forbid the use of

weak passwords, or give warnings for passwords that are “somewhat weak”. This approach

requires an effective way to identify weak passwords.

How to best check weak passwords is still an open question. A study in 2014 [21] ex-

amined several password meters in use at popular websites and found highly inconsistent

strength estimates for the same passwords using different meters. The report did not an-

swer the question of which meter is the best, nor what methods should be used to compare

them. Designing an effective password meter requires solving two problems: (1) How to

accurately assess the strength of passwords chosen by the users; and (2) How to commu-

nicate the strength information to and interact with the users to encourage them to choose

strong passwords. These two problems are largely orthogonal. In this research we focus on

solving the first problem.

In Chapter 4, we model different password strength assessing methods (including com-

position policies) as Password Ranking Algorithms (PRAs), which assign a rank to every

password. One state-of-the-art method for comparing PRAs is the guess-number graphs

(GNG), which plots the number of guesses vs. the percentage of passwords cracked in the

test datasets. However, GNG measures only the total density of the uncracked passwords,

4

but not their distribution, which is critical in assessing the effectiveness to defend against

guessing attacks after deploying the PRA. To address this limitation of the GNG, we pro-

pose the β-Residual Strength Graph (β-RSG), which measures the strength of the β most

common passwords in the test dataset, after forbidding the weakest passwords identified by

a PRA. When a PRA forbids a large number of passwords that users are extremely unlikely

to use, it performs poorly under β-RSG. To limit the influence of these passwords, we also

propose Normalized β-Residual Strength Graph (β-NRSG), which ignores how passwords

that do not appear in the testing dataset are ranked. β-NRSG also has the advantage that

we can use it to evaluate blackbox password strength services for which one can query the

strength of specific passwords, but cannot obtain all weak passwords.

We compare the Probabilistic Context-Free Grammar (PCFG) [18] method, Markov

chain models with and without backoff [17, 19], blacklists based on training datasets, the

Combined method proposed by Ur et al. [22], password composition policies, as well as

two versions of zxcvbn [23]. We also show how GNG, β-RSG, and β-NRSG differ. We

find that when one places no limit on the mode size, several methods including the blacklist

approach, Markov M=models, and the Combined method have similar performance.

When one wants to check the strength of passwords on the client side, without sending

passwords over the network, the model size must be limited. We find that a blacklist with

a limited size still provide the most accurate strength measurement for the most popular

passwords. However, only a limited number of passwords are covered. We then propose

a new client-end PRA that uses a hybrid method; it uses a small blacklist to assess the

strength of most popular passwords, and evaluates the other passwords based on a limited

size Markov model with backoff. We show that the hybrid method inherits the advantages

of both methods, and consistently outperforms the other client-end PRAs.

Improve Understanding Password Generation Strategy Another solution for avoiding

weak passwords is to encourage users to choose strong passwords by educating users with

password creation strategies.

5

The security community has been trying to come up with password generation strategies

that can help users generate secure and usable passwords. Candidate strategies have been

suggested by sources ranging from the National Institute of Standards and Technology

(NIST) [24] to online comics [25], and from security experts’ essays [26, 27] to online

help forums. However, these suggestions are often based on intuitions instead of scientific

knowledge. Little is actually known about which strategies are effective in helping users

create usable and secure passwords.

In Chapter 5, we study the mnemonic sentence-based strategy (for short, the mnemonic

strategy), which is the most widely recommended and studied strategy. It appears that the

general assessment is that this is a good strategy. It is recommended by NIST [24] and by

security experts [26, 27].

We conduct a large study to evaluate 6 variants of the mnemonic strategy and com-

pare against a control group. When assessing the security of the strategies, we go beyond

the methods used in existing studies in two ways. First, we adopt the approach of using

statistical quantities to measure the distributions of the passwords, as articulated by Bon-

neau [28]. In particular, we chose to use the β-guess-rate (λβ) [29], which measures the

expected success for an attacker limited to β guesses per account. We chose to use β = 1

and β = 10, both because they were suggested in [30] as appropriate for defense against

online guessing attacks and because a larger β is not very meaningful for our sample sizes.

Second, we develop a method specific for attacking passwords resulted from the mnemonic

strategy, and demonstrate the effectiveness of this attack.

The usability of the variants is evaluated in a separate user study, in which password

creation time, short-term and long-term password memorability, and the workload required

in both password creation and retention are evaluated.

We find that in terms of security, while metrics similar to guess numbers suggest that all

variants provide highly secure passwords, statistical metrics tell a far more interesting and

nuanced story. In particular, differences in the exact instructions have a tremendous impact

on the security and usability of the resulted passwords, and a tradeoff between security and

long-term memorability of the passwords is observed.

6

In Chapter 6, we evaluate variants of word-based strategies, which are also recom-

mended by the security community [24, 25, 31]. In word-based strategies, a password is

generally created in a two-step process: first choose some unrelated or random words (usu-

ally 2 to 4), then combine the words into a password. Despite the popularity of the strate-

gies, to the best of our knowledge, the strategies have not been evaluated in any human

subject studies and little is known about the effectiveness of them in helping users create

usable and secure passwords.

We examine the security and usability of 7 variants of the strategy in a series of studies

conducted on Mturk. The evaluation metrics are identical to that used in Chapter 5.

We find that the security of the variants depends on the number of words required.

While the variants requiring two words are likely to produce passwords with similar secu-

rity level to the baseline, strategies based on 3 or 4 words significantly reduce the number

of word combinations that are chosen more than once, suggesting significantly stronger

resulted passwords, where the variant requiring 4 words performs better. In terms of us-

ability, 3-word based strategies and 4-word based strategies have similar performance in

long-term password recall, and both of them underperfrom the baseline. We also observe

that requiring the fourth word results in more difficulty in password creation.

7

2. BACKGROUND AND RELATED WORK

In this chapter, we briefly review background and related work on password strength eval-

uation metrics, evaluations on passwords and password policies, and password generation

strategies.

2.1 Password Strength Evaluation Metrics

The quality of passwords has traditionally been measured using a combination of stan-

dard password cracking tools, such as John the Ripper (JTR) [14], and ad hoc approaches

for estimating the information entropy of a set of passwords.

In 1990, Klein et al. [4] proposed the concept of a proactive password checker, which

checks the strength of newly created passwords and prevents users from choosing weak

passwords. Since then, multiple blacklist-based proactive password checkers were pro-

posed. Spafford et al. [32] and Bergadano et al. [33] developed methods for filtering pass-

words based on efficiently stored password dictionaries. Manber et al. [34] described an

approach that refused not only exact words in dictionaries but also passwords that are a

single insertion, deletion, or substitution from a dictionary word. Yan et al. [35] suggested

that besides dictionary checking, password checker should consider length and character

types of passwords as well.

Bonneau [28] criticized the comparability and repeatability of past password cracking

results using tools such as John the ripper and/or dictionaries. He proposed metrics for

studying the overall level of security in large password datasets, based only on the distribu-

tion, and not on the actual password strings.

In terms of entropy estimation, Florencio and Herley [6], Forget et al. [36], and

Egelman et al. [37] used the formula where the bit strength of a password is consid-

ered to be log2

(

|Σ|len
)

for alphabet Σ; for example, a 9-character password that con-

8

tains both upper and lower case characters and digits is considered to have bit strength of

log2(26 + 26 + 10)9 ≈ 53.59. A more sophisticated approach, known as the NIST guide-

lines [15], calculates password entropy using several factors, including how many numbers,

symbols, and uppercase letters are used and where they appear. The NIST guidelines work

by estimating the strength of password creation policies using Shannons entropy. In partic-

ular, for a password creation policy with a required length, it assigns entropy to characters

at each position and the total entropy score is the sum of them with some additional bonus

entropy if a composition rule is required or a dictionary check is performed. The entropy

score for each character is assigned using the following criteria:

1. The entropy of the first character is taken to be 4 bits;

2. The entropy of the next 7 characters is 2 bits per character; this is roughly consistent

with Shannons estimation that “when statistical effects extending over not more than

8 letters are considered the entropy is roughly 2.3 bits per character”;

3. For the 9th through the 20th character the entropy is taken to be 1.5 bits per character;

4. For characters 21 and above the entropy is taken to be 1 bit per character;

5. A “bonus” of 6 bits of entropy is assigned for a composition rule that requires both

upper case and non-alphabetic characters. This forces the use of these characters,

but in many cases these characters will occur only at the beginning or the end of the

passwords, and it reduces the total search space somewhat, so the benefit is probably

modest and nearly independent of the length of the password;

6. A bonus of up to 6 bits of entropy is added for an extensive dictionary check. If

the attacker knows the dictionary, he can avoid testing those passwords, and will in

any event, be able to guess much of the dictionary, which will, however, be the most

likely selected passwords in the absence of a dictionary rule. The assumption is that

most of the guessing entropy benefits for a dictionary test accrue to relatively short

passwords, because any long password that can be remembered must necessarily be

9

a pass-phrase composed of dictionary words, so the bonus declines to zero at 20

characters.

In 2010, Weir et al. [16] measured the strength of password creation policies by using

large-scale real-world datasets and showed that entropy values would not tell the defender

anything about how vulnerable a policy would be to an online password cracking attack.

They also showed that many rule-based policies performed poorly for ensuring a desirable

level of security. Instead, they suggested measuring the strength of user-chosen passwords

by password models and rejecting passwords with high probabilities. Schechter et al. [38]

also suggested allowing users to choose any password they want, so long as it was not

already too popular with other users.

Later, probabilistic model-based methods became the standard method to measure the

strength of passwords. Probabilistic models of passwords work by assigning a probability

to each string. Some models divide a password into several segments, often by group-

ing consecutive characters of the same category (e.g., lower-case letters, digits, etc.) into

one segment, and then generate the probability for each segment independently. Exam-

ples include the model in [17], and the Probabilistic Context Free Grammar (PCFG)-based

approach developed in [18]. A whole-string model, on the other hand, does not divide a

password into segments, e.g., the Markov chain model in [19, 20].

Narayanan and Shmatikov [17] proposed a template-based model, with Markov chain

being used for assigning probability to letter-based segments.

The PCFG model was proposed by Weir et al. [18]. In the approach, one divides a

password into several segments by grouping consecutive characters of the same category

(e.g., letters, digits, special symbols) into one segment. Each password thus follows a pat-

tern, for example, L7D3 denotes a password consisting of a sequence of 7 letters followed

by 3 digits. The distribution of different patterns as well as the distribution of digits and

symbols are learned from a training dataset. PCFG chooses words to instantiate segments

consisting of letters from a dictionary where all words in the dictionary are assumed to be

of the same probability. The probability of a password is calculated by multiplying the

probability of the pattern by the probabilities of the particular ways the segments are in-

10

stantiated. The PCFG approach was later improved by introducing semantic patterns [39],

or by using specialized data in training [8].

N-gram models, i.e., Markov chains, have been applied to passwords [19]. A Markov

chain of order d, where d is a positive integer, is a process that satisfies

P (xi|xi−1, xi−2, . . . , x1) = P (xi|xi−1, . . . , xi−d)

where d is finite and x1, x2, x3, . . . is a sequence of random variables. A Markov chain with

order d corresponds to an n-gram model with n = d + 1. For example, a 2-order Markov

chain, in which the probability assigned to a password “c1c2 · · · cℓ” is

P (“c1c2 · · · cℓ”) = P (c1|c0)P (c2|c1)P (c3|c2) · · ·P (cℓ|cℓ−1),

where c0 ̸∈ Σ denotes a start symbol that is prepended to the beginning of all passwords,

and

P (ci|ci−1) =
count(ci−1ci)

count(ci−1·)
(2.1)

where count(ci−1·) denotes the number of occurrences of ci−1 where it is followed by

another character (i.e., where it is not at the end of password), and count(ci−1ci) gives

the number of occurrences of the substring ci−1ci. By definition, we have count(ci−1·) =
∑

ci∈Σ
count(ci−1ci).

Dell’Amico et al. [40] compared the cracking effectiveness of Markov models on the

“Italian”, “Finnish”, and “MySpace” datasets by computing the estimated probabilities for

each password in the datasets and using an approximation algorithm to compute the num-

ber of guesses for each threshold. They did not consider normalization, smoothing, etc.

Furthermore, their results showed very small search spaces for higher-order Markov mod-

els, which seemed to suggest that their approximation algorithm underestimated the search

space.

Other commonly used password strength measurement tools include John the Rip-

per [14] and zxcvbn [23].

11

John the Ripper [14], one of the most popular password cracking tools, has several

modes for generating password guesses. The wordlist mode uses a dictionary plus various

mangling rules. The incremental mode uses trigraph frequencies, i.e., frequencies for the

triple of character, position, and password length. The Markov mode uses Markov chains

of order 1.

Zxcvbn is an open-source meter designed to run entirely in clients’ browser developed

by Wheeler [23]. It decomposes a given password into patterns, and then assigns each

pattern an estimated “entropy”. The entropy of each chunk is estimated depending on

the pattern of the chunk. The candidate patterns are “dictionary”, “sequence”, “spatial”,

“year”, “date”, “repeat” and “bruteforce”. For example, if a chunk is within the pattern

“dictionary”, the entropy is estimated as the log of the rank of word in the dictionary. Ad-

ditional entropy is added if uppercase letters are used or some letters are converted into

digits or sequences (e.g. a⇒@). There are 5 embedded frequency-ordered dictionaries:

7140 passwords from the Top 10000 password dictionary; and three dictionaries for com-

mon names from the 2000 US Census. After chunking, a password’s entropy is calculated

as the sum of its constituent chunks’ entropy estimates.

entropy(pwd) =
∑

entropy(chunk i)

A password may be divided into chunks in different ways, Zxcvbn finds the way that yields

the minimal entropy and uses that.

In October 2015, a new version of zxcvbn was published. The new version of zxcvbn

also divides a password into chunks, and computes a password’s strength as the “minimal

guess” of it under any way of dividing it into chunks. A password’s “guesses” after being

divided into chunks under a specific way is:

l!×
l
∏

i=1

(chunki.guesses) + 10000l−1

12

where l is the number of the chunks. The factorial term is the number of ways to order l

patterns. The 10000(l−1) term captures the intuition that a password that has more chunks

are considered stronger. Another change in the new version is that if a password is decom-

posed into multiple chunks, the estimated guess number for each chunk is the larger one

between the chunks’ original estimated guess number and a min guess number , which

is 10 if the chunk contains only one character or 50 otherwise. While these changes are

heuristic, our experimental results show these changes cause significant improvements un-

der our methods of comparison.

Dell’Amico and Filippone [41] proposed a method to estimate the number of guesses

needed to find a password using modern attacks and probabilistic models. Given a proba-

bilistic model, the strength of a passwords is estimated by sampling from the model, i.e.,

generating random passwords according to the probabilities assigned by the model. This

motivates our work to find a way to compare password models, as a better probabilistic

model will produce a more accurate estimation.

Recently, Ur et al [22] compared cracking approaches used by researchers with real-

world cracking by professionals. They found that semi-automated cracking by profes-

sionals outperformed popular fully automated approaches, but could be approximated by

combining multiple approaches and assuming the rank of a password was its highest rank

among the approaches examined.

2.2 Evaluating User-chosen Passwords and Password Policies

One active research area in recent years is to study the quality of users’ password

choices under different scenarios, e.g., when facing different password policies [8, 9, 42],

when presented with different password strength meters [11, 37], when forced to change

passwords due to organizational change of password policies [10], when forced to change

passwords due to expiration [12], when creating passwords for different sites [43], when

allowed to replace some characters from a randomly generated password [13], and when

facing different guidance and feedback [44].

13

The effect of different password composition policies was studied in [8, 9]. They both

suggested passwords generated under the policy “Password must have at least 16 charac-

ters” provide the most entropy.

In a similar study, Mazurek et al. [42] collected over 25,000 real passwords from CMU

and studied passwords from different groups of users. In addition to the difference in pass-

words from different composition policies, they discovered significant correlations between

a number of demographic and behavioral factors and password strength. For example, users

associated with the computer science school made passwords more than 1.8 times as strong

as those of users associated with the business school.

Egelman et al. [37] examined the impact of password meters on password selection and

reported that the presence of meters yielded significantly stronger passwords in a laboratory

experiment. However, the meters made no observable difference in a field study when

creating passwords for unimportant accounts.

Ur et al. [11] showed that scoring passwords stringently resulted in stronger passwords

in general. Additionally, participants who saw stringent password meters spent longer

creating their password and were more likely to change their password while entering it,

yet they were also more likely to find the password meter annoying. However, the most

stringent meter and those without visual bars caused participants to place less importance

on satisfying the meter. Participants who saw more lenient meters tried to fill the meter and

were averse to choosing passwords a meter deemed “bad” or “poor”.

Shay et al. [10] collected data about behaviors and practices related to the use and

creation of passwords from 470 computer users when they were required to change their

passwords because of a policy change. They found that, although most of the users were

annoyed by the need to create a complex password, they believed that they were more

secure.

Zhang et al. [12] investigated the passwords that users chose to replace expired ones.

They developed a framework and an efficient algorithm to build an search strategy to search

for a user’s new password from an old one. They were able to break future passwords from

past ones in 41% of accounts in an offline attack and 17% of accounts in an online attack.

14

Das et al. [43] investigated how an attacker could leverage a known password from one

site to more easily guess that users password at other sites. They estimated that 43-51%

of users reuse the same password across multiple sites. For passwords transformed from

a basic password between sites, they developed a cross-site password-guessing algorithm,

which was able to guess 30% of transformed passwords within 100 attempts.

Huh et al. [13] proposed Surpass, which lets users replace few characters in a random

password to make it more memorable. They found that Surpass policies with 3 and 4 char-

acter replacements outperformed by 11% to 13% the original randomly-generated pass-

word policy in memorability, while showing a small increase in the percentage of cracked

passwords.

Shay et al. [44] investigated whether guidance and feedback could enable users to com-

ply with the strict password composition policies imposed by different websites. They

showed that password composition policies and password strength meters were not suffi-

cient for getting users to create secure passwords.

In 2014, de Carné de Carnavalet and Mannan [21] examined several password meters

in use at selected popular websites, and revealed how the meters worked. They found gross

inconsistencies, with the same password resulting in very different strength across different

meters.

Komanduri et al. [45] showed that Telepathwords, which makes realtime predictions

for the next character that user will type, could help users choosing stronger passwords.

2.3 Password Generation Strategies

The security community has been trying to come up with password generation strategies

that can help users generate secure and usable passwords. Candidate strategies have been

suggested by sources ranging from the National Institute of Standards and Technology

(NIST) [24] to online comics [25], and from security experts’ essays [26,27] to online help

forums.

15

Perhaps the most widely recommended and studied strategy is that based on mnemonic

sentences: Take a memorable sentence, abbreviate the words, and combine them to form

a password. The strategy is generally known as the mnemonic sentence-based strategy

(for short, the mnemonic strategy). It appears that the general assessment is that this is a

good strategy. It is recommended by NIST [24] and by security experts [26, 27]. To our

knowledge, three studies on this method have been reported, by Yan et al. [46, 47], Vu et

al. [48], and Kuo et al. [49].

Evaluation of the Mnemonic Strategy. Yan et al. [46, 47] conducted a study with col-

lege students who were given accounts on a central computing facility. The students were

randomly assigned to three groups. The control group (95 members) were asked to create

a password with at least seven characters long that contained at least one non-letter. The

random password group (96 members) received a sheet of paper with the letters A through

Z and the numbers 1 through 9 printed repeatedly on it and were asked to close their eyes

and randomly pick eight characters. (They were also advised to keep a written record

with them until they had memorized the password.) The mnemonic password group (97

members) were told to create a sentence of 8 words and choose letters from the words to

make up a password, mixing upper-case and including at least one non-letter. They found

that very few users asked the system administrator to reset their passwords. Responses to

an email memorability survey showed that the mnemonic passwords were similar to the

control group in terms of difficulty to use, and the random passwords were found to be

significantly more difficult. An attack with dictionaries (with permutations with digits)

cracked 32% for the control group, 8% for the random password group, and 6% for the

mnemonic password group. The authors concluded “We’ve debunked another folk belief

that random passwords are better than passwords based on mnemonic phrases. In our

study, each appeared to be as strong as the other”.

Vu et al. [48] studied two variations of the mnemonic strategy: (A) Choose a sentence

containing at least 6 words, and use the first letters from each word as the password; (B)

strategy A with an additional requirement that users should embed a special character or

digit in the password. Forty psychology students were each asked to create 3 passwords

16

using one of the above strategies. In terms of memorability, they found that participants

using strategy B “took two times longer to recall the passwords, made almost twice as

many errors before being able to recall the password, and completely forgot the password

twice as often”. Within 12 hours, the L0phtCrack4 (LC4) password cracker cracked all

passwords generated with strategy A, whereas only 5% of the passwords from strategy B

were cracked.

Kuo et al. [49] conducted a study in which 144 subjects were asked to generate

mnemonic passwords, with 146 subjects in the control group. For the control group, they

used John the Ripper’s 1.2 million-word English dictionary, and were able to crack 11% of

the 146 passwords. For the mnemonic group, they collected 129, 000 sentences from the

Internet and, with some mangling, created a 400, 000-entry mnemonic password dictionary.

Using this dictionary, they cracked 4% of the 144 mnemonic passwords. A bruteforce at-

tack cracked an additional 8% in the control group, and an additional 4% in the mnemonic

group. Kuo et al. also searched the Internet (using Google) for the sentences used by the

users to generate passwords, and were able to find 65% of them on the Internet. Based on

this evidence, the authors concluded that “Mnemonic phrase-based passwords are not as

strong as people may believe, ...”.

We argue that the fact that a password is generated by a sentence that can be found on

the Internet does not necessarily mean that it is weak, given that there are likely billions

or tens of billions of sentences on Google-indexed pages. Similarly, that a size-400, 000

dictionary can crack 4% of password seems more like an indicator of strength to us. Us-

ing a list of 400, 000 top passwords from Rockyou, one could crack 32% of the passwords

in the Yahoo password dataset [50], and 39% of the passwords in the Phpbb dataset [50].

Our interpretation of the data in [49] is that mnemonic sentence-based passwords are sig-

nificantly stronger than the baseline, as measured by passwords in the Yahoo and phpBB

dataset, with two caveats. First, this interpretation is based on cracking results obtained by

17

using their particular dictionary. Second, the conclusion may not be statistically significant

because the dataset is small.

Other Related Work. The strategy of choosing 4 random words and concatenating them

was made famous by the xkcd comic [25]. Likewise, combining two or three unrelated

words and changing some of the letters to numbers or symbols has been recommended

by NIST [24]. However, we are unaware of human subject studies on such word-based

strategies.

Some have suggested that users should simply use password managers and remember

just one password. Password managers, however, create their own security, reliability, and

convenience problems [51–55]. Perhaps the biggest concern is that a password manager

software takes the security of all critical websites out of the hand of the user and puts it in

one piece of software, creating a single point of failure and an attractive target for attackers

at the same time. Recently, Xing et al. [56] showed that Unauthorized Cross-App Resource

Access (XARA) vulnerabilities on Apple OS X and iOS enable malicious applications to

read passwords saved into Apple Keychain and passwords saved in the popular 1Password

password manager. These results demonstrate the risk of relying on one password manager

for all critical websites.

18

3. IMPROVING METHODOLOGY TO HELP PASSWORD

RESEARCH

A fundamental tool for password security research is that of probabilistic password models

(password models for short).

A probabilistic password model assigns a probability value to each string. Such models

are useful for research into understanding what makes users choose more (or less) secure

passwords, and for constructing password strength meters and password cracking utilities.

Guess number graphs generated from password models are a widely used method in pass-

word research. In this chapter, we show that probability-threshold graphs have important

advantages over guess-number graphs. They are much faster to compute, and at the same

time provide information beyond what is feasible in guess-number graphs. We also observe

that research in password modeling can benefit from the extensive literature in statistical

language modeling. We conduct a systematic evaluation of a large number of probabilistic

password models, including Markov models using different normalization and smoothing

methods, and find that, among other things, Markov models, when done correctly, perform

significantly better than the Probabilistic Context-Free Grammar model proposed in Weir

et al. [18], which has been used as the state-of-the-art password model in recent research.

3.1 Introduction

A password model assigns a probability value to each string. The goal of such a model

is to approximate as accurately as possible an unknown password distribution D. We di-

vide password models into two classes, whole-string models and template-based models. A

template-based model divides a password into several segments, often by grouping consec-

utive characters of the same category (e.g., lower-case letters, digits, etc.) into one segment,

and then generates the probability for each segment independently, e.g., [17,18]. A whole-

19

string model, on the other hand, does not divide a password into segments, e.g., the Markov

chain model in [19].

We classify research involving password models into two types. Type-1 research aims

at understanding what makes users choose more (or less) secure passwords. To do this,

one obtains password datasets chosen by users under difference circumstances, and then

uses a password model to compare the relative strengths of these sets of passwords. Type-

2 research aims at finding the best password models. Such a model can then be used to

evaluate the level of security of a chosen password, as in password strength meters. Such a

model can also be used to develop more effective password cracking utilities, as a password

model naturally determines the order in which one should make guesses.

Type-1 research has been quite active in recent years. Researchers have studied the

quality of users’ password choices under different scenarios [8–12]. In this area, earlier

work uses either standard password cracking tools such as John the Ripper (JTR) [14], or

ad hoc approaches for estimating the information entropy of a set of passwords. One such

approach is NIST’s recommended scheme [15] for estimating the entropy of one password,

which is mainly based on their length.

Weir et al. [18] developed a template-based password model that uses Probabilistic

Context-free Grammar. We use PCFGW to denote the model is this chapter. In [16], they

argued that entropy estimation methods such as that recommended by NIST were inaccu-

rate metrics for password strength, and proposed to use the guess numbers of passwords.

The guess number of a password according to a password model is defined to be the rank of

the password in the order of decreasing probability. To compare two sets of passwords, one

plots the number of guesses vs. the percentage of passwords cracked by the corresponding

number of guesses in the testing dataset. Such guess-number graphs are currently the stan-

dard tool in password research. Plotting such graphs, however, requires the computation

of guess numbers of passwords, which is computationally expensive. For many password

models, this requires generating all passwords with probability above a certain threshold

and sorting them. Some template-based models, such as the PCFGW model, have the prop-

erty that all strings fitting a template are assigned the same probability. One is thus able to

20

compute guess numbers by maintaining information about templates instead of individual

passwords. This is done in the guess calculator framework in [8,42], which is based on the

PCFGW model. This framework uses parallel computation to speed up the process, and is

able to go up to ≈ 4E14 [42]. Even with this approach, however, one is often limited by

the search space so that only a portion (typically between 30% and 60%) of the passwords

are covered [8, 42]. Such studies thus miss information regarding the stronger passwords.

We observe that for type-1 research, in which one compares the relative strength of

two sets of passwords, it is actually unnecessary to compute the guess numbers of all pass-

words. It suffices to compute the probabilities of all passwords in the datasets, which can

be done much faster, since the number of passwords one wants to evaluate (often much less

than 1E6) is in general extremely small compared to the maximum guess number one is

interested in. We propose to plot the probability threshold vs. the percentage of passwords

cracked curves, which we call probability-threshold graphs. In addition to being much

faster to compute, another advantage is that such a curve shows the quality of passwords in

the set all the way to the point when all passwords are cracked (assuming that the password

model assigns a non-zero probability to each allowed password).

A natural approach for password models is to use whole-string Markov chains. Markov

chains are used in the template-based model in [17], for assigning probabilities to segments

that consists of letters. Castelluccia et al. [19] proposed to use whole-string Markov models

for evaluating password strengths, without comparing these models with other models. At

the time of this chapter’s writing, PCFGW was considered to be the model of choice in

type-1 password research.

We find this current state of art unsatisfying. First, only very simple Markov models

have been considered. Markov models are known as n-gram models in the statistical lan-

guage literature, and there exist a large number of techniques developed to improve the

performance of such models. In particular, many smoothing techniques were developed

to help solve the sparsity and overfitting problem in higher-order Markov models. Such

techniques include Laplace smoothing, Good-Turing smoothing [57], and backoff [58].

Password modeling research has not taken advantage of such knowledge and techniques.

21

Second, passwords differ from statistical language modeling in that passwords have a very

definite length distributions: most passwords are between lengths 6 and 12, and there are

very few short and long passwords. The n-gram models used in statistical language model-

ing generally have the property that the probabilities assigned to all strings of a fixed length

add up to 1, implicitly assuming that the length distribution is uniform. This property is

fine for natural language applications, because often times one only needs to compare prob-

abilities of sentences of the same (or very similar) length(s), e.g., when determining which

sentence is the most likely one when given a sequence of sounds in speech recognition. For

password models, however, assuming uniform length distribution is suboptimal. Finally,

different password modeling approaches have not been systematically evaluated or com-

pared against each other. In particular, a rigorous comparison of the PCFGW model with

whole-string Markov models has not been performed.

In this chapter, we conduct an extensive empirical study of different password models

using 6 real-world plaintext password datasets totaling about 60 million passwords, includ-

ing 3 from American websites and 3 from Chinese websites. We consider three different

normalization approaches: direct, which assumes that strings of all lengths are equally

likely, distribution-based, which uses the length distribution in the training dataset, and

end-symbol based, which appends an “end” symbol to each password for training and test-

ing. We consider Markov chain models of different orders, and with different smoothing

techniques. We compare whole-string models with different instantiation of template-based

models.

Some of the important findings are as follows. First and foremost, whole-string Markov

models, when done correctly, significantly outperform the PCFGW model [18] when one

goes beyond the first million or so guesses. PCFGW uses as input both a training dataset,

from which it learns the distribution of different templates, and a dictionary from which

it chooses words to instantiate segments consisting of letters. In this chapter, we consider

3 instantiations of PCFGW : the first uses the dictionary used in [18]; the second uses the

OpenWall dictionary; and the third generates the dictionary from the training set. We find

that the third approach works significantly better than the first and the second; in addition,

22

all three instantiations significantly underperform the best whole-string Markov models.

Furthermore, higher orders of Markov chains show different degrees of overfitting effect.

That is, they perform well for cracking the high-probability passwords, but less so later

on. The backoff approach, which essentially uses a variable-order Markov chain, when

combined with end-symbol based normalization, suffers little from the overfitting effect

and performs the best.

3.2 Password Models and Metrics

In this section, we introduce probability-threshold graphs.

We use Σ to denote the alphabet of characters that can be used in passwords. We further

assume that all passwords are required to be of length between L and U for some values of

L and U ; thus the set of allowed passwords is

Γ =
U
⋃

ℓ=L

Σℓ.

In the experiments in this chapter, we set Σ to include the 95 printable ASCII characters,

and L = 4 and U = 40. Sometimes the alphabet Σ is divided into several subsets, which

we call the character categories. For example, one common approach is to divide the 95

characters into four categories: lower-case letters, upper-case letters, digits, and special

symbols.

Definition 3.2.1 A password probability model (password model for short) is given by a

function p that assigns a probability to each allowed password. That is, a password model

p : Γ → [0, 1] satisfies

∀s∈Γ p(s) ≥ 0
∧ ∑

s∈Γ

p(s) = 1.

We say that a password model p is complete if and only if it assigns a non-zero proba-

bility to any string in Γ.

23

For a password model p to be useful in practice, it should be efficiently computable; that

is, for any s ∈ Γ, computing p(s) takes time proportional to O(|Σ| · length(s)). For p to be

useful in cracking a password, it should be efficiently enumerable; that is, for any integer

N , it runs in time proportional to O(N · |Σ| · U) to output the N passwords that have the

highest probabilities according to p. If one desires to make a large number of guesses, then

the password generation also needs to be space efficient, i.e., the space used for generating

N passwords should grow at most sub-linearly in N . Ideally, the space usage (not counting

the generated passwords) should be independent from N .

We consider the following three methods/metrics when running a given password model

with a testing password dataset. Note that for type-1 research, we fix the model and com-

pare different datasets. For type-2 research, we fix a dataset and compare different models.

Guess-number graphs. Such a graph plots the number of guesses in log scale vs. the

percentage of passwords cracked in the dataset. A point (x, y) on a curve means that y

percent of passwords are included in the first 2x guesses (i.e., the 2x passwords that have

the highest probabilities). This approach is logically appealing; however, it is also highly

computationally expensive, since it requires generating a very large number of password

guesses in decreasing probability. This requirement makes it difficult when we want to

compare many different approaches. Furthermore, because of the resource limitation, we

are unable to see the effect beyond the guesses we have generated. These limitations moti-

vate us to use the following metrics.

Probability-threshold graphs. Such a graph plots the probability threshold in log scale

vs. the percentage of passwords above the threshold. A point (x, y) on a curve means that

y percent of passwords in the dataset have probability at least 2−x. To generate such a

figure, one needs only to compute the probabilities the model assigns to each password in

the testing dataset. For each probability threshold, one counts how many passwords are

assigned probabilities above the threshold. For a complete password model, such a curve

can show the effect of a password model on the dataset all the way to the point when all

passwords in the dataset are included.

24

Figure 3.1 shows a probability-threshold graph and the corresponding guess number

graph, for comparing the relative strength of two datasets Phpbb and Yahoo using a Markov

chain model of order 5 trained on the Rockyou dataset.

(a) Probability-threshold graph (b) Guess-number graph

Figure 3.1.: An example of probability-threshold graph and guess-number graph

An interesting question is how a probability-threshold graph relates to the correspond-

ing guess-number graph. If one draws conclusions regarding two curves based on the

former, do the conclusions hold in the latter?

When comparing the strength of two password datasets using a fixed model, the answer

is “yes”. The relationship of two guess-number curves (e.g., which curve is to the left of the

other, whether and when they cross, etc.) would be exactly the same as that demonstrated

by the beginning portions of the corresponding probability-threshold curves; because for

a given threshold, exactly the same set of passwords will be attempted. This effect can

be observed from Figure 3.1. The only information missing is that we do not know the

exact guess number corresponding to each probability threshold; however, this information

is not needed when our goal is to compare two datasets. In addition to being much faster to

compute, the probability-threshold graph is able to show the quality of passwords in the set

all the way to the point when all passwords are cracked (assuming that the password model

assigns a non-zero probability to each allowed password).

When comparing models with a fixed dataset, in general, the answer is no. In the

extreme case, consider a model that assigns almost the same yet slightly different prob-

25

abilities to every possible password in Γ, while using the same ranking as in the testing

dataset. As a result, the probabilities assigned to all passwords would all be very small.

Such an unrealistic model would perform very well in the guess-number graph; however,

the probability-threshold graph would show extremely poor performance, since no pass-

word is cracked until a very low probability threshold is reached.

When comparing two password models, whether the conclusions drawn from a proba-

bility threshold graph can be carried over to the guess number graph depends on whether the

two models have similar rank distributions. Given a password model p, the rank distribution

gives for each i ∈ {1, 2, 3, · · · }, the probability of the password that has the i’th highest

probability. Thus, if two password models are known to generate very similar rank distribu-

tions, then any conclusion drawn from the probability-threshold graph will also hold on the

guess number graph, because the same probability threshold will correspond to the same

guess number. When two models generate somewhat different rank distributions, then one

needs to be careful when interpreting results obtained from probability-threshold graphs.

In particular, one may want to also generate the guess number graphs to check whether

the results are similar at least for the beginning portion of the probability-threshold graphs.

There is the main limitation of using probability-threshold graphs in type-2 research.

Average-Negative-Log-Likelihood (ANLL) and ANLLθ. Information encoded in a

probability-threshold curve can be summarized by a single number that measures the area

to the left of the curve, which turns out to be exactly the same as the Average Negative

Log Likelihood (ANLL). ANLL has its root in statistical language modeling. A statistical

language model assigns a probability to a sentence (i.e., a sequence of words) by means of

a probability distribution. Language modeling is used in many natural language process-

ing applications such as speech recognition, machine translation, part-of-speech tagging,

parsing and information retrieval. Password modeling can be similarly viewed as trying to

approximate as accurately as possible D, an unknown distribution of passwords. We do not

know D, and instead have a testing dataset D, which can be viewed as sampled from D.

We use pD to denote the probability distribution given by the dataset D. Representing the

26

testing dataset D as a multi-set {s1, s2, . . . , sn}, where a password may appear more than

once, the ANLL metric is computed as follows:

ANLL(D|p) =
1

|D|

∑

s∈D

− log2 p(s)

To see that ANLL equals the area to the left of the probability-threshold curve, observe

that when dividing the area into very thin horizontal rows, the length of a row with height

between y and y + dy is given by the number of passwords with probability p such that

y ≤ − log2 p < y + dy. By summing these areas up, one obtains the ANLL.

ANLL gives the same information as Empirical Perplexity, which is the most widely

used metric for evaluating statistical language models, and is defined as 2ANLL(D|p).

While using a single number to summarize the information in a probability-threshold

curve is attractive, obviously one is going to lose some information. As a result, ANLL

has some limitations. First, ANLL is applicable only for complete password models, i.e.,

those that assign a non-zero probability to each password. In the area interpretation, if a

password in the dataset is assigned probability 0, it is never guessed, and the curve never

reaches Y = 1, resulting in an infinite area. Second, ANLL includes information about

cracking 100 percent of the passwords, which may not be what one wants. Since it may be

infeasible to generate enough guesses to crack the most difficult passwords, one may care

about only the θ portion of passwords that are easy to crack. In that case, one could use

ANLLθ, which we define to be the area to the left of the curve below θ. In this chapter, we

use ANLL0.8 when comparing different models using one single number.

3.3 Design Space of Password Models

In this section, we explore the design space of password models.

We mostly consider approaches that construct password models without relying on an

external dictionary. That is, we consider approaches that can take a training password

dataset and learn a password model from it. The performance of approaches that rely on

external dictionaries depends very much on the quality of the dictionaries, and in particu-

27

lar, how well the dictionaries match the testing dataset. Such approaches are not broadly

applicable, and it is difficult to evaluate their effectiveness.

N-gram models, i.e., Markov chains, are the dominant approach for statistical lan-

guages. It is natural to apply them to passwords. A Markov chain of order d, where d is a

positive integer, is a process that satisfies

P (xi|xi−1, xi−2, . . . , x1) = P (xi|xi−1, . . . , xi−d)

where d is finite and x1, x2, x3, . . . is a sequence of random variables. A Markov chain with

order d corresponds to an n-gram model with n = d+ 1.

We divide password models into two classes, whole-string models and template-based

models. A template-based model divides a password into several segments, often by group-

ing consecutive characters of the same category into one segment, and then generates the

probability for each segment independently. A whole-string model, on the other hand, does

not divide a password into segments.

3.3.1 Whole-String Markov Models

Whole-string Markov models are used in John the Ripper (JTR) [14] and Castelluccia

et al.’s work on password strength estimation [19]. JTR in Markov mode uses a 1-order

Markov chain, in which the probability assigned to a password “c1c2 · · · cℓ” is

P (“c1c2 · · · cℓ”) = P (c1|c0)P (c2|c1)P (c3|c2) · · ·P (cℓ|cℓ−1),

where c0 ̸∈ Σ denotes a start symbol that is prepended to the beginning of all passwords,

and

P (ci|ci−1) =
count(ci−1ci)

count(ci−1·)
(3.1)

where count(ci−1·) denotes the number of occurrences of ci−1 where it is followed by

another character (i.e., where it is not at the end of password), and count(ci−1ci) gives

the number of occurrences of the substring ci−1ci. By definition, we have count(ci−1·) =

28

∑

ci∈Σ
count(ci−1ci). When we use Markov chains of order d > 1, we can prepend d

copies of the start symbol c0 to each password.

There are many variants of whole-string Markov models. Below we examine the design

space.

Need for Normalization. We note that models used in [14,19] are not probability models

because the values assigned to all strings do not add up to 1. In fact, they add up to U−L+1,

where U is the largest allowed password length, and L is the smallest allowed password

length, because the values assigned to all strings of a fixed length add up to 1. To see this,

first observe that
∑

c1∈Σ

P (“c1”) =

∑

c1∈Σ
count(c0c1)

count(c0·)
= 1,

and thus the values assigned to all length-1 strings add up to 1. Assume that the values

assigned to all length-ℓ strings sum up to 1. We then show that the same is the case for

length ℓ+ 1 as follows.

∑

c1c2···cℓ+1∈Σℓ+1 P (“c1c2 · · · cℓ+1”)

=
∑

c1c2···cℓ∈Σℓ P (“c1c2 · · · cℓ”)×
∑

cℓ+1∈Σ
P (cℓ+1|cℓ)

=
∑

c1c2···cℓ∈Σℓ P (“c1c2 · · · cℓ”) = 1

The same analysis holds for Markov chains of order d > 1. To turn such models into

probability models, several normalization approaches can be applied:

Direct normalization. The approach of using the values directly in [14, 19] is equivalent

to dividing each value by (U − L + 1). This method, however, more or less assumes that

the total probabilities of passwords for each length are the same. This assumption is clearly

not the case in practice. From Table 3.6 and Table 3.7, which give the password length

distributions for the datasets we use in this chapter, we can see that passwords of lengths

between 6 and 10 constitute around 87% of all passwords, and passwords of lengths 11

29

and 12 add an additional 7%, with the remaining 30 lengths (lengths 4,5,13-40) together

contributing slightly less than 6%.

Distribution-based normalization. A natural alternative to direct normalization is to

normalize based on the distribution of passwords of different lengths. More specifically,

one normalizes by multiplying the value assigned to each password of length m with the

following factor:
of passwords of length m in training

total # of passwords in training

This approach, however, may result in overfitting, since the training and testing datasets

may have different length distributions. From Table 3.7, we can see that the CSDN dataset

includes 9.78% of passwords of length 11, whereas the PhpBB dataset includes only 2.1%,

resulting in a ratio of 4.66 to 1, and this ratio keeps increasing. At length 14, CSDN has

2.41%, while PhpBB has only 0.21%.

End-symbol normalization. We propose another normalization approach, which appends

an “end” symbol ce to each password, both in training and in testing. The probability

assigned by an order-1 Markov chain model to a password “c1c2 · · · cℓ” is

P (c1|c0)P (c2|c1)P (c3|c2) · · ·P (cℓ|cℓ−1)P (ce|cℓ),

where the probability of P (ce|cℓ) is learned from the training dataset. For a string

“c1c2 · · · cU” of the maximal allowed length, we define P (ce|cU) = 1.

In this approach, we also consider which substrings are more likely to occur at the end

of passwords. In Markov chain models using direct normalization, the prefix of a password

is always more likely than the actual password, which may be undesirable. For example,

“passwor” would be assigned a higher probability than “password”. The end symbol cor-

rects this situation, since the probability that an end symbol following “passwor” is likely

to be significantly lower than the product of the probability that “d” follows “passwor” and

that of the end symbol following “password”.

Such a method can ensure that the probabilities assigned to all strings sum up to 1 when

the order of the Markov chain is at least as large as L, the smallest allowed password length.

30

To see this, consider the case when L = 1. Envision a tree where each string corresponds to

a node in the tree, with c0 being the root node. Each string “c0c1 · · · cℓ” has “c0c1 · · · cℓ−1”

as its immediate parent. All the leaf nodes are strings with ce as the last symbol, i.e., they

are actual passwords. Each edge is assigned the transition probability; thus, the values

assigned to all edges leaving a parent node add up to 1. Each node in the tree is assigned

a value. The root is assigned 1, and every other node is assigned the value of the parent

multiplied by the transition probability of the edge from its parent to the node. Thus, the

value assigned to each leaf node equals its probability under the model. We note that the

value assigned to each node equals the sum of values assigned to its children. It follows

that the total probabilities assigned to all leaves add up to be the same as those assigned to

the root, which is 1.

When the order of Markov chain, d, is less than L, the minimal required password

length, we may have the situation that the total probabilities add up to less than 1, because

non-zero probabilities would be assigned to illegal passwords of lengths less than L. The

effect is that this method is slightly penalized when evaluated using probability-threshold

graphs or ANLLs. We note that when a model wastes half of the total probability of 1 by

assigning them to passwords that are too short, the ANLLθ is increased by θ.

Choice of Markov Chain Order, Smoothing, and Sparsity. Another challenging issue is

the choice of the order for Markov chains. Intuitively, a higher-order Markov chain enables

the use of deeper history information than lower-order ones, and thus may be more accu-

rate. However, at the same time, a higher-order Markov chain runs the risk of overfitting

and sparsity, which causes reduced performance. Sparsity means that one is computing

transition probabilities from very small count numbers, which may be noisy.

In Markov chain models, especially higher order ones, many calculated conditional

probabilities would be 0, causing many strings assigned probability 0. This can be avoided

by applying the technique of smoothing, which assigns pseudocounts to unseen strings.

Pseudocounts are generally motivated on Bayesian grounds. Intuitively, one should not

think that things that one has not yet seen have probability 0. Various smoothing methods

have been developed for language modeling. Additive smoothing, also known as Laplace

31

smoothing, adds δ to the count of each substring. When δ is chosen to be 1, this is known

as add-one smoothing, which is problematic because the added pseudo counts often over-

whelm the true counts. In this chapter, we choose δ to be 0.01; the intuition is that when

encountering a history “c1c2c3c4”, all the unseen next characters, after smoothing come up

to slightly less 1, since there are 95 characters.

A more sophisticated smoothing approach is Good-Turing smoothing [57]. This was

developed by Alan Turing and his assistant I.J. Good as part of their efforts at Bletchley

Park to crack German Enigma machine ciphers during World War II. An example illustrat-

ing the effect of Good-Turing smoothing is in [59], where Bonneau calculated the result

of applying Good-Turing smoothing to the Rockyou dataset. After smoothing, a password

that appears only once has a reduced count of 0.22, a password that appears twice has a

count of 0.88, whereas a password that appears k ≥ 3 times has a reduced count of ap-

proximately k − 1. The “saved” counts from these reduction are assigned to all unseen

passwords. Intuitively, estimating the probability of a password that appears only a few

times using its actual count will overestimate its true probability, whereas the probability

of a password that appears many times can be well approximated by its probability in the

dataset. The key observation underlying Good Turing smoothing is that the best estimation

for the total probability of items that appear exactly i times is the total probability of items

that appear exactly i+ 1 times. In particular, the total probability for all items unseen in a

dataset is best estimated by the total probability of items that appear only once.

Grouping. Castelluccia et al. [19] proposed another approach to deal with sparsity. They

observed that upper-case letters and special symbols occur rarely, and propose to group

them into two new symbols. Here we use Υ for the 26 upper-case letters and Ω for the 33

special symbols. This approach reduces the size of the alphabet from 95 to 38 (26 lower

case letters, 10 digits, and Υ and Ω), thereby reducing sparsity. It treats all uppercase letters

as exactly the same, and all special symbols as exactly the same. That is, the probability

32

that any upper-case letter follows a prefix is the probability that Υ follows the prefix divided

by 26. For example, P [“aF?b”] for an order 2 model is given by

P [a|s0s0]
P [Υ|s0a]

26

P [Ω|aΥ]

33
P [b|ΥΩ].

We call this the “grouping” method.

We experimented with an adaptation of this method. When encountering an upper-case

letter, we assign probabilities in proportion to the probability of the corresponding lower-

case letter, based on the intuition that following “swor”, “D” is much more likely than Q,

just as d is much more like than q. When encountering a special symbol, we use the order-1

history to assign probability proportionally, based on the intuition that as special symbols

are rare, a shorter history is likely better. In the adaptation, the probability of the above

string will be computed as:

P [a|s0s0]
P [Υ|s0a]P [f |s0a]
∑

α P [α|s0a]

P [Ω|aΥ]P [?|F]
∑

ω P [ω|F]
P [b|ΥΩ],

where α ranges over all lower-case letters, and ω ranges over all special symbols.

Backoff. Another approach that addresses the issue of order, smoothing, and sparsity

together is to use variable order Markov chains. The intuition is that if a history appears

frequently, then we would want to use that to estimate the probability of the next character.

For example, if the prefix is “passwor”, using the whole prefix to estimate the next character

would be more accurate than using only “wor”. On the other hand, if we observe a prefix

that rarely appears, e.g., “!W}ab”, using only “ab” as the prefix is likely to be more accurate

than using longer history, which likely would assign equal probability to all characters. One

way to do this is Katz’s backoff model [58]. In this model, one chooses a threshold and

stores all substrings whose counts are above the threshold. Let πi,j denote the substring

of s0s1s2 · · · sℓ from si to sj . To compute the transition probability from π0,ℓ−1 to π0,ℓ,

we look for the smallest i value such that πi,ℓ−1 has a count above the threshold. There

are two cases. In case one, πi,ℓ’s count is also above the threshold; thus, the transition

33

probability is simply
count(πi,ℓ)

count(πi,ℓ−1)
. In case two, where πi,ℓ does not have a count, we have to

rely on a shorter history to assign this probability. We first compute b, the probability left

after assigning transition probabilities to all characters via case one. We then compute the

probabilities for all other characters using the shorter prefix πi+1,ℓ−1, which are computed

in a recursive fashion. Finally, we normalize these probabilities so that they add up to b.

Backoff models are significantly slower than other Markov models. The backoff models

used in experimentation are approximately 11 times slower than the plain Markov models,

both for password generation and for probability estimation.

3.3.2 Template-based Models

In the template-based approach, one divides passwords into different templates based

on the categories of the characters. For example, one template is 6 lower-case letters fol-

lowed by 3 digits, which we denote as α6β3. Such a template has two segments, one

consisting of the first 6 letters and the other consisting of last 3 digits. The probability of

the password using this template is computed as:

P (“passwd123”) = P (α6β3)P (“passwd”|α6)P (“123”|β3),

where P (α6β3) gives the probability of the template α6β3, P (“passwd”|α6) gives the prob-

ability that “passwd” is used to instantiate 6 lowercase letters, and P (“123”|β3) gives the

probability that “123” is used to instantiate 3 digits. To define a model, one needs to spec-

ify how to assign probabilities to templates, and to the different possible instantiations of a

given segment. Template-based models are used in [17] and the PCFGW model [18].

Assigning probabilities to templates. In [17], the probabilities for templates are manu-

ally chosen because this work was done before the availability of large password datasets.

In [18], the probability is learned from the training dataset by counting. That is, the prob-

ability assigned to each template is simply the number of passwords using the template

34

divided by the total number of passwords. Using this approach means that passwords that

use a template that does not occur in the training dataset will have probability 0.

We consider the alternative of applying Markov models to assign probabilities to tem-

plates. That is, we convert passwords to strings over an alphabet of {α, β, υ,ω}, represent-

ing lower-case letters, digits, upper-case letters, and symbols respectively. We then learn

a Markov model over this alphabet, and assign probabilities to a template using Markov

models.

Assigning probabilities to segments. In [17], the probabilities of letter segments are

assigned using a Markov model learned over natural language, and the probabilities for

digit segments and symbol segments are assigned by assuming that all possibilities are

equally likely. In the PCFGW model [18], the probabilities for digit segments and symbol

segments are assigned using counting from the training dataset, and letter segments are

handled using a dictionary. That is, for an α6 segment, all length-6 words in the dictionary

are assigned an equal probability, and any other letter sequence is assigned probability 0.

For a β3 template, the probability of “123” is the number of times “123” occurs as a 3-digit

segment in the training dataset divided by the number of 3-digit segments in the training

dataset.

We consider template models in which we assign segment instantiation probabilities

via both counting and Markov models. Table 3.1 summarizes the design space of password

models we consider in this chapter.

PCFGW model does not fit in the models in Table 3.1, as it requires as input a dictionary

in addition to a training dataset. In this chapter, we considered 3 instantiations of PCFGW :

the first uses the dictionary used in [18]; the second uses the OpenWall dictionary; and the

third generates the dictionary from the training set. We note that the last instantiation is es-

sentially the template-based model using counting both for assigning template probabilities

and for instantiating segments.

35

Table 3.1.: Design space for probabilistic password models

Whole-string Markov models

normalization methods: (1) direct, (2)
distribution-based, (3) end symbol
order of Markov chain: 1, 2, 3, 4, · · · or variable
(backoff)
dealing with sparsity: (1) plain, (2) grouping (3)
adapted grouping
smoothing methods: (1) no smoothing, (2) add-δ
smoothing, (3) Good-Turing smoothing

Template-based models
template probability assignment: (1) Counting,
(2) Markov model
segment probability assignment: (1) Counting, (2)
Markov model

3.3.3 Password Generation

To use a password model for cracking, one needs to be able to generate passwords in

decreasing probability.

In whole-string Markov-based methods, the password search space can be modeled as

a search tree. As described earlier, the root node represents the empty string (beginning

of the password), and every other node represents a string. Each node is labeled with the

probability of the string it represents.

One algorithm for password guess generation involves storing nodes in a priority queue.

The queue, arranged in order of node probabilities, initially contains the root node of the

search tree. We then iterate through the queue, popping the node with the greatest likeli-

hood at each iteration. If this is an end node (any non-root node for uniform or length-based

normalization, or nodes with end symbol for end-symbol normalization), we output the

string as a password guess. Otherwise, we calculate the transition probability of each char-

acter in the character set and add to the priority queue a new child node with that character

and the associated probability. This algorithm is guaranteed to return password guesses

in decreasing order of probability (as estimated by the model), due to the iteration order

36

and property that each node’s probability is smaller than that of its parent. The algorithm

terminates once the desired number of guesses has been generated.

The priority-queue method, however, is not memory efficient, and does not scale for

generating a large number (e.g., over 50 million) of guesses. Since each node popped from

the queue can result in multiple nodes added to the queue, the queue size is typically several

times of the number of guesses generated. To reduce the memory footprint, we propose a

threshold search algorithm.

The threshold search algorithm, similar to the iterative deepening state space search

method, conducts multiple depth-first traversals of the search tree. In the i’th iteration, it

generates passwords with probabilities in a range (ρi, τi], by performing a depth-first traver-

sal of the tree, pruning all nodes with probability less than ρi, and outputting all passwords

with probability in the target range. To generate n password guesses, we start with a con-

servative range of (ρ1 = 1
n , τ1 = 1]. After the i’th iteration, if we have generated m < n

passwords so far, we start another iteration with (ρi+1 = ρi
max(2,1.5n/m) , τi+1 = ρi]. That is,

when m < 0.75n, we halve the probability threshold. We have observed empirically that

halving ρ result in close to twice as many passwords being generated. We may overshoot

and generally more than n passwords, but are very unlikely to generate over 2n guesses.

The average runtime complexity of this algorithm as O(n), or linear on n. The memory

complexity (not including the model data or generated passwords) is essentially constant,

as the only data structure needed is a stack of capacity U + 1. We use this framework to

efficiently generate Markov model-based guesses in the experiments. Slight adjustments

need to be made for distribution-based normalization. This method, however, does not ap-

ply to template-based models. Through probability-threshold graphs, we have found that

unless Markov models are used to instantiate templates, template-based models perform

rather poorly. However, when Markov models are used, efficient generation for very large

numbers of passwords appears quite difficult, as one cannot conduct depth-first search and

needs to maintain a large amount of information for each segment. In this chapter, we do

not do password generation for template-based models other than the PCFGW model.

37

3.4 Experimental Methodologies

In this section, we describe our experimental evaluation methodologies, including the

dataset we use and the choice of training/testing scenarios.

Datasets. We use the following six password datasets downloaded from public Web sites.

We use only the password information in these datasets and ignored all other information

(such as user names and/or email addresses included in some datasets). The RockYou

dataset [50] contains over 32 million passwords leaked from the social application site

Rockyou in December 2009. The PhpBB dataset [50] includes about 250K passwords

cracked by Brandon Enright from MD5 hashes leaked from Phpbb.com in January 2009.

The Yahoo dataset includes around 450K passwords published by the hacker group named

D33Ds in July 2012. The CSDN dataset includes about 6 million user accounts for the

Chinese Software Developer Network (CSDN), a popular IT portal and a community for

software developers in China [60]. The Duduniu dataset includes about 16 million ac-

counts for a paid online gaming site in China. The 178 datasets includes about 10 million

passwords for another gaming website in China. All 3 Chinese dataset were leaked in

December 2011.

The first 3 datasets are from American websites, and the last 3 are from Chinese web-

sites. The 6 datasets together have approximately 60 million passwords.

Data cleansing. We performed the following data cleansing operations. First, we removed

any password that includes characters beyond the 95 printable ASCII symbols. This step

removed 0.034% of all passwords. In the second step, we removed passwords whose length

were less than 4 or greater than 40. As almost any system that uses passwords will have a

minimal length requirement and a maximum length restriction, we believe that such pro-

cessing is reasonable. In total we removed 0.037% of passwords that are too short, and

0.002% of passwords that are too long. Length-4 passwords account for 0.225% of the

datasets, and we chose not to remove them. Table 3.2 gives detailed information on cleans-

ing.

38

Table 3.2.: Results of removing passwords that are too long, too short, and non-ASCII passwords.

Size after cleansing Removed

Dataset Unique Total
non-ASCII

Unique

non-ASCII

Total

too-short

Unique

too-short

Total

too-long

Unique

too-long

Total

Percentage

of

All Removed

RockYou 14325681 32575584 14541 18038 2868 7914 1290 1346 0.08%
PhpBB 183400 253512 45 45 944 1864 0 0 0.75%
Yahoo 342197 442288 0 0 283 497 0 0 0.11%
CSDN 4037139 6427522 314 355 465 754 0 0 0.02%

Duduniu 6930996 10978339 1485 1979 3685 10881 28 28 0.12%
178 3462280 9072960 0 0 3 5 1 1 0.00%

39

Dataset statistics. Table 3.3 shows the percentages of passwords that appeared

1, 2, 3, 4, 5+ times in all datasets. The detailed statistics for American datasets and Chi-

nese datasets are listed in Table 3.4 and Table 3.5, respectively. Recall that the Good-Turing

method estimates that the total probabilities of unseen passwords to be that of unique pass-

words. We see that the two smallest datasets, PhpBB and Yahoo, have significantly higher

percentages of unique passwords, 64.16% and 69.83% respectively, compared to 36.43%

for Rockyou. When combining all 6 datasets, approximately 40% are unique.

Table 3.3.: Password count and frequency information of all datasets

All

all 59750205
Percentage due to Unique 40.92%
Percentage due to Twice 9.32%
Percentage due to 3 Times 4.02%
Percentage due to 4 Times 2.36%
Percentage due to 5+ Times 43.38%

Table 3.4.: Password count and frequency information of American datasets

All American RockYou PhpBB Yahoo

all 33271384 32575584 253512 442288
Percentage due to Unique 37.09% 36.43% 64.16% 69.83
Percentage due to Twice 8.15% 8.12% 9.79% 9.38%
Percentage due to 3 Times 3.58% 3.59% 3.86% 3.60%
Percentage due to 4 Times 2.25% 2.25% 2.31% 1.94%
Percentage due to 5+ Times 48.93% 49.61% 19.88% 15.25%

Table 3.6 and Table Table 3.7 show the length distributions of the password datasets

from English users and from Chinese users, respectively. The tables suggest that the most

common password lengths are 6 to 10, which account for 87% of the whole dataset. One

interesting aspect is that the CSDN dataset has much fewer length 6 and 7 passwords than

other datasets. One explanation is that the website started enforcing a minimal length-

40

Table 3.5.: Password count and frequency information of Chinese datasets

All Chinese CSDN Duduniu 178

all 26478821 6427522 10978339 9072960
Percentage due to Unique 45.74% 55.72% 51.83% 31.30%
Percentage due to Twice 10.73% 10.79% 14.20% 7.80%
Percentage due to 3 Times 4.46% 4.55% 5.96% 3.65%
Percentage due to 4 Times 2.47% 2.51% 3.18% 2.19%
Percentage due to 5+ Times 36.41% 29.84% 24.83% 55.07%

Table 3.6.: Password length information for English datasets

All American RockYou PhpBB Yahoo

4 0.2444% 0.2164% 3.1833% 0.6215%
5 4.0466% 4.0722% 5.7110% 1.2028%
6 25.9586% 26.0553% 27.4212% 17.9994%
7 19.2259% 19.2966% 17.8169% 14.8313%
8 20.1374% 19.9886% 27.3967% 26.9336%
9 12.1343% 12.1198% 9.1562% 14.9125%
10 9.0805% 9.0650% 5.3276% 12.3795%
11 3.5711% 3.5659% 2.0985% 4.7976%
12 2.1347% 2.1053% 1.0611% 4.9124%
13 1.3008% 1.3170% 0.4307% 0.6005%
14 0.8490% 0.8609% 0.2142% 0.3373%
15 0.5431% 0.5515% 0.0935% 0.1890%
16 0.3870% 0.3931% 0.0505% 0.1286%
17 0.1208% 0.1225% 0.0142% 0.0592%
18 0.0759% 0.0770% 0.0110% 0.0283%
19 0.0486% 0.0494% 0.0036% 0.0199%
20 0.0412% 0.0415% 0.0032% 0.0400%
21-30 0.0947% 0.0964% 0.0056% 0.0067%
31-40 0.0053% 0.0055% 0.0012% 0.0000%

8 password policy early on, and only users who have accounts near the beginning have

shorter passwords.

Table 3.8 shows the character distribution. It is interesting to note that passwords in

American datasets consist of about 27% digits and 69% lower-case letters, while those in

Chinese datasets are the opposite, with 68% digits and 30% lower-case letters. This is

likely due to both the fact that the Roman alphabet is not native to Chinese, and the fact

41

Table 3.7.: Password length information for Chinese password datasets

All Chinese CSDN Duduniu 178

4 0.2013% 0.1041% 0.4226% 0.0023%
5 0.3338% 0.5142% 0.5035% 0.0006%
6 11.2856% 1.2954% 9.1683% 20.9249%
7 13.6824% 0.2696% 16.3914% 19.9063%
8 25.8024% 36.3793% 23.0194% 21.6768%
9 21.9962% 24.1479% 24.6739% 17.2318%
10 15.0372% 14.4810% 20.0710% 9.3403%
11 6.1907% 9.7820% 3.4728% 6.9350%
12 2.6199% 5.7475% 1.1962% 2.1269%
13 1.1738% 2.6106% 0.5061% 0.9638%
14 0.8902% 2.4105% 0.3003% 0.5269%
15 0.4598% 1.1719% 0.1895% 0.2822%
16 0.2195% 0.7716% 0.0255% 0.0633%
17 0.0320% 0.1090% 0.0124% 0.0013%
18 0.0287% 0.0918% 0.0107% 0.0058%
19 0.0115% 0.0356% 0.0060% 0.0013%
20 0.0229% 0.0782% 0.0082% 0.0015%
21-30 0.0110% 0.0000% 0.0191% 0.0090%
31-40 0.0012% 0.0000% 0.0029% 0.0000%

42

that digit sequences are easier to remember in Chinese. For each digit, there are many

Chinese characters that have similar sounds, making it easy to find digit sequences that

sound similar to some easy-to-remember phrases. Indeed, we found many such sequences

occurring frequently in Chinese datasets.1

Table 3.9 shows the frequencies of different patterns as well as the most popular pass-

words for each pattern in all datasets. The frequencies of these patterns in each dataset

are listed in Table 3.10. While all lower-case passwords are the most common in Ameri-

can datasets (41.65%), they account for only 8.93% of Chinese datasets. The overall most

common pattern is lowercase followed by digits (33.02%), due to the fact that this is the

most common in Chinese datasets (40.05%). This is followed by all lower-case, all dig-

its, and digits followed by lower-case; these top-4 patterns account for close to 90% of all

passwords. Upper-case letters are most commonly seen preceding a digit sequence, or in

all-uppercase passwords. We also note that the pattern distribution shows a lot of variation

across different datasets.

Training/Testing Scenarios. We now describe our selection of the training and testing

datasets. We decided against merging all datasets into one big dataset and then partitioning

it into training and testing, since we feel that represents unrealistic scenarios in practice.

For example, this causes similar length, character, and pattern distributions in training and

testing; furthermore, any frequent password tends to appear both in training and testing.

Instead, in each scenario, we chose some of the datasets for training, and another for testing.

Table 3.11 lists the 6 scenarios we use in this chapter. Scenarios 1-4 have training and

testing from within the same group (American or Chinese). We merge Yahoo and PhpBB

together because they are both small (containing less than one million passwords when

combined) when compared with other datasets (all contain more than 6 million). Scenarios

2-4 resemble cross-validation, rotating among the 3 Chinese datasets, each time training

with 2 and testing with the remaining 1. Scenario 5 trains on all Chinese datasets and test

on the American datasets Yahoo+PhpBB. Scenario 6 trains on Rockyou and tests on the

1One such sequence is “5201314”, which sounds similar to a phrase that roughly means “I love you forever
and ever”. Both “520” and “1314” are extreme frequent in Chinese datasets.

43

Table 3.8.: Password characters information

All All American RockYou PhpBB Yahoo All Chinese CSDN Duduniu 178

all 490102135 262266576 256756616 1857611 3652349 227835559 60788099 93174301 73873159
digit 46.20% 27.28% 27.35% 23.12% 24.56% 67.99% 67.41% 64.74% 72.55%
lower 51.06% 68.87% 68.78% 73.65% 72.55% 30.55% 30.06% 33.79% 26.87%
special 0.48% 0.67% 0.68% 0.32% 0.49% 0.25% 0.62% 0.12% 0.13%
upper 2.26% 3.18% 3.19% 2.91% 2.39% 1.21% 1.91% 1.35% 0.46%

44

Table 3.9.: Password pattern information: L denotes a lower-case sequence, D denotes
a digit sequence, U denotes a upper-case sequence, and S denotes a symbol sequence;
patterns differ from templates in that patterns do not record length of sequence.

ALL Percentage of the patterns

Percentage of
the pattern

the most
popular string

All American All Chinese

LD 33.22% a123456 27.79% 40.05%
L 27.15% password 41.65% 8.93%
D 24.50% 123456 15.77% 35.48%

DL 4.81% 123456aa 2.57% 7.63%
LDL 1.60% love4ever 1.66% 1.53%

UD 1.48% A123456 1.33% 1.67%
U 0.94% PASSWORD 1.48% 0.26%

ULD 0.64% Password1 0.96% 0.24%
DLD 0.43% 123aa123 0.43% 0.44%

LDLD 0.42% hi5hi5 0.43% 0.40%
UL 0.40% Password 0.65% 0.09%

LSD 0.40% xxx 01 0.66% 0.27%
LSL 0.40% rock you 0.50% 0.08%

LS 0.38% iloveyou! 0.64% 0.07%
DU 0.23% 123456A 0.15% 0.34%

45

Table 3.10.: Percentage of password patterns in datasets: L denotes a lower-case sequence,
D denotes a digit sequence, U denotes a upper-case sequence, and S denotes a symbol
sequence; patterns differ from templates in that patterns do not record length of sequence

American datasets Chinese datasets

Rockyou Phpbb Yahoo Csdn Duduniu 178
LD 27.71% 19.26% 38.31% 26.15% 55.57% 31.12%

L 41.70% 50.08% 33.05% 11.65% 7.29% 9.00%
D 15.94% 11.94% 5.86% 45.02% 19.48% 48.07%

DL 2.54% 2.05% 5.32% 5.89% 9.79% 6.25%
LDL 1.62% 3.66% 3.31% 1.64% 1.68% 1.27%

UD 1.35% 0.37% 0.56% 1.62% 2.57% 0.62%
U 1.50% 0.73% 0.40% 0.47% 0.21% 0.15%

ULD 0.94% 1.04% 2.48% 0.50% 0.26% 0.05%
DLD 0.42% 0.79% 0.94% 0.52% 0.44% 0.38%

LDLD 0.42% 1.03% 0.97% 0.47% 0.31% 0.47%
UL 0.65% 1.22% 0.70% 0.09% 0.15% 0.01%

LSD 0.66% 0.33% 0.17% 0.21% 0.05% 0.01%
LSL 0.50% 0.17% 0.39% 0.66% 0.21% 0.08%

LS 0.65% 0.16% 0.20% 0.14% 0.05% 0.04%
DU 0.15% 0.11% 0.06% 0.46% 0.46% 0.11%

46

Chinese dataset CSDN. By comparing scenario 5 against 1, and scenario 6 against 2, one

can observe the effect of training on a mismatched dataset. We present detailed results

using graphs for scenario 1 and 2, and ANLL0.8 for other scenarios.

Table 3.11.: Six experimental scenarios.

name Training Testing
1 Rock→Ya+Ph Rockyou Yahoo+PhpBB
2 Du+178→CSDN Duduniu+178 CSDN
3 CS+178→Dudu CSDN+178 Duduniu
4 CS+Du→178 CSDN+Duduniu 178
5 Chin→Ya+Ph Three Chinese Yahoo+PhpBB
6 Rock→CSDN Rockyou CSDN

3.5 Experimental Results

Experimental results are presented using guess-number graphs, probability-threshold

graphs, and ANLL0.8 values. The algorithm naming convention is as follows. Names for

whole-string models start with “ws”. For example, ws-mc-b10 is Markov chain with backoff

and frequency threshold 10, and ws-mci is order-i Markov chain with add-δ smoothing

for δ = 0.01. The postfix -g is for grouping, -ag for grouping after our adaption, -gts for

Good-Turing smoothing, and -end, -dir, and -dis are for the three normalization approaches.

Names for template-based models start with “tb”; for example, tb-co-mci is the template-

based model using the counting-based method for assigning probabilities to templates and

an order-i Markov chain model for segment instantiation. We note that using this notation,

tb-co-co is PCFGW with dictionary generated from the training dataset.

The Figures. Fig 3.2 and Fig 3.3 gives 8 graphs for Scenario 1. Fig 3.2(a) shows the

rank vs. probability based on generated passwords. One can see that for the three Markov

models shown there, one can translate log of rank into negative log of probability via an

additive factor in the range of 3 to 8. That is, a password that has probability 1
2y is likely

to have a rank of around 2y−a, which a is mostly between 3 and 8, and seems to gets close

to around 6 as x increases. We conjecture that this trend will further hold as x increases,

47

(a) Rank vs. probability: (x, y) denotes the 2x

most likely password has probability 1

2y
; dashed

lines are y = x+ 3 and y = x+ 8

(b) Guess-number graph: (x, y) denotes 2x

guesses cover y portion of the dataset

(c) Superimposing guess number
and prob. threshold: for guess-number curves,
x stands for 2x guesses; for threshold curves, x
stands for probability threshold 1

2x
; dic-0294 is

used as dictionary for PCFGW

(d) Prob. threshold graph for comparing template-
based models (including PCFGW)

Figure 3.2.: Guess number graphs and probability threshold graphs for Scenario 1:
Rock→Ya+Ph. (Part 1)

and the gap between different curves would shrink as x increases. One support is that these

curves have to cross at some point due to the fact that the probabilities for each model add

up to 1. Analyzing such Markov models to either prove or disapprove this conjecture is

interesting future research, since it affects to what extend one can use probability threshold

graphs instead of guess number graphs to compare these models with each other.

Fig 3.2(b) shows the guess-number graph. We include results from ws-mc5-end, three

instantiations of PCFGW (using dic-0294, the dictionary used in [18], using the Openwall

dictionary [61], and using a dictionary generated from the training dataset), and JTR in

three different modes (incremental bruteforce, Markov chain, and wordlist/dictionary mode

with Openwall dictionary). We can see that the three PCFGW and the three JTR methods

clearly underperform the Markov model. We note that jtr-mc1 seems to pick up rather

48

(a) Prob. threshold graph for comparing the effect
of smoothing, all with end-based normalization

(b) Prob. threshold graph for comparing Markov
of different orders; with end-based normalization
and add-δ smoothing

(c) Prob. threshold graph for comparing the effect
of normalization

(d) Prob. threshold graph for passwords with
length no less than 8; comparing template-based
models (including PCFGW)

Figure 3.3.: Guess number graphs and probability threshold graphs for Scenario 1:
Rock→Ya+Ph. (Part 2)

quickly, which matches the shape of ws-mc1 in 3.3(b). Another observation is PCFGW

with training dataset as dictionary (i.e., tb-co-co) outperforms the other two instantiations.

Fig 3.2(c) plots both guess-number curves and probability threshold curves for 3 pass-

word models on the same graph, and one can see that the guess-number curve for any model

approximately matches the the probability threshold curve if one shifts them to the right.

Fig 3.2(d) shows the probability threshold curves for all template-based models and

one whole-string model, namely ws-mc-b10-end. Here, Laplace smoothing with δ = 0.01

is applied to Markov chains in all template models. PCFGW with dic-0294 performs the

worst, and PCFGW with Openwall dictionary performs slightly better. Compared with

other models, these two cover the least passwords at any probability threshold. With prob-

ability threshold at 2−80, the former covers slightly over 50% of all passwords, and the

latter covers close to 60%. The two curves that both use counting to instantiate segments

49

(tb-co-co and tb-mc5-co) almost overlap; they perform better than PCFGW with external

dictionaries. On lower probability thresholds, they, together with ws-mc-b10, are the best-

performing methods At threshold 2−80, they cover around 75% of passwords. This suggests

that learning from the dataset is better than using existing dictionaries in PCFGW . When we

replace counting with Markov models for instantiating segments, we see another significant

improvement at higher probability threshold. The model tb-co-mc5 covers more than 90%

of passwords (at threshold 2−80), and tb-mc5-mc5, which takes advantage of smoothing,

covers close to 100% passwords. This improvement, however, comes at the cost of slightly

worse performance than tb-co-co and tb-mc5-co at lower probability thresholds. In other

words, whether to use counting or Markov chains to generate probabilities for templates

shows a small difference. Using counting to instantiate segments shows an overfitting ef-

fect, performing well at low thresholds, but worse at higher ones. Whole-string Markov

with backup (ws-mc-b10-end) almost always has the best performance at any threshold.

Fig 3.3(a) compares the effect of no smoothing, add-δ smoothing, and Good-Turing

smoothing on Markov models of order 4 and order 5. When x < 35, smoothing makes

almost no difference, one simply sees that order 5 outperforms order 4. This is to be ex-

pected, since the smoothing counts make a difference only for strings of low probabilities.

For larger x values, however, smoothing makes a significant difference, and the difference

is much more pronounced for order 5 than for order 4. The order 5 model without smooth-

ing performs the worst, due to overfitting. Good-Turing smoothing under-performs add-δ

smoothing, and results in significant overfitting for order 5.

Fig 3.3(b) compares the effect of different orders in Markov chain models. We see that

higher-order chains perform better for smaller x values, but are surpassed by lower-order

chains later; however, backoff seems to perform well across all ranges of x.

Fig 3.3(c) demonstrates the effect of normalization. Direct normalization performs

the worst, while distribution based normalization performs slightly better than end-symbol

normalization.

As can be seen from Table 3.6, Yahoo+PhpBB have between 40% and 45% passwords

that are of length less than 8. Since many modern websites require passwords to be at

50

least 8 characters long, one may question to what extent results from the above figures are

applicable. To answer this question, we repeat figure Fig 3.2(d) by using only passwords

that are at least 8 characters for evaluation. The result is shown in Fig 3.3(d). Note that

while all curves are somewhat lower than the corresponding ones in Fig 3.2(d); they tell

essentially the same story.

(a) Rank vs. probability: (x, y) denotes the 2x

most likely password has probability 1

2y
; dashed

lines are y = x+ 3 and y = x+ 8

(b) Guess-number graph: (x, y) denotes 2x

guesses cover y portion of the dataset

(c) Superimposing guess number
and prob. threshold: for cracking curve, x
stands for 2x guesses; for threshold curve, x
stands for probability threshold 1

2x
; dic-0294 is

used as dictionary for PCFGW

(d) Prob. threshold graph for comparing template-
based models (including PCFGW)

Figure 3.4.: Guess number graphs and probability threshold graphs for Scenario 2:
Du+178→CSDN. (Part 1)

Fig 3.4 and Fig 3.5 gives the same 8 graphs for scenario 2, which use Chinese datasets

for training and testing. The observations made above similarly apply. One minor differ-

ence is that in Fig 3.2(d), the performance of PCFG with external dictionaries are worse

than in Scenario 1. Since the Chinese datasets consist of more passwords that use only digit

sequences, and thus are intuitively weaker, this may seem a bit counter-intuitive. This is

because PCFGW uses only digit sequences that appear in the training dataset to instantiate

51

(a) Prob. threshold graph for comparing the effect
of smoothing, all with end-based normalization

(b) Prob. threshold graph for comparing Markov
of different orders; with end-based normalization
and add-δ smoothing

(c) Prob. threshold graph for comparing the effect
of normalization

(d) Prob. threshold graph for passwords with
length no less than 8; comparing template-based
models (including PCFGW)

Figure 3.5.: Guess number graphs and probability threshold graphs for Scenario 2:
Du+178→CSDN. (Part 2)

password guesses, and thus does perform well when lots of digits are used. When Markov

chains with smoothing are used to instantiate the segments, one obtains a more significant

improvement than in Scenario 1.

Fig 3.6 and Fig 3.7 shows two of these graphs for each of the other 4 scenarios. These

two are the Fig 3.6(d) for a probability threshold graph Fig 3.6(b) for a guess number graph.

They mostly give the same observations. We note that in Fig 3.7(b), we see that PCFGW

with dictionary from the training dataset starts out-performing ws-mc5-end. Note that in

scenario, we train on the Chinese dataset and the use American datasets to evaluate, thus, a

higher-order Markov chain does not perform very well. From Fig 3.7(a), however, we can

see that the variable-order ws-mc-b10 remains the best-performing method.

52

(a) Scenario 3: CS+178→Dudu: Prob. threshold
graph for comparing template-based models (in-
cluding PCFGW)

(b) Scenario 3: CS+178→Dudu: Guess-number
graph. (x, y) denotes 2x guesses cover y portion
of the dataset

(c) Scenario 4: CS+Du→178: Prob. threshold
graph for comparing template-based models (in-
cluding PCFGW)

(d) Scenario 4: CS+Du→178: Guess-number
graph. (x, y) denotes 2x guesses cover y portion
of the dataset

Figure 3.6.: Guess number graphs and probability threshold graphs for Scenarios 3, 4.

Table 3.12.: ANLL0.8 results for scenarios 1, 2, 3. end, dir, and dis stand for end-symbol,
direct, and distribution-based normalization, respectively. We highlight the best results
within each scenario.

1: Rock→Ya+Ph 2: Du+178→CSDN 3: CS+178→Dudu

Algorithm end dir dis end dir dis end dir dis

ws-mc-b10 20.5 23.3 21.4 22.7 25.4 23.4 23.6 26.0 23.9

ws-mc-b25 20.8 23.6 21.7 22.8 25.5 23.5 23.8 26.1 24.1

ws-mc1 27.7 28.7 26.6 28.7 29.4 27.3 28.0 28.7 26.7

ws-mc2 25.8 27.1 25.0 25.8 26.7 24.7 25.9 27.0 24.9

ws-mc3 23.6 25.2 23.2 24.2 25.3 23.3 24.7 25.9 23.9

ws-mc4 21.7 23.7 21.8 23.3 24.8 22.8 24.1 25.6 23.6

ws-mc5 21.1 23.2 21.3 23.5 25.1 23.2 24.7 26.2 24.3

continued on next page

53

Table 3.12.: continued

1: Rock→Ya+Ph 2: Du+178→CSDN 3: CS+178→Dudu

Algorithm end dir dis end dir dis end dir dis

ws-mc1-g 27.7 28.7 26.7 28.8 29.4 27.4 28.1 28.8 26.8

ws-mc2-g 25.8 27.2 25.1 25.9 26.8 24.8 26.0 27.0 25.0

ws-mc3-g 23.7 25.3 23.3 24.3 25.4 23.4 24.8 26.0 24.0

ws-mc4-g 21.8 23.8 21.8 23.4 24.9 22.9 24.2 25.7 23.7

ws-mc5-g 21.1 23.2 21.3 23.5 25.1 23.2 24.6 26.2 24.2

ws-mc6-g 21.3 23.3 21.4 25.3 26.8 24.9 25.9 27.4 25.4

ws-mc1-ag 27.6 28.7 26.6 28.7 29.3 27.3 28.0 28.7 26.7

ws-mc2-ag 25.8 27.1 25.0 25.8 26.7 24.7 26.0 27.0 25.0

ws-mc3-ag 23.6 25.3 23.3 24.2 25.3 23.3 24.7 26.0 24.0

ws-mc4-ag 21.7 23.7 21.8 23.3 24.8 22.8 24.1 25.6 23.7

ws-mc5-ag 21.0 23.1 21.2 23.4 25.0 23.1 24.6 26.1 24.2

ws-mc6-ag 21.3 23.3 21.3 25.1 26.7 24.7 25.9 27.3 25.3

ws-mc1-gts 27.7 28.7 26.6 28.7 29.4 27.3 28.0 28.7 26.7

ws-mc2-gts 25.8 27.1 25.1 25.8 26.7 24.7 25.9 27.0 24.9

ws-mc2-gts 23.6 25.3 23.3 24.2 25.3 23.3 24.7 26.0 24.0

ws-mc2-gts 22.0 23.9 22.0 23.5 24.9 23.0 24.3 25.8 23.9

ws-mc2-gts 22.5 24.4 22.5 24.7 26.1 24.3 26.8 28.0 26.1

tb-mc1-mc1 27.8 28.8 26.7 28.8 29.4 27.3 28.0 28.8 26.7

tb-mc2-mc2 26.2 27.3 25.3 26.2 26.9 24.9 26.4 27.3 25.3

tb-mc3-mc3 24.4 25.7 23.7 24.7 25.6 23.6 25.3 26.4 24.4

tb-mc4-mc4 22.8 24.3 22.3 23.9 25.0 23.0 24.7 26.0 24.0

tb-mc5-mc5 21.9 23.6 21.6 23.5 24.8 22.8 24.4 25.9 23.9

54

(a) Scenario 5: Chin→Ya+Ph: Prob. threshold
graph for comparing template-based models (in-
cluding PCFGW)

(b) Scenario 5: Chin→Ya+Ph: Guess-number
graph. (x, y) denotes 2x guesses cover y portion
of the dataset

(c) Scenario 6: Rock→CSDN: Prob. threshold
graph for comparing template-based models (in-
cluding PCFGW)

(d) Scenario 6: Rock→CSDN: Guess-number
graph. (x, y) denotes 2x guesses cover y portion
of the dataset

Figure 3.7.: Guess number graphs and probability threshold graphs for Scenarios 5, 6.

Table 3.13.: ANLL0.8 results for scenarios 4, 5, 6. end, dir, and dis stand for end-symbol,
direct, and distribution-based normalization, respectively. We highlight the best results
within each scenario.

4: CS+Du→178 5: Chin→Ya+Ph 6: Rock→CSDN

Algorithm end dir dis end dir dis end dir dis

ws-mc-b10 19.3 22.0 20.2 24.8 26.9 25.1 26.4 28.9 27.2

ws-mc-b25 19.4 22.1 20.3 25.4 27.4 25.6 26.6 29.1 27.4

ws-mc1 24.8 25.6 23.7 30.9 31.7 29.9 31.1 31.3 29.6

ws-mc2 22.3 23.5 21.7 29.6 30.5 28.7 29.0 29.5 27.7

ws-mc3 20.8 22.3 20.5 27.2 28.4 26.6 27.8 28.5 26.7

ws-mc4 19.9 21.8 20.0 25.9 27.4 25.7 27.4 28.2 26.6

ws-mc5 19.5 21.6 19.8 26.4 27.8 26.0 27.9 29.0 27.3

continued on next page

55

Table 3.13.: continued

4: CS+Du→178 5: Chin→Ya+Ph 6: Rock→CSDN

Algorithm end dir dis end dir dis end dir dis

ws-mc1-g 24.8 25.6 23.8 30.9 31.7 29.9 31.1 31.4 29.6

ws-mc2-g 22.4 23.5 21.7 29.6 30.6 28.7 29.0 29.6 27.8

ws-mc3-g 20.9 22.4 20.6 27.2 28.5 26.7 27.9 28.5 26.8

ws-mc4-g 20.0 21.8 20.0 25.8 27.4 25.6 27.4 28.2 26.6

ws-mc5-g 19.5 21.6 19.8 25.9 27.4 25.6 27.7 28.8 27.1

ws-mc6-g 20.2 22.3 20.5 26.3 27.5 25.7 30.0 31.2 29.4

ws-mc1-ag 24.8 25.6 23.7 30.9 31.7 29.8 31.0 31.3 29.5

ws-mc2-ag 22.3 23.5 21.6 29.6 30.5 28.7 28.9 29.4 27.7

ws-mc3-ag 20.8 22.3 20.5 27.2 28.4 26.6 27.8 28.4 26.7

ws-mc4-ag 19.9 21.8 20.0 25.8 27.4 25.6 27.3 28.1 26.5

ws-mc5-ag 19.4 21.6 19.8 25.8 27.3 25.5 27.5 28.7 27.0

ws-mc6-ag 20.0 22.2 20.5 26.2 27.5 25.7 29.9 31.0 29.3

ws-mc1-gts 24.8 25.6 23.7 30.9 31.7 29.9 31.1 31.3 29.6

ws-mc2-gts 22.3 23.5 21.7 29.6 30.5 28.7 29.0 29.5 27.7

ws-mc2-gts 20.8 22.4 20.5 27.3 28.5 26.7 27.8 28.5 26.8

ws-mc2-gts 20.0 21.8 20.0 26.9 28.3 26.6 27.8 28.6 27.0

ws-mc2-gts 19.6 21.7 19.9 30.2 31.0 29.2 30.4 31.3 29.6

tb-mc1-mc1 24.9 25.6 23.7 30.9 31.7 29.9 31.0 31.3 29.5

tb-mc2-mc2 22.8 23.8 22.0 29.8 30.7 28.9 29.1 29.5 27.8

tb-mc3-mc3 21.6 22.8 21.0 27.8 28.8 27.0 27.9 28.5 26.8

tb-mc4-mc4 20.9 22.4 20.5 26.4 27.6 25.8 27.1 27.9 26.2

tb-mc5-mc5 20.4 22.1 20.3 25.8 27.2 25.4 26.8 27.8 26.1

ANLL Table. ANLL0.8 values for all six scenarios are given in Table 3.12 and Table 3.13.

In the tables, end, dir, and dis stand for end-symbol, direct, and distribution-based normal-

56

ization, respectively. We highlight the best results within each scenario. Using this format,

we can compare more models directly against each other, with the limitation that these

results need to be interpreted carefully. Some models assign probability 0 to some pass-

words; their ANLLs are not well-defined and thus not included. Results for those models

are presented using graphs.

Many observations can be made from the tables. First, backoff with end-symbol nor-

malization is gives the best result overall, as it produces results that are among the best

across all scenarios. Especially, for Scenario 1, which we consider to be the most impor-

tant one, it produces the best overall result. Several other models perform quite close. It

seems that using a Markov chain of an order that is high enough, but not too high, and with

some ways to deal with overfitting, would perform reasonably well.

Second, for most other models, distribution-based normalization performs the best, fol-

lowed by end-symbol normalization. Direct normalization, which was implicitly used in

the literature, performs the worst. Yet, for backoff, end-symbol normalization performs the

best. There seems to exist some synergy between backoff and end-symbol normalization.

One possible reason is that as backoff uses variable-length Markov chains, it can recognize

long common postfixes of passwords so that it can end a password appropriately, instead of

depending only on the length of passwords for normalization. With fixed-length Markov

chains, one does not have this benefit.

Third, on the effect of smoothing, Good-Turing smoothing performs unexpectedly

poorly, especially for higher-order Markov chains; it seems that they tend to cause more

overfitting, a phenomenon also shown in Figure 3.3(a) and 3.5(a). For higher orders

Markov models, add-δ smoothing, grouping, adapted grouping, and template-based models

all perform similarly; they are just slightly worse than backoff with end-symbol normaliza-

tion.

Fourth, for most models, the Markov chain order that gives the best results varies from

scenario to scenario. For Scenario 1, order-5 appears to be the best. Yet for the scenarios

with Chinese datasets (2, 3), order 4 generally outperform order 5. One obvious reason is

the slightly smaller training dataset. Also, because the Chinese datasets use digits much

57

more than letters, they contain even non-digit sequences for training, resulting in better

performance for lower-order Markov chains. Again, this demonstrates the benefit of using

a variable-order model like backoff, since one does not need to choose the appropriate

order.

Fifth, comparing the pair of scenarios 5 and 1, and the pair of 6 and 2, one can see a

difference in ANLL0.8 of about 2 to 4 in each case; this demonstrates the importance of

training on a similar dataset.

Sixth, comparing scenarios 2, 3, and 4, we can see that 178 is clearly the weakest pass-

word dataset among the 3, which is corroborated by evidence from Table 3.5 and Table 3.9.

In 178, 55% of passwords are those appearing more than 5 times (compared to 30% and

25% for CSDN and Duduniu); close to 21% are length 6 (compared to 1.3% and 9%); 48%

are all digits (compared to 45% for CSDN and 19.5% for Duduniu; recall that passwords

in CSDN tend to be significantly longer).

3.6 Conclusions

In summary, we make the following contributions in this chapter:

• We introduce the methodology of using probability-threshold graphs for password

research, which has clear advantages over the current standard approach of using

guess-number graphs for type-1 password research. They are much faster to construct

and also gives information about the passwords that are difficult to crack. In our

experiments, it took about 24 hours to generate 1010 passwords for plotting guess-

number graphs; which cover between 30% and 70% in the dataset. On the other

hand, it took less than 15 minutes to compute probabilities for all passwords in a size

107 testing dataset, giving strength information of all passwords in the dataset. We

note, however, that for type-2 research, in which one compares different password

models, one needs to be careful to interpret results from probability-threshold graphs

and should use guess-number graphs to corroborate these results.

58

• We introduce knowledge and techniques from the rich literature in n-gram models

for statistical language modeling into password modeling, as well as identifying new

issues that arise from modeling passwords. We also identify a broad design space for

password models.

• We conduct a systematic evaluation of many password models, and make a number

of findings. In particular, we show that the PCFGW model, which has been assumed

to be the state of the art and is widely used in research, does not perform as well as

whole-string Markov models.

59

4. IMPROVING PASSWORD POLICIES AND PRACTICE USED

BY WEBSITES

In Chapter 3, we have introduced metrics comparing probabilistic password models. Given

a model that can accurately measure the strength of passwords, a natural question raised is

how to apply the model in practice. In particular, how can the model be used to help users

choose strong passwords.

In this chapter, we address the question: How to best check weak passwords? We model

different password strength checking methods as Password Ranking Algorithms (PRAs),

and introduce two methods for comparing different PRAs: the β-Residual Strength Graph

(β-RSG) and the Normalized β-Residual Strength Graph (β-NRSG). In our experiments,

we find some password datasets that have been widely used in password research con-

tain many problematic passwords that are not naturally created. We develop techniques to

cleanse password datasets by removing these problematic accounts. We then apply the two

metrics on cleansed datasets and show that several PRAs, including the dictionary-based

PRA, the Markov Models with and without backoff, have similar performances. If the size

of PRAs are limited in order to be able to be transmitted over the internet, a hybrid method

combining a small dictionary of weak passwords and a Markov model with backoff with a

limited size can provide the most accurate strength measurement.

4.1 Introduction

Password-based authentication is the most widely used authentication mechanism. De-

spite countless attempts at designing mechanisms to replace it, password-based authenti-

cation appears more widely used and firmly entrenched than ever [1, 28, 62]. One major

weakness of password-based authentication is the inherent tension between the security

and usability of passwords [2, 3]. More precisely, secure passwords tend to be difficult to

60

memorize (i.e., less usable) whereas passwords that are memorable tend to be predictable.

Generally individuals side with usability of passwords by choosing predictable and weak

passwords [2, 4–7].

To deal with this, the most common approach is to forbid the use of weak passwords, or

give warnings for passwords that are “somewhat weak”. This approach requires an effective

way to identify weak passwords. One way is to use password composition policies, i.e.,

requiring passwords to satisfy some syntactical properties, e.g., minimum length and/or

categories of characters. An alternative is to use proactive password checkers that are based

on a weak password dictionary [32–34]. More recently, probabilistic password models,

which work by assigning a probability to each password, were introduced [17–19].

How to best check weak passwords is still an open question. A study in 2014 [21] ex-

amined several password meters in use at popular websites and found highly inconsistent

strength estimates for the same passwords using different meters. The report did not an-

swer the question of which meter is the best, nor what methods should be used to compare

them. Designing an effective password meter requires solving two problems: (1) How to

accurately assess the strength of passwords chosen by the users; and (2) How to commu-

nicate the strength information to and interact with the users to encourage them to choose

strong passwords. These two problems are largely orthogonal. In this chapter we focus on

solving the first problem.

We model different password strength assessing methods (including composition poli-

cies) as Password Ranking Algorithms (PRAs), which assign a rank to every password.

One state-of-the-art method for comparing PRAs is the Guess Number Graph (GNG),

which plots the number of guesses vs. the percentage of passwords cracked in the test

dataset. However, GNG measures only the total density of the uncracked passwords, but not

their distribution, which is critical in assessing the effectiveness to defend against guess-

ing attacks after deploying the PRA. To address this limitation of GNG, we propose the

β-Residual Strength Graph (β-RSG), which measures the strength of the β most common

passwords in the test dataset, after forbidding the weakest passwords identified by a PRA.

When a PRA forbids a large number of passwords that users are extremely unlikely to use,

61

it performs poorly under β-RSG. To limit the influence of these passwords, we also propose

Normalized β-Residual Strength Graph (β-NRSG), which ignores how passwords that do

not appear in the testing dataset are ranked. β-NRSG also has the advantage that we can

use it to evaluate blackbox password strength services for which one can query the strength

of specific passwords, but cannot obtain all weak passwords.

Surprisingly, we observe that all PRAs perform significantly worse on password

datasets from Chinese websites than on datasets from English websites, because some of

the most frequent passwords in the testing dataset are not recognized as weak passwords

by all the PRAs. Further investigation reveal that these passwords are in all likelihood due

to “fake accounts”, possibly created by site administrators to artificially boost the number

of registered users. The evidence for this includes that the user IDs associated with such

passwords look suspicious. These suspicious IDs fall into two categories: appending a

counter to a fixed prefix; and a large number of fixed-length strings that apparently look

random. While these datasets have been used in previous papers, we are the first to report

such fake accounts. We develop a data cleansing technique to identify and remove such

“fake” accounts in order to obtain a more accurate evaluation.

Our evaluation is based on the cleansed password datasets. We have compared the

Probabilistic Context-Free Grammar (PCFG) [18] method, Markov models with and with-

out backoff [17, 19], blacklists based on training datasets, the combined method proposed

by Ur et al. [22], password composition policies, as well as two versions of zxcvbn [23]. We

also show how GNG, β-RSG, and β-NRSG differ. We find that when one places no limit

on the mode size, several methods including the blacklist approach, Markov Models, and

the Combined method have similar performance. When one wants to check the strength of

passwords on the client side, without sending passwords over the network, the model size

must be limited. We find that a blacklist with a limited size still provide the most accurate

strength measurement for the most popular passwords. However, only a limited number of

passwords are covered.

We then propose a new client-end PRA that uses a hybrid method; it uses a small

blacklist to assess the strength of most popular passwords, and evaluate the other passwords

62

based on a limited size Markov model with backoff. We show that the hybrid method

inherits the advantages of both methods, and consistently outperform the other client-end

PRAs.

4.2 How to Compare PRAs

In this section, we propose metrics evaluating password ranking algorithms (PRAs).

At the core of any password strength meter is a Password Ranking Algorithm (PRA),

which is a function that sorts passwords from weak (common) to strong (rare).

Definition 4.2.1 (Password Ranking Algorithm (PRA)) Let P denote the set of all al-

lowed passwords. A Password Ranking Algorithm r : P → Rnk is a function that maps

each password to a ranking in Rnk, where Rnk = {1, . . . , |P|} ∪ {∞}.

Intuitively, a password with rank 1 means that it is considered to be one of the weakest

password(s); and a password with rank ∞ means that it is considered to be strong enough

to not need a ranking. The above definition accommodates PRAs that rank only a subset of

all passwords as well as PRAs that rank some passwords to be of equal strength. A pass-

word composition policy can be modeled as a PRA that assigns a rank of 1 to passwords

that do not satisfy the policy, and ∞ otherwise. Probabilistic password models that assign

a probability to each password can be converted into a PRA by sorting, in decreasing order,

the passwords based on their probabilities in the model. Arguably, this captures the essen-

tial information for determining the strengths of passwords, since both cracking passwords

and choosing which passwords to forbid should be done based on the ranking.

4.2.1 Guess Number Graph (GNG)

The state-of-the-art method for comparing PRAs is the Guess Number Graph (GNG),

which plots the number of guesses vs. the percentage of passwords cracked in the dataset.

A point (x, y) on a curve means that y percent of passwords are included in the first x

guesses. When evaluating PRAs for their effectiveness in cracking passwords, GNG is an

63

ideal choice. For the same x value, a PRA that has a higher y value is better. However,

one limitation of GNG is that it does not convey information regarding the distribution of

uncracked passwords. For example, suppose that two PRAs r1 and r2 both cover 40% of

passwords after making 106 guesses. Under r1 there remain uncovered 5 passwords each

appearing 200 times and a large number of passwords that appear just once. And under r2

there remain 500 passwords each appearing 2 times together with a similarly large num-

ber of passwords that appear just once. In this case, if we decide to forbid the first 106

passwords that are considered weak and an adversary is limited to 5 guess attempts per

account (e.g., because of rate limiting), the adversary can successfully break into 1,000

accounts based on r1, but only 10 accounts based on r2. Obviously, r1 is worse than r2,

even though they look the same under the GNG. Therefore, GNG is not appropriate for

the effectiveness of using a PRA for identifying and forbidding the usage of weak pass-

words, especially since the primary objective of checking password strength is to defend

against online guessing attacks, as offline attacks are best defended against by improving

site security and by using salted, slow cryptographic hash functions when storing password

hashes.

4.2.2 The β-Residual Strength Graph (β-RSG)

To deal with the limitation of GNG, we propose to use the β-Residual Strength Graph.

Each PRA r corresponds to a curve, such that a point (x, y) on the curve means that after

forbidding what r considers to be the x weakest passwords, the strength of the remaining

passwords is y. For the choice of y, we use the effective key-length metric corresponding

to the β-success-rate, proposed by Boztaş [29] and Bonneau [28], to measure the strength

of the probabilities of the remaining passwords, which we call the residual distribution.

More specifically, given a password dataset D, we use pD(w) to denote a password

w’s frequency in D, i.e., pD(w) =
number of times w occurs in D

|D| . Given a PRA r and a

64

number x, let wi be the ith most frequent password in D that is not among the x weakest

passwords according to r. Then the β-Residual Strength is computed as:

y = lg

(

β
∑β

i=1 pD(wi)

)

,

Intuitively, β-RSG provides a measure of the strength of the remaining weakest passwords

after a certain number of weak passwords according to r are forbidden. It translates the

total frequencies of the β unremoved weakest passwords into a bit-based security metric,

which can be viewed as finding the entropy of a uniform distribution where the probability

of each element equals that of the average of these β passwords.

We need to choose appropriate values for β. In [28], λ̃10 is used, which corresponds

to an online attack setting where 10 guesses are allowed, which was recommended by

usability studies [30]. We adapt the setting.

4.2.3 The Normalized β-Residual Strength Graph (β-NRSG)

Password composition policies (such as the ones that require mixing letters with digits

and special symbols), when viewed as PRAs, tend to perform poorly under the RSG, be-

cause they rule out a large number of passwords, e.g., all passwords that consist of only

letters. This observation demonstrates that one weakness of password composition policies

is that they prevent some strong passwords (such as unpredictable passwords consisting of

only letters) from being used. However, one may argue that this criticism is not completely

fair to them. The cost of forbidding a strong (i.e., rarely used) password is that users who

naturally want to use such a password cannot do so, and have to choose a different pass-

word, which they may have more trouble remembering. However, if users are extremely

unlikely to choose the password anyway, then there is very little cost to forbid it.

We thus propose a variation of RSG, which “normalizes” a RSG curve by considering

only passwords that actually appear in the testing dataset D. More specifically, a point

(x, y) on the curve for a PRA r means that after choosing a threshold such that x pass-

65

words that appear in D are forbidden, the residual strength is y. We call this variation the

Normalized β-Residual Strength Graph (β-NRSG). A NRSG curve can be obtained from

a corresponding RSG curve by shrinking the x axis; however, different PRAs may have

different shrinking effects, depending on how many passwords that are considered weak

by the PRAs do not appear in the testing dataset. Under β-NRSG, PRAs are not penalized

for rejecting passwords that do not appear in the testing dataset. A PRA would perform

well if it considers the weak (i.e., frequent) passwords in the dataset to be weaker than the

passwords that appear very few times in it. β-NRSG also has the advantage that we can

use it to evaluate blackbox password strength services for which one can query the strength

of specific passwords, but cannot obtain all weak passwords. We suggest using both RSGs

and NRSGs when comparing PRAs.

4.2.4 Client versus Server PRAs

A PRA can be deployed either at the server end, where a password is sent to a server

and has its strength checked, or at the client end, where the strength checking is written in

JavaScript and executed in the client side inside a browser. PRAs deployed at the server end

are less limited by the size of the model. On the other hand, deploying PRAs on the client

side increases confidence in using them, especially when password strength checking tools

are provided by a third party. Thus it is also of interest to compare the PRAs that have a

relatively small model size, and therefore can be deployed at the client end. We say a PRA

is a Client-end PRA if the model size is less than 1MB, and a Server-end PRA otherwise.

4.2.5 PRAs We Consider

The PRAs that are considered in this chapter are listed in Table 4.1. In Client-end PRAs,

the size of zxcvbn1, zxcvbn2 are 698KB and 821KB correspondingly. For password models

66

Table 4.1.: Server-end PRAs and Client-end PRAs. Xc means reduced-size version of
model X in order to be deployed at the client side.

Server-end Markov Model [19], Markov Model with backoff, Probabilistic Context-
free Grammar [18], Google API, Blacklist, Combined [22]

Client-end zxcvbn1 [23], zxcvbn2 [23], Blacklistc, Markov Modelc, Markov Model
with backoffc, Hybrid

whose model sizes are adjustable, we make the model size to be approximately 800KB to

have a fair comparison.

PCFG. In the PCFG approach [18], one divides a password into several segments by

grouping consecutive characters of the same category (e.g., letters, digits, special symbols)

into one segment. Each password thus follows a pattern, for example, L7D3 denotes a

password consisting of a sequence of 7 letters followed by 3 digits. The distribution of

different patterns as well as the distribution of digits and symbols are learned from a training

dataset. PCFG chooses words to instantiate segments consisting of letters from a dictionary

where all words in the dictionary are assumed to be of the same probability. The probability

of a password is calculated by multiplying the probability of the pattern by the probabilities

of the particular ways the segments are instantiated.

Markov model. N-gram models, i.e., Markov chains, have been applied to pass-

words [19]. A Markov chain of order d, where d is a positive integer, is a process that

satisfies

P (xi|xi−1, xi−2, . . . , x1) = P (xi|xi−1, . . . , xi−d)

where d is finite and x1, x2, x3, . . . is a sequence of random variables. A Markov chain with

order d corresponds to an n-gram model with n = d+ 1.

We evaluate 5-gram Markov Model (MC5), as recommended in Chapter 3, within

Server-end PRAs setting. In order to fit the Markov Model into a Client-end PRA, if we

store the frequency of each sequence in a trie structure, the leaf level contains 95n nodes,

where 95 is the total number of printable characters. To limit the size of Markov model to

67

be no larger than 1MB, n should be less than 4. We use 3-order Markov Model MC3 in our

evaluation.

Markov model with backoff. The model was proposed in Chapter 3. The intuition of

the model is that if a history appears frequently, then we would want to use that to estimate

the probability of the next character. In this model, one chooses a threshold and stores all

substrings whose counts are above the threshold, and use the frequency of these substrings

to compute the probability. Therefore, the model size of a Markov Model with backoff

depends on the frequency threshold selected. In this chapter, we consider two sizes of

Markov Model with backoff by varying frequency threshold. We first pick a relatively

small threshold 25 (MCB25), as suggested in Chapter 3, to construct a Server-end PRA.

Table 4.2.: Model size of Markov models with backoff using different frequency threshold.

Train
Frequency Threshold

25 200 500 1000 1500 2000
RockYou 18M 3.4M 1.7M 1M 712K 556K
Duduniu 7.8M 1.5M 604K 368K 268K 200K

For Client-end PRAs, similar to the Markov model, we record the model in a trie struc-

ture, where each node contains a character and the corresponding count of the sequence

starting from the root node to the current node. We measure the size of data after serializ-

ing the trie into JSON format. Table 4.2 shows the size of the models trained on Rockyou

and Duduniu dataset with different frequency thresholds. The size of the Markov Models

with backoff when trained on Duduniu dataset is significantly smaller than that of models

trained on the Rockyou dataset. This is primarily due to the difference in character distribu-

tion between English and Chinese users. English users are more likely to use letters while

Chinese users are more likely to use digits. As a result, the most frequent sequences in

Rockyou are mainly constructed by letters while those in Duduniu are mainly constructed

by digits. The difference in the size of the models comes from the different search space

68

in letters and digits. In order to approximate the size of the model to that of zxcvbn, we

choose MCB1500 for English datasets and MCB500 for Chinese datasets.

Dictionary-based Blacklist. Dictionary-based blacklists for filtering weak passwords

have been studied for decades, e.g., [32–34]. Some popular websites, such as Pinterest

and Twitter, embed small weak password dictionaries, consisting of 13 and 401 passwords

respectively, on their registration pages. We use a training dataset to generate the blacklist

dictionary. The order of the passwords follows the frequency of passwords in the training

dataset in a reversed order. Assuming each password contains 8 characters on average, a

dictionary with 100,000 passwords is approximately 900KB. Such blacklist (Blacklistc) is

used in Client-end PRAs settings.

Combined Method. Ur et al. [22] proposed Minauto metric, which is the minimum guess

number for a given password across multiple automated cracking approaches. We imple-

ment a password generator which outputs passwords in the order of their corresponding

Minauto. Passwords with smaller Minauto are generated earlier. In the Combined PRA,

the rank of a password is the order of the passwords generated. In this chapter, Minauto is

calculated by combining 4 well-studied approaches: Blacklist, PCFG, Markov, and Markov

with backoff.

Google Password Strength API. Google measures the strength of passwords by assigning

an integer score ranging from 1 to 4 when registering on their website. We find that the

score is queried via an AJAX call and the API is publicly available1. We use this service to

assess the strength of passwords. We are not able to generate passwords and get the exact

ranking as the underlying algorithm has not been revealed.

Zxcvbn Version 1 Zxcvbn is an open-source password strength meter developed by

Wheeler [23]. It decomposes a given password into chunks, and then assigns each chunk an

estimated “entropy”. The entropy of each chunk is estimated depending on the pattern of

the chunk. The candidate patterns are “dictionary”, “sequence”, “spatial”, “year”, “date”,

“repeat” and “bruteforce”. For example, if a chunk is within the pattern “dictionary”, the

1https://accounts.google.com/RatePassword

69

entropy is estimated as the log of the rank of word in the dictionary. Additional entropy is

added if uppercase letters are used or some letters are converted into digits or sequences

(e.g. a⇒@). There are 5 embedded frequency-ordered dictionaries: 7140 passwords from

the Top 10000 password dictionary; and three dictionaries for common names from the

2000 US Census. After chunking, a password’s entropy is calculated as the sum of its

constituent chunks’ entropy estimates.

entropy(pwd) =
∑

entropy(chunk i)

A password may be divided into chunks in different ways, Zxcvbn finds the way that yields

the minimal entropy and uses that.

Zxcvbn Version 2 In October 2015, a new version of zxcvbn was published. Zxcvbn2

also divides a password into chunks, and computes a password’s strength as the “minimal

guess” of it under any way of dividing it into chunks. A password’s “guess” after being

divided into chunks under a specific way is:

l!×
l
∏

i=1

(chunki.guesses) + 10000l−1

where l is the number of the chunks. The factorial term is the number of ways to order l

patterns. The 10000(l−1) term captures the intuition that a password that has more chunks

are considered stronger. Another change in the new version is that if a password is decom-

posed into multiple chunks, the estimated guess number for each chunk is the larger one

between the chunks’ original estimated guess number and a min guess number , which

is 10 if the chunk contains only one character or 50 otherwise. While these changes are

heuristic, our experimental results show these changes cause significant improvements un-

der our methods of comparison.

There are some other subtle changes, such as one built-in dictionary is replaced. For

consistency, in this chapter, we use the original dictionaries in both two versions.

70

Table 4.3.: Examples of differences in two versions of zxcvbn.

Password zxcvbn1 zxcvbn2

password1 2.0 8.8
passwordsmith 0.0 13.8

Table 4.3 illustrates the penalty in entropy estimation for passwords which consist of

more than one chunk. The estimated entropy for such passwords significantly increase in

the second version of zxcvbn. Actually, password1 is decomposed as password and

1 in zxcvbn1 while viewed as only one chunk in zxcvbn2. If decomposed into 2 chunks in

zxcvbn2, the password’s estimated entropy is even larger.

Hybrid Method Observing the promising performance of dictionary methods and the

limited number of passwords covered (see Chapter 4.4.2 for details), we propose a hybrid

PRA which combines a blacklist PRA with a backoff model. In the hybrid PRA, we reject

passwords belonging to a blacklist dictionary or with low scores using the backoff model.

To make the size of the PRAs consistent, we further limit the size for both dictionary and

backoff model. We chose to use a dictionary containing 30 000 words, which takes less

than 300KB. In order to keep the total size of the model consistent, we used MCB2000 and

MCB1000 for English datasets and Chinese datasets, respectively.

4.3 Data Cleansing

Poor Performance of PRAs on Chinese Datasets. In our evaluation comparing PRAs,

we observe that almost all PRAs perform poorly on some Chinese dataset.

Figure 4.1 shows the results of an β-Residual Strength Graph(β-RSG) evaluation on

Xato (an English dataset) and 178 (a Chinese dataset). A point (x, y) on a curve means if

we want to reject the top x passwords from a PRA, the residual strength is y. It is clear

that the residual strength for 178 is much lower than that of Xato. In 178, even if 1 million

passwords are rejected, the residual strength is around or lower than 8 for all PRAs we

examined, which means the average of the remaining top 10 passwords’ probability is as

71

(a) Xato, β = 10 (b) 178, β = 10

Figure 4.1.: β-Residual Strength Graph(β-RSG) on original Xato and 178 datasets. A point
(x, y) on a curve means if we want to reject the top x passwords from a PRA, the strength
of the remaining passwords is y.

high as 1
28 ≈ 0.39%. We find that 12 out of the top 20 passwords in 178 are not among the

first million weakest passwords for any PRA. This led us to investigate why this occurs.

Evidence of Suspicious IDs. We find that the dataset contains a lot of suspicious account

IDs which mostly fall in to two patterns: (1) Counter: a common prefix appended by a

counter; (2) Random: a random string with a fixed length. Table 4.4 lists some suspicious

accounts sampled from the 178 dataset, which we believe were created either by a single

user in order to benefit from the bonus for new accounts, or by the system administrator, in

order to artificially boost the number users on the sites. Either way, such passwords are not

representative of actual password choices and should be removed.

Table 4.4.: Examples of problematic IDs in 178 dataset.

Password Counter IDs (sampled) Random Ids (sampled)
zz12369 badu1; badu2; . . .; badu50 vetfg34t; gf8hgoid; vkjjhb49;

5t893yt8; 9y4tjreo; 09rtoivj;
kdznjvhb

qiulaobai qiujie0001; qiujie0002;
. . .; qiujie0345

j3s1b901; ul2c6shx; a3bft0b8;
wzjcxytp; 7fmjwzg2; 0ypvjqvo

123456 1180ma1; 1180ma2; . . .;
1180ma49

x2e03w5suedtu; 7kjwd-
dqujornc; inrrgjhm2dh8r;
3u2lnalg91u9i;

72

Table 4.5.: Number of accounts removed after identifying problematic IDs.

Dataset Yahoo Xato Duduniu CSDN 178

Removed 232 9577 9796 69317 1639868
Total 434131 9148094 7304316 6367411 8434340

Suspicious Account Detection We detect and remove suspicious passwords (accounts)

using the user IDs and email addresses. Yahoo and Duduniu datasets only have email

address available. We first remove the email provider, i.e., the postfix starting from @, and

then, treat the prefix of email addresses as account IDs. Rockyou and Phpbb datasets are

excluded in the following analysis, as we don’t have access to user IDs/emails.

We identify Counter IDs utilizing Density-based Spatial Clustering of Applications

with Noise (DBSCAN) [63]. DBSCAN [63] is a density-based clustering algorithm. It

groups together points that are closely packed together. DBSCAN requires two parameters:

ϵ and the minimum number of points required to form a dense region minPts. It starts

with an arbitrary starting point that has not been visited. This point’s ϵ−neighborhood is

retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the

point is labeled as noise. Note that this point might later be found in a sufficiently sized

ϵ−environment of a different point and hence be made part of a cluster. If a point is found

to be a dense part of a cluster, its ϵ−neighborhood is also part of that cluster. Hence, all

points that are found within the ϵ−neighborhood are added, as is their own ϵ−neighborhood

when they are also dense. This process continues until the density-connected cluster is

completely found. Then, a new unvisited point is retrieved and processed, leading to the

discovery of a further cluster or noise.

In our case, each ID is viewed as a point, and the distance between two IDs are measured

by the Levenshtein distance, which measures the minimum number of single-character

edits. Given a password, we first extract all the corresponding IDs in the dataset, and then

generate groups of IDs, where the IDs in the same group share a common prefix with length

at least 3. The grouping is introduced to reduce the number of points to be clustered, as

calculating pairwise distance of a large number of data points is slow. Next, we apply

73

DBSCAN with ϵ = 1 and minPts = 5 to each group. Finally, we label all IDs in clusters

with size at least 5 as suspicious.

Random IDs are identified based on probabilities of IDs, which are calculated utilizing

a Markov Model. Intuitively, Random IDs are ids whose probabilities are “unreasonably

small”. Observing that Random IDs are generally with the same length, for a fixed pass-

word, we propose to analyze the corresponding IDs with different lengths separately.

(a) English datasets (b) Chinese datasets

Figure 4.2.: CDF of − log10 p for all IDs with length 10 in all datasets. p is the probability
of IDs. The dashed lines are CDF of normal distribution with the same mean and standard
deviation

Figure 4.2 shows CDF of − log10 p of all IDs with length 10, which is the most fre-

quently chosen ID length, from the 5 datasets containing IDs. For each dataset, we calculate

probabilities of IDs utilizing 5-order Markov Model trained on itself. The dashed lines in

the graph illustrate CDF of normal distribution with the same mean and standard deviation

as the corresponding distribution. The figures show that except 178 dataset, the distribu-

tions of − log10 p fits relatively well with the corresponding normal distributions, especially

for English datasets. The difference between the distribution from Chinese datasets, 178 in

particular, and the corresponding normal distribution is larger, we believe the probability

distribution of IDs in the dataset is biased by the problematic IDs. The graph indicates that

the probabilities of IDs can be approximated by lognormal distribution.

Therefore, we perform “fake” account removal for IDs with the same length based on

− log p, where p is probabilities of IDs. Note that in a normal distribution, nearly all values

are within three standard deviations of the mean (three-sigma rule of thumb), we therefore,

74

believe µ + 3σ is a reasonable upper-bound for “real” IDs, where µ and σ are mean and

standard deviation of − log p, respectively.

In addition, if most of the IDs corresponding to a high-frequency password P in dataset

D are detected as suspicious, and P does not appear in password datasets other than D, we

remove all accounts associated with the P .

Table 4.6.: Top 10 passwords with most accounts removed from English datasets. pwdr/o
means the original count of pwd in the dataset is o, and r accounts are removed.

Rank Yahoo Xato

1 1a1a1a1b131/131 klaster1705/1705
2 welcome101/437 iwantu885/885

3 - 1232323q450/450

4 - galore393/393
5 - wrinkle1243/243

6 - sex4me229/229
7 - Mailcreated5240183/183

8 - butler182/182
9 - meridian180/180

10 - finish178/178

Table 4.7.: Top 10 passwords with most accounts removed from Chinese datasets. pwdr/o
means the original count of pwd in the dataset is o, and r accounts are removed.

Rank Duduniu Csdn 178
1 aaaaaa3103/10838 dearbook44636/44636 qiulaobai57963/57963
2 1111111203/21763 xiazhili3649/3649 wmsxie12348258/49162

3 1234561076/93259 123456782222/212743 12345647536/261692

4 9958123461/3981 1234567891482/234997 w2w2w235762/35762

5 a5633168457/457 111111111301/76340 wolf863731909/31909

6 woshi912416/416 code89251285/1285 550838625715/25715

7 5ggggg328/328 ms0083jxj1268/1268 wpc00082122733/22733

8 liuchang319/2140 05962514787910/910 11111120564/122512

9 jkljkljkl0281/346 google250559/559 589703719266/19266

10 34537058gu275/275 lilylily395/765 js7777718835/18835

Results of Cleansing. Table 4.5 lists the number of suspicious accounts removed. In

general, the suspicious accounts count for a small portion in English and Duduniu datasets.

75

However, the number of suspicious accounts detected in CSDN and 178 datasets are sig-

nificantly larger. In 178 dataset, about one fifth accounts are suspicious. Table 4.6 and

Table 4.7 lists the top 10 passwords with most accounts removed in each dataset. Despite

the accounts correspond to uncommon passwords, a significant number of accounts with

popular passwords, such as 123456, are removed as well. Evidences suggest that some

datasets contain many waves of creation of suspicious accounts, some using common pass-

words such as 123456, as illustrated in Table 4.4.

4.4 Experimental Results

4.4.1 Experimental Datasets and Settings

We evaluate PRAs on seven real-world password datasets, including four datasets from

English users, Rockyou [50], Phpbb [50], Yahoo [50], and Xato [64], and three datasets

from Chinese users, CSDN [60], Duduniu, and 178.

Some PRAs require a training dataset for preprocessing. For English passwords, we

train on Rockyou and evaluate on (1) Yahoo + Phpbb; (2) Xato, as Rockyou is the largest

password dataset available. We combine Yahoo and Phpbb datasets because the size of

them are relatively small. For Chinese passwords, the evaluation was conducted on any

pair of datasets. For each pair, we trained PRAs on one dataset and tested on the other. We

present results of using Duduniu as the training dataset.

Probabilistic Password Models. For all probabilistic password models we evaluate, we

generate 108 passwords following the descending order of probabilities. The order of the

password generated is essentially the ranking of the password in the corresponding PRA.

Blacklist PRAs. We directly use the training dataset as blacklist. Namely, in the PRA,

the ranking of a password is the order of its frequency in the training dataset. We vary the

76

size of blacklist by removing the lowest-rank passwords in order to adjust the number of

passwords rejected.

Zxcvbn Password Generation. Zxcvbn was designed to evaluate password strength

only. We implemented a password generator following the logic, which takes an input as

the maximum entropy, and generates all passwords whose entropy is less than that value.

The password generation is a recursive depth-first search process. We start from an empty

string. In each iteration, we append a chunk to the current string. If the current entropy is

less than the maximum entropy allowed, we record the password, and continue the recur-

sion process. Note that we might duplicated generate passwords as each password might

have multiple ways to be decomposed into patterns. Therefore, after the password gen-

eration, we conduct a further post-processing step. If a password appears multiple times,

we keep the one with the lowest entropy, and then sort all the unique passwords based on

entropy.

In practice, an integer score from 0 to 4 is calculated from entropy and each value is

assigned with a description (e.g., Weak, Medium, Strong). Passwords with entropy less

than 20 are assigned with a score is 0, and are usually rejected. We first tried to create

all passwords within 20-bits of entropy. However, after 1 billion attempts, we still haven’t

finished generating passwords starting with “mary”, which is the first word in female names

dictionary. The number of passwords considered as weak by zxcvbn is much larger than any

of the known weak password dictionary. Alternatively, we generated 10,478,853 unique

passwords with entropy less than 4 for zxcvbn1, and 1,834,980 unique passwords with

entropy less than 12 for zxcvbn2.

Adapting Zxcvbn to Chinese datasets. Zxcvbn was originally designed for English

speaking users, as it supports English words only [23]. In order to adapt the method for

evaluating Chinese passwords, we create another dictionary for evaluating Chinese pass-

words. We construct such a Chinese dictionary using the Duduniu dataset. For each pass-

word in Duduniu, we first split the word into chunks based on character types, e.g. letters,

digits, and symbols. We then, count the frequencies of letter chunks after turning all letters

into lower cases. Finally, we generate the dictionary by outputing all the letter chunks that

77

contains at least three characters and with frequencies of at least 100 in the descending

order of their frequencies. There are 5,553 words in the dictionary.

Table 4.8.: Top 20 words in the new dictionary for Chinese passwords used in zxcvbn.

Rank Words
1–5 asd woaini wang abc zhang

6–10 liu qwe love qaz yang
11–15 chen zxc aaa wei www
15–20 long lin xiao aaaaaa huang

Table 4.8 lists the first 20 words in the reverse order of their frequencies. Most of the

common words used are the syllables of last names in Chinese, e.g. wang, zhang, liu, etc.

The rest of them are either keyboard patterns or letter sequences. Not many English words

appears in the dictionary. There are many three letter combinations in the dictionary, such

as wjq, ljh, zjh. We believe these are initials of the syllables in Chinese names. There is

no need to construct separate name dictionaries as the most common names are already

covered.

We were able to generate 9,316,973 passwords with entropy less than 3 for zxcvbn1,

and 1,913,061 unique passwords with entropy less than 12 for zxcvbn2.

4.4.2 Experimental Results

Figure 4.3 and Figure 4.4 illustrates the Guess Number Graph (GNG), the β-Residual

Strength Graph (β-RSG), and the Normalized β-Residual Strength Graph (β-NRSG) eval-

uated on Xato and 178 datasets, respectively. The corresponding training datasets are Rock-

you and Duduniu. The evaluation on the other datasets leads to similar results.

Figure 4.3(a) and Figure 4.4(a) show the evaluation of the Guess Number Graph (GNG).

Both Client-end and Server-end PRAs, except Google’s password strength assessment from

which we are not able to generate passwords, are measured. We do not plot the Blacklist

PRA with limited size, as it overlaps with the regular Blacklist PRA. We plot scatter points

for zxcvbn to avoid ambiguity, since it generates multiple passwords with the same entropy.

78

(a) GNG, Xato (b) β-RSG, Xato, β = 10

(c) β-NRSG, Xato, Server-end, β = 10 (d) β-NRSG, Xato, Client-end, β = 10

Figure 4.3.: The Guess Number Graph (GNG), the β-Residual Strength Graph (β-RSG),
and the Normalized β-Residual Strength Graph (β-NRSG) evaluated on Xato dataset.

A point (x, y) on a curve means that y percent of passwords in the test dataset are included

in the first x guesses.

Figure 4.3(b) and Figure 4.4(b) illustrate the β-Residual Strength Graph (β-RSG) for

β = 10. In the evaluation, we vary the number of passwords rejected x in PRAs (i.e.,

passwords ranked as top x are not allowed). In the figures, a point (x, y) on a curve means

if we want to reject top x passwords from a PRA, the residual strength is y. For a fixed x, a

larger y indicates smaller portion of accounts will be compromised within β guesses after

rejecting x passwords. Comparing Figure 4.1(b) and Figure 4.4(b), we can observe that the

performance of PRAs on cleansed data siginificantly boost, which confirm the need of data

cleansing.

79

(a) GNG, 178 (b) β-RSG, 178, β = 10

(c) β-NRSG, 178, Server-end, β = 10 (d) β-NRSG, 178, Client-end, β = 10

Figure 4.4.: The Guess Number Graph (GNG), the β-Residual Strength Graph (β-RSG),
and the Normalized β-Residual Strength Graph (β-NRSG) evaluated on 178 dataset.

The Normalized β-Residual Strength Graphs (β-NRSG) for Server-end PRAs are illus-

trated in Figure 4.3(c) and Figure 4.4(c), and the Client-end PRAs’ evaluation is shown in

Figure 4.3(d) and Figure 4.4(d). In addition to PRAs compared in GNG and β-RSG, we

evaluate the effect of composition policies and Google’s password strength API as well.

Three commonly used composition rules are examined. Composition rule 1 is adapted by

Ebay.com, which ask for at least two types of characters from digits, symbols and letter.

Composition rule 2 is adapted by Live.com, which also ask for two types of characters, but

it further split letters into uppercase and lowercase letters. Composition rule 3 is adapted by

most of the online banking sites (e.g. BOA). At least one digit and one letter are required.

Server-end PRAs. In general, Server-end PRAs (Blacklist, MC5, MCB25, Combined)

outperform Client-end PRAs (Hybrid, MC3, MCB1500/MCB500), which confirms that a

80

PRA’s accuracy grows with the size of its model, and Server-end PRAs are recommended

for websites where security is one of the most important factors, e.g., online banks.

The Google password strength API, which is only evaluated in β-NRSG (Figure 4.3(c)

and Figure 4.4(c)) is the top performer on both English and Chinese datasets. The three

points from left to right in each graph illustrate the effect of forbidding passwords whose

score is no larger than 1, 2, and 3, respectively. In practice, all passwords with score 1 are

forbidden. The high residual strength indicates that most of the high-frequency passwords

are successfully identified.

For the other Server-end PRAs, the three metrics (Figure 4.3(a, b, c) and Figure 4.4(a,

b, c)) all suggest that several PRAs including the Blacklist PRA, the Markov Model with

backoff with a frequency threshold of 25 (MCB25), the 5-order Markov Model, and the

Combined method [22] have similar performance, and they are almost always on the top of

the graphs, which is consistent with the results in the previous works [22, 41].

Client-end PRAs. From Figure 4.3(d) and Figure 4.4(d), it is clear that composition rules

do not help prevent weak passwords, as the corresponding points are far below the other

curves. In addition, the composition rules generally reject more than one tenth of passwords

in the datasets, which might lead to difficulty and confusion in password generation, and is

not appropriate.

Among the other Client-end PRAs, the Blacklist PRA outperform the others when the

number of passwords rejected is small. However, because of the limited size, the small

blacklist can only cover a small proportion of passwords (less than 10,000) in the testing

dataset. The reduced-size Markov models (MC3 and MCBc) perform siginificantly worse

than the corresponding Server-end models (MC5 and MCB25), especially when the num-

ber of passwords rejected is relatively large. The low order Markov models cannot capture

most of the features in the real passwords distribution and the strength measurement is not

accurate. MCBc performs similar to the Blacklist PRA when x is small, as the frequencies

of the most popular patterns are high enough to be preserved, with the cost of losing most

of the other precise information. As a result, the performance of MC3 is better than MCBc

with the growth of x.

81

A noticable improvement of zxcvbn2 over zxcvbn1 can be observed in all the three met-

rics (Figure 4.3(a, b, d) and Figure 4.4(a, b, d)). The figures also suggest that zxcvbn is not

optimized for passwords created by non-English speaking users, as the performance of the

PRAs significantly drops in the evaluation on Chinese datasets.

The Hybrid Method. Observing the promising performance of Blacklist methods and the

limited number passwords covered in the testing dataset, we propose a hybrid PRA which

combines a blacklist PRA with a backoff model. In the Hybrid PRA, we first reject pass-

words based on the order in the Blacklist, and apply the backoff model after the Blacklist

is exhausted. To make the size of the PRA consistent, we further limit the size for both the

Blacklist and Markov Model with backoff. We set the frequency threshold to 2000 for the

English password datasets and 1000 for the Chinese password datasets (see Table 4.2 for

model sizes). We further reduce the size of the Blacklist to 30,000 words, resulting in a

dictionary smaller than 300KB. The total size of the hybrid model is less than 800KB. The

figures (Figure 4.3(a, b, d) and Figure 4.4(a, b, d)) show that the hybrid method inherits

the advantage of Blacklist PRA and Markov Model with backoff. Hybrid method can ac-

curately reject weak passwords, and can provide a relatively accurate strength assessment

for any passwords. As a result, it is almost always on the top of all client-end PRAs, and is

even comparable with Server-end PRAs in β-RSG and β-NRSG measurements.

Differences Among the Three Metrics. Table 4.9 and Table 4.10 list the y values in GNG

and β-RSG when x = 104 and x = 106 evaluated on English datasets and Chinese datasets,

respectively. From the tables, we can observe that although the percentage of passwords

cracked by PRAs significantly increase from when rejecting ten thousand passwords to

when rejecting one million passwords, the difference between y values in β-RSG is lim-

ited, especially for the top-performing PRAs, such as the blacklist method. The different

behavior between GNG and β-RSG indicates that the percentage of passwords cracked,

which is shown in GNG, cannot infer the residual strength, which is the observation from

β-RSG. A high coverage and a low coverage in password cracking might result in similar

residual strength, as the most frequent remaining passwords might be similar. The result

from the table confirms that if the thread model is online guessing attacks in which the

82

Table 4.9.: y values of GNG and β-RSG when x = 104 and x = 106 evaluated on English
datasets. Y+P stands for Yahoo + Phpbb. β = 10

English Datasets
GNG RSG

Dataset Y+P Xato Y+P Xato

x 10K 1M 10K 1M 10K 1M 10K 1M
MC5 14% 34% 13% 36% 12.7 13.1 13.4 14.2
MC3 7.3% 21% 6.9% 24% 11.5 12.4 12.1 12.8

MCB25 16% 35% 14% 36% 12.8 13.2 13.5 13.9
MCBc 11% 22% 10.0% 25% 12.6 12.7 12.8 12.9
zxcvbn 0.7% 1.4% 0.5% 1.3% 10.1 10.8 10.0 11.0

zxcvbnv2 2.5% 13% 2.4% 13% 11.2 12.8 11.3 13.3
Blacklist 16% 38% 14% 38% 12.8 13.3 13.5 14.3

PCFG 2.2% 22% 3.9% 29% 10.2 11.9 10.6 12.0
Hybrid 16% 27% 14% 29% 12.8 13.0 13.5 13.9

Combined 13% 36% 13% 37% 12.8 13.2 13.2 14.3

Table 4.10.: y values of GNG and β-RSG when x = 104 and x = 106 evaluated on Chinese
datasets. β = 10

Chinese Datasets
GNG RSG

Dataset CSDN 178 CSDN 178

x 10K 1M 10K 1M 10K 1M 10K 1M
MC5 16% 26% 22% 36% 10.2 10.3 9.7 10.9
MC3 13% 23% 18% 33% 9.7 9.9 9.1 10.2

MCB25 17% 27% 23% 36% 10.3 10.4 9.9 10.4
MCBc 16% 25% 21% 33% 10.1 10.3 9.3 10.2
zxcvbn 0.1% 3.5% 0.3% 3.4% 6.6 7.1 7.0 7.5

zxcvbnv2 3.5% 11% 4.8% 9.8% 7.1 8.9 7.8 8.1
Blacklist 17% 26% 23% 35% 10.3 10.3 10.0 10.4

PCFG 16% 21% 15% 24% 9.7 9.8 8.3 8.7
Hybrid 17% 25% 23% 34% 10.3 10.3 10.0 10.4

Combined 17% 27% 22% 36% 10.3 10.3 9.5 10.5

number of attempts allowed by an adversary is limited, GNG cannot accurately measure

the crack-resistency of PRAs, and β-RSG is a more appropriate metrics in this use case.

The low marginal effect in β-RSG also indicates that websites might not need to reject too

many passwords if the major concern is online guessing attacks.

83

From Figure 4.3 and Figure 4.4, perhaps the most noticable difference among the met-

rics is the relative order of the PCFG method, two versions of zxcvbn, and the Hybrid

method, compared with the other Client-end PRAs.

The PCFG method performs reasonably well in GNG, but poorly in β-RSG and β-

NRSG. While PCFG can cover many passwords in the testing datasets, which leads to the

low total density of passwords not cracked in GNG, some of the high-frequency passwords

remain uncovered. As a result, the residual strength of PCFG is lower than most of the

other PRAs.

On the other hand, the hybrid method and zxcvbn2 perform much better in β-RSG and

β-NRSG than in GNG. Although the high-ranking passwords in the PRAs only include

a relative low number of unique passwords in the testing datasets, the popularly selected

passwords are mostly covered. Therefore, after rejecting the top-ranking passwords from

the PRAs, an adversary can only break into a limited number of accounts within a small

number of guesses, which results in a high residual strength.

Another obervation is that the performance of the two zxcvbn PRAs, especially zxcvbn2

significantly boost in β-NRSG comparing with that in β-RSG. The residual strength re-

sulted by zxcvbn2 is even higher than the size-limited Markov Models (MC3 and MCBc).

The observation indicates that the relative poor performance of zxcvbn in β-RSG is mainly

due to the penalization from the large number of passwords, which are extremely not likely

to be used, generated.

Overall, several Server-end PRAs including the Blacklist PRA, the Markov Models, and

the Combined method result in similar perfomances. The hybrid method, which inherits

the advantage of Blacklist PRAs and Markov Model with backoff, outperform the other

Client-end PRAs.

4.5 Conclusion

In this chapter, we model different password strength checking methods (including

password strength meters) as Password Ranking Algorithms (PRAs), and we introduce two

84

metrics: the β-Residual Strength Graph (β-RSG) and the Normalized β-Residual Strength

Graph (β-NRSG), to compare them using real world password datasets. In our evaluation,

we find unreasonably high frequency of some suspicious passwords. We remove the as-

sociated accounts by identifying suspicious account IDs. We then, apply the metrics on

cleansed datasets, and show that dictionary-based PRA has similar performance with the

sophisticated PRAs. If the size of PRAs are limited in order to be fit into a client, a hybrid

method combining a small dictionary of weak passwords and a Markov Model with backoff

with a limited size can provide the most accurate strength measurement.

85

5. UNDERSTANDING MNEMONIC SENTENCE-BASED

PASSWORD GENERATION STRATEGIES

Besides weak passwords checking by websites/servers, another way to avoid weak pass-

words is to educate users in password creation techniques, i.e, password generation strate-

gies, and help users creating secure and memorable passwords.

Perhaps the most widely recommended and studied strategy is that based on mnemonic

sentences: Take a memorable sentence, abbreviate the words, and combine them to form a

password. The strategy is generally known as the mnemonic sentence-based strategy (for

short, the mnemonic strategy).

In this chapter, We evaluated the security of 6 mnemonic strategy variants in a series

of online studies involving 5484 participants. In addition to applying the standard method

of using guess numbers or similar metrics to compare the resulted passwords, we also

measured the total density of the most frequently chosen sentences as well as the result-

ing passwords. While metrics similar to guess numbers suggest that all variants provided

highly secure passwords, statistical metrics told a more interesting and nuanced story. In

particular, differences in the exact instructions had a tremendous impact on the security

level of the resulted passwords. We examined the generation usability and memorability

of mnemonic strategies in another online study with 1265 participants. We found that dif-

ferences in the exact instructions also affect the usability of the mnemonic strategies, and a

tradeoff between security and memorability was observed.

5.1 Introduction

The security community has been trying to come up with password generation strategies

that can help users generate secure and usable passwords. Candidate strategies have been

suggested by sources ranging from the National Institute of Standards and Technology

86

(NIST) [24] to online comics [25], and from security experts’ essays [26, 27] to online

help forums. However, these suggestions are often based on intuitions instead of scientific

knowledge. Little is actually known about which strategies are effective in helping users

create usable and secure passwords.

Perhaps the most widely recommended and studied strategy is that based on mnemonic

sentences: Take a memorable sentence, abbreviate the words, and combine them to form

a password. The strategy is generally known as the mnemonic sentence-based strategy

(for short, the mnemonic strategy). It appears that the general assessment is that this is a

good strategy. It is recommended by NIST [24] and by security experts [26, 27]. To our

knowledge, three studies on this method have been reported, by Yan et al. [46, 47], Vu et

al. [48], and Kuo et al. [49]. One standard approach for evaluating the strength of passwords

is to use password cracking tools or models to check how many collected passwords can

be cracked [8, 9, 11, 42, 45, 65]. Based on this, Yan et al. [46, 47] claimed that passwords

generated using the mnemonic strategy are as strong as random passwords, while others

reached a somewhat mixed conclusion regarding its security [48, 49].

These existing studies, however, have several limitations. First, they are based on sam-

ples of small sizes, with less than 150 passwords under the strategy in each of the three

studies. Second, relying only on checking how many passwords can be cracked to assess

the security is flawed. Although such assessment provides useful information about how

such passwords fare against today’s state of the art cracking methods, the results are often

caused by the incompatibility of the cracking techniques and the nature of the passwords,

as in the case of evaluating the mnemonic strategies. Even developing a strategy-specific

cracking method, as done in [49], is insufficient. It is always possible that one has over-

looked some highly effective attack techniques. Third, each study considers only one ver-

sion of instructions for the mnemonic strategy.

We conduct a much larger study to evaluate 6 variants of the mnemonic strategy and

compare against a control group. When assessing the security of the strategies, we go

beyond the methods used in existing studies in two ways. First, we adopt the approach of

using statistical quantities to measure the distributions of the passwords, as articulated by

87

Bonneau [28]. In particular, we chose to use the β-guess-rate (λβ) [29], which measures

the expected success for an attacker limited to β guesses per account. As our dataset sizes

(close to 800) are much smaller than the ones studied in [29], many other metrics considered

in [29] cannot be applied. We chose to use β = 1 and β = 10, both because they were

suggested in [30] as appropriate for defense against online guessing attacks and because

a larger β is not very meaningful for our sample sizes. Second, we develop a method

specific for attacking passwords resulted from the mnemonic strategy, and demonstrate the

effectiveness of this attack.

The usability of the variants is evaluated in a separate user study, in which password

creation time, short-term and long-term password memorability, and the workload required

in both password creation and retention are evaluated.

Our studies were conducted on Amazon Mechanical Turk. They were found to be

eligible for exemption from IRB review because it is research involving survey procedures,

and human subjects cannot be identified from the recorded information. In the studies,

participants were warned not to use their real passwords.

To the best of our knowledge, we are the first to investigate the security of password

generation strategy variants on a large scale. We recruited a total number of 5, 484 par-

ticipants, for an average of 783 participants per condition, when evaluating the security of

the strategies. In addition, we recruited 1265 participants for evaluating the usability of

two variants against a control condition. To our knowledge, we are the first to observe and

experimentally validate the influence of the instructions and the examples accompanying

the strategy description on the security of the passwords generated with that strategy. It

is intuitively understood that precise instructions and demonstrative examples can improve

the ease of applying a strategy to generate passwords (i.e., usability). However, the rela-

tionship between the level of security, the instruction wording, and the examples has not

been studied before.

88

5.2 Study 1: Security

In this section, we present an overview of the first study and the methodology used for

evaluating security of the strategies.

We study 6 variants of mnemonic strategies. In such a strategy, a participant is asked to

first select an easy-to-remember sentence, and then convert the sentence into a password.

Table 5.1.: Mnemonic-based strategy description

Strategy
Short

Description
Exact instruction given to the users in the study

MneGenEx

Mnemonic with

generic

example, used

in Kuo et

al. [49]

1. Think of a memorable sentence or phrase contain-

ing at least seven or eight words. For example, “Four

score and seven years ago our fathers brought forth

on this continent”.

2. Select a letter, number, or a special character to

represent each word. A common method is to use

the first letter of every word.For example: four –>4,

score –>s, and –>&. Combine them into a pass-

word: 4s&7yaofb4otc.

MnePerEx

Mnemonic with

emphasis on

personalization,

with an

example.

1. Think of a memorable sentence or phrase that is

meaningful to you, and other people are unlikely to

use. The sentence or phrase should contain at least

eight words. For example, “I went to London four

and a half years ago”.

2. Select a letter, number, or a special character to

represent each word. A common method is to use the

first letter of every word. For example: went ⇒ w,

four ⇒ 4, and ⇒ &. Combine them into a password:

iwtl4&ahya.

continued on next page

89

Table 5.1.: continued

Strategy
Short

Description
Exact instruction given to the users in the study

MnePer

Mnemonic with

emphasis on

personalization,

without giving

an concrete

example.

1. Think of a memorable sentence or phrase that is

meaningful to you, and other people are unlikely to

use. The sentence or phrase should contain at least

eight words.

2. Select a letter, number, or a special character to

represent each word, and combine them to create the

password.

continued on next page

90

Table 5.1.: continued

Strategy
Short

Description
Exact instruction given to the users in the study

MneEx

Mnemonic with

several

personalized

phrases as

examples.

1. Think of a memorable sentence or phrase contain-

ing at least eight words.

2. Select a letter, number, or a special character to

represent each word, and combine them to create the

password.

The following are some examples:

“In June 2013, my wife and I visited Tokyo, Kyoto,

and Sapporo” might become “i63mw&ivTk&$”.

“Run 5 miles per week for my first half marathon”

might become “r5mpw4mfhm”.

“My high school classmates had a reunion in July

2014” might become “Mhscharij2”.

“I sold my gold Toyota corolla when it had close to

120000 miles” might become “i$mgtcwIhc21m”.

“Danny bought the book The Razor’s Edge from me

for five dollars” might become “Dbtbtrefm45d”.

“Save money for traveling with my parents to Ger-

many” might become “S$4twmp2G”.

continued on next page

91

Table 5.1.: continued

Strategy
Short

Description
Exact instruction given to the users in the study

MneSchEx

Mnemonic with

mixed

examples, used

in [26]

1. First create a personally memorable sentence

(choose your own sentence – something personal).

2. Then use some personally memorable tricks to

modify that sentence into a password.

The following are some examples:

“This little piggy went to market” might become “tlp-

WENT2m”.

“When I was seven, my sister threw my stuffed rabbit

in the toilet” might become “WIw7,mstmsritt”.

“Wow, does that couch smell terrible” might become

“Wow...doestcst”.

“Long time ago in a galaxy not far away at all” might

become “Ltime@go-inag faaa!”.

“Until this very moment, these passwords were still

secure” might become “utvm,tpwstillsecure”.

continued on next page

92

Table 5.1.: continued

Strategy
Short

Description
Exact instruction given to the users in the study

MneYanEx

Mnemonic with

mixed

examples, used

in [46, 47].

1. Please create a simple sentence of 8 words and

choose letters from the words to make up a password.

You should put some letters in upper case to make the

password harder to guess; and at least one number

and/or special character should be inserted as well.

2. Use this method to generate a password of 7 or 8

characters.

An example of such a composition might be using

the phrase is “It’s 12 noon I am hungry” to create

the password “I’s12&Iah” which is hard for anyone

else to guess but easy for you to remember. By all

means use a foreign language if you know one: the

password “AwKdk.Md” from the phrase “Anata wa

Kyuuketsuki desu ka ... Miyu desu” would be an ex-

ample. You could even mix words from several lan-

guages. However, do not just use a word or a name

from a foreign language.

Table 5.1 gives the detailed descriptions of the 6 variants in our study. We urge readers

to read Table 5.1 before proceeding, as the differences in the strategy descriptions are an

important part of the study. Below is a summary.

• MneGenEx (Mnemonic-Generic-Example, with generic instruction and a generic ex-

ample, similar to what used in Kuo et al. [49]),

93

• MnePerEx (Mnemonic-Personalized-Example, with emphasis on using personalized

choices of sentences that other people are unlikely to use and a personalized exam-

ple),

• MnePer (Mnemonic-Personalized, with emphasis on personalized choice of sen-

tences, but no example),

• MneEx (Mnemonic-Example, with multiple personalized examples, but no emphasis

on personalized choices of sentences),

• MneSchEx (Mnemonic-Schneier-Example, with some emphasis on personalized

choices and mixed examples, suggested by Schneier in [26, 27]),

• MneYanEx (Mnemonic-Yan-Example, with some emphasis on personalized choices

in some examples, used by Yan et al. [46, 47] in their studies).

In addition to the 6 variants, a control group Control, in which we ask for passwords

containing at least 8 characters without any extra restriction, was included in the study as

well.

5.2.1 Study Design

We conducted the study through Amazon Mechanical Turk (MTurk), and all partic-

ipants were at least 18 years old. We limited our data collection to participants from the

United State because the strategies were constructed using the English language. The study

was divided into 7 rounds, one for each of the 7 conditions. Participants were allowed to

participate in only one round. If a participant was in more than one rounds of the study, we

kept only the data from the first time that the participant was in.

Participants were asked to type the sentence used in the intermediate step. After that,

participants were asked to enter the password they created twice, and the password typed

in each time had to match each other before they could proceed.

We warned participants not to use their actual passwords. In the study, we forbade

passwords that were the same as the examples and that did not appear to be generated

94

following the instructions. In MneGenEx, MnePerEx, MnePer, and MneEx, we required

the length of the password to be identical to the number of words, and further checked if a

letter in a password can be found in the corresponding word in the sentence; no check was

performed for digits and special symbols in the password. In MneSchEx and MneYanEx,

a participant was allowed to keep a complete word in the resulting password; thus we

cannot use the above approach. Instead, we required that the sequence of letters (ignoring

special symbols or digits) in a password was a subsequence of the sequence of letters in the

sentence.

5.2.2 Methodology

Our goal in this study is to assess the security of the passwords generated by the differ-

ent password generation strategy variants. The traditional approach to assess the strength

of passwords generated under a given setting is to use password cracking tools or proba-

bilistic password models to plot guess number graphs [8,9,11,42,45,49,65] or probability

threshold graphs.

The above approach can assess the security of passwords against current password

cracking tools and probabilistic password models, which are adapted to today’s pass-

word distributions; however, it cannot adequately assess the strength of password strate-

gies against attacks targeting it. If any strategy is widely used, then attackers may develop

strategy-specific methods which can efficiently guess the passwords. For example, if the

mnemonic strategy is widely used, one attack strategy is conduct a dictionary attack which

use password datasets created using the strategy as the dictionary. Alternatively, an adver-

sary can create a dictionary of sentences that people are likely to use, and then generate

guesses from the sentences.

An alternative approach, as articulated by Bonneau [28], is to measure the probability

distribution induced by the strategy. A number of metrics on the strength of password

distributions have been proposed by Bonneau [28]. In the case of evaluating passwords

obtained from user subject studies, the datasets are quite small (on the scale of several

95

hundreds in our case). One metric that is appropriate for small datasets is the β-guess-rate

(λβ) [29], which is the total probability of the most common β passwords. λβ measures

the expected success for an attacker limited to β guesses per account, with some small β.

Brostoff and Sasse [30] suggested 10 as the allowed failure counts before the account is

locked.

We choose to use quantities for estimating λ1 and λ10 given our sample sizes. Given

a sample set S, we use top(S) to denote the number of times that the most frequent item

occurs in S, and top10(S) to denote the total number of the times the 10 most frequent

items occur in S. The estimated density of top 1 and top 10 passwords are calculated by

λ̃1 =
top(S)
|S| and λ̃10 =

top10(S)
|S| , where |S| is the size of S.

We want to tell whether the differences in these metrics between two datasets are mean-

ingful or not, given that we have small datasets. To address the issue, for a given β, we

test the null hypothesis that the total density of top β passwords in the two datasets are the

same using the two proportion z-test, calculated by:

z =
p1 − p2

√

p(1− p)(1
n1

+ 1
n2
)

where p1 = x1

n1
and p2 = x2

n2
are the two proportions from the two samples, i.e., total

density of top β passwords in two datasets, D1 and D2; n1 and n2 are the size of D1 and

D2; p is pooled sample proportion, which is estimated by x1+x2

n1+n2
; and x1 and x2 are the total

frequencies of top β passwords in D1 and D2.

We also apply these metrics to the sentences used in generating passwords, because

passwords based on the same sentence are not independent of each other.

5.3 Results From Study 1

We recruited 864, 793, 797, 795, 982, and 870 participants for the 6 variants of

mnemonic strategies. After removing duplicate participants, the number of participants we

accepted was 864, 777, 753, 745, 868, and 799, respectively. The number of participants

96

recruited in the control group (Control) is 678. In total, 5,484 (3,205 female) participants

were involved. The participants’ ages ranged from 18 to over 50, with about 70% between

23 to 50 years. Most of the participants were college students or professionals who had

bachelor or higher degrees. The demographic distributions in the 7 groups were similar.

(a) 5-order Markov Model (b) Google API (c) Zxcvbn

Figure 5.1.: Comparison of strength of passwords resulted from different mnemonic strate-
gies using probabilistic models and password strength meters.

5.3.1 Analyzing Passwords Using Probability Models and Password Strength Me-

ters.

We evaluate the strength of passwords generated using the strategies as well as two

commonly used datasets Yahoo and Phpbb against today’s attacks utilizing (1) the 5-order

Markov Model trained on Rockyou dataset, (2) Google password strength API1, and (3)

Zxcvbn [23] deployed by Dropbox. Google password strength API produces an integer

score from 1 to 4 for a password. Passwords with score 1 are considered too weak and are

forbidden by Google, and passwords with score 4 are considered strong. Zxcvbn gives an

estimation of minimum entropy for a password. The entropy is calculated by first divid-

ing the password into chunks, and then combining the entropy estimated for each chunk.

Different ways of dividing the password results in different estimated entropy, and Zxcvbn

uses the smallest entropy as its output.

In Fig 5.1(a), each curve conveys the strength of a password dataset evaluated by a

5-order Markov Model trained on Rockyou dataset. A point (x, y) on a curve means that

1https://accounts.google.com/RatePassword

97

in the corresponding dataset, y percentage of passwords have probability no less than 2−x.

Curves in Fig 5.1(b) and Fig 5.1(c) illustrate the evaluation based on Google password

strength API and zxcvbn, respectively. A point (x, y) on a curve means y percentage pass-

words in the corresponding dataset has a score no higher than x. In the graphs, a lower

curve means passwords from the corresponding strategy are considered stronger.

In all the three graphs, the curve for the control group (Control) is below the curves

for Yahoo and Phpbb, indicating that passwords created in the study are stronger than that

in real-world datasets. Therefore, the security of passwords created in the study can serve

as a lower-bound measurement. On the other hand, curves for Yahoo, Phpbb, and Control

are significantly higher than the other curves. This indicates that according to the met-

rics, passwords created without any specific strategy are significantly weaker than the other

datasets. When guessing according to the order suggested by the metrics, more passwords

in Yahoo, phpbb, and Control will be cracked than passwords from any mnemonic strategy.

For example, if all passwords with score less than 25 measured by Zxcvbn are attempted,

more than 50% of passwords from Yahoo, Phpbb, and Control will be covered, while in the

6 mnemonic strategies, the percentage of passwords cracked is less than 15%. However,

this conclusion is due to the fact that the model or the meters are designed to evaluate gen-

erally selected passwords, which is broadly similar to passwords in Yahoo and Phpbb, and

passwords generated from the mnemonic strategies result in quite different distributions.

Table 5.2.: Average length of passwords in each strategy as well as Yahoo and Phpbb
datasets.

Strategy/Dataset Average Length
Yahoo 7.6
Phpbb 8.3
Control 10.4

MneGenEx 10.1
MnePerEx 9.2
MnePer 9.1
MneEx 9.4

MneSchEx 11.4
MneYanEx 9.6

98

Table 5.2 shows the average length of passwords generated from the 6 variants and

the control group (Control) as well as passwords in Yahoo and Phpbb datasets. From the

table, we can observe that passwords generated in MneSchEx is longer than passwords

generated by other strategies. Another observation is the relative long passwords in Control

comparing with passwords in Yahoo and Phpbb datasets. The average length of passwords

in Control is even longer than passwords from some variants of mnemonic-based strategies,

which confirms that passwords created in the study is stronger than typical users’ choices.

Table 5.3.: λ̃1 (top) and λ̃10 (top10) in Control as well as samples with size 800 from
Rockyou, Phpbb, and Yahoo. ESD means the average is E and the standard deviation is
SD.

Strategy Count
λ̃1 (top) λ̃10 (top10)

Case
Insensitive

Case
Sensitive

Case
Insensitive

Case
Sensitive

Control 678 1.2%(8) 0.9%(6) 3.4%(23) 2.9%(20)
Rockyous 800 1.0%0.3%(7.7) 0.9%0.4%(7.5) 3.1%0.5%(25.0) 3.1%0.5%(24.4)

Phpbbs 800 1.2%0.4%(9.5) 1.2%0.4%(9.5) 3.8%0.6%(30.2) 3.8%0.5%(30.2)
Yahoos 800 0.4%0.2%(3.5) 0.4%0.2%(3.5) 2.1%0.3%(16.5) 2.0%0.3%(16.3)

5.3.2 Strength of Mnemonic Sentences

We evaluate the strength of sentences used in mnemonic strategies as well as the re-

sulted passwords utilizing λ̃1 and λ̃10 metrics. Table 5.3 shows the λ̃1 (top) and λ̃10 (top10)

values of passwords generated by the control group (Control). Also shown in the table are

the quantities evaluated on sets of 800 passwords randomly sampled from three commonly

used password datasets Rockyou, Phpbb and Yahoo. Table 5.4 gives the λ̃1 (top) and λ̃10

(top10) values of sentences and the resulted passwords for all mnemonic sentence-based

variants.

The Control Group (Control). In Control, the λ̃1 and λ̃10 are 0.9% and 2.9%, respec-

tively, which are close to the quantities from the real-world datasets. For instance, Rockyou

dataset has a λ̃1 as 0.9% and a λ̃10 as 3.1%. Although the passwords created in the study

99

Table 5.4.: λ̃1 (top) and λ̃10 (top10) in mnemonic strategies.

Strategy Count
λ̃1 (top) λ̃10 (top10)

Sentence
Password

Sentence
Password

Case
Insensitive

Case
Sensitive

Case
Insensitive

Case
Sensitive

MneGenEx 864 2.5%(22) 0.9%(8) 0.8%(7) 7.8%(68) 5.3%(46) 4.1%(36)
MnePerEx 777 0.1%(1) 0.1%(1) 0.1%(1) 1.3%(10) 1.3%(10) 1.3%(10)
MnePer 745 0.7%(5) 2.3%(17) 2.3%(17) 2.8%(21) 5.8%(43) 5.6%(42)
MneEx 868 0.7%(6) 0.2%(2) 0.2%(2) 2.2%(19) 1.7%(15) 1.3%(11)

MneSchEx 753 0.4%(3) 0.5%(4) 0.3%(2) 2.8%(21) 1.7%(13) 1.5%(11)
MneYanEx 799 0.3%(2) 0.3%(2) 0.3%(2) 1.6%(13) 1.5%(12) 1.4%(11)

Control 678 N/A 1.2%(8) 0.9%(6) N/A 3.4%(23) 2.9%(20)

100

are stronger than those in real-world datasets, according to the existing strength metrics, as

illustrated in Fig 5.1, the strengths of the weakest passwords are similar. If an adversary

is limited to try 10 passwords per account (e.g., by rate limiting), approximately the same

portion of accounts will be compromised.

Finding 1: Using generic instructions and examples results in weak passwords.

MneGenEx used the instructions as in [49] and one of the examples used in [49]. We

were truely surprised by the high frequencies of the most common sentences and pass-

words. Among the 864 participants, there were 57 sentences chosen more than once, for

a total of 179, and the 10 most popular sentences (top10) were picked 68 times. 22 par-

ticipants chose the famous quote “to be or not to be, that is the question”. This yielded

λ̃1 = 2.5%, λ̃10 = 7.8%. See Table 5.5 for other commonly chosen sentences, which were

also well-known quotes in general, and the resulted passwords.

Table 5.5.: Popular passwords and probability for top 5 frequently chosen sentences in
mnemonic strategies.

Rank Sentences Passwords Frequency

MneGenEx (864)

1
to be or not to be, that is the

question (22)

2bon2btit? (7); 2bon2btitq (6);

tbontbtitq (1); 2Bon2Btit? (1);

2B0n2bt1tq (1); 2bontbtitq (1);

2brn2btstq (1); 2brn2btit? (1)

2.55%

2

the quick brown fox

jumped over the lazy

dog (9)

tqbfjotld (2); Tqbfjotld (2);

t@bfj0tld (1); tqb4j0tld (1);

TQ35j#TLd (1); tqbfjt̂ld (1);

Tq8fj0tld (1)

1.04%

3
one small step for man, one

giant leap for mankind (6)

1ssfm1glfm (3); 1ss4m1gl4m (1);

1$$4m1gl4m (1); ossfmoglfm (1)
0.69%

continued on next page

101

Table 5.5.: continued

Rank Sentences Passwords Frequency

4
a penny saved is a penny

earned (5)

apsiape (3); @p$i@p3 (1); apsi-

Ape (1)
0.58%

5

in the beginning, god cre-

ated the heavens and the

earth (5)

itbGcth&te (1); 1t8GctH&t3 (1); it-

bGcth&tE (1); ItbGctHatE (1); Nt-

bGcth (1)

0.58%

MnePerEx (777) No collisions found.

MnePer (745)

1
I love you to the moon and

back (4)

12345678 (1); !l0t7m@b (1);

ily2tmnb (1); !@#$%ˆ&* (1)
0.67%

2
it was the best of times it

was the worst of times (3)

iwtb0*iwtw0* (1); Iwtbotiwt-

wot (1); 233425233525 (1)
0.40%

3

the quick brown fox

jumped over the lazy

dog (2)

tqbfjotld (2) 0.27%

4
don’t look a gifthorse in the

mouth (2)
dlaghitm (1); d*1gh0t% (1); 0.27%

5
down by the bay where the

watermelons grow (2)
dbhaw!rg (1); DBTBWTWG (1) 0.27%

MneEx (868)

1

the quick brown fox

jumped over the lazy

dog (6)

tqbfjotld (1); 7qbxj07ld (1);

tQbfj0tld (1); +qbfj0+ld (1);

tqbfj0tld (1); tQbfôtzd (1)

0.69%

2
to be or not to be that is the

question (3)

2Bon2Btit? (1); 2bontbtitq (1);

2bon2b,it? (1)
0.35%

continued on next page

102

Table 5.5.: continued

Rank Sentences Passwords Frequency

3

my very educated mother

just served us nine piz-

zas (2)

Mvemj$u9p (1); mvemjsu9p (1) 0.23%

4
I like big butts and I cannot

lie (2)
1lbba1cl (1); 1lbb&1cnl (1); 0.23%

MneSchEx (753)

1
four score and seven years

ago (3)

4score7yo (1); foscanseyeag (1);

fscrn7yrg (1)
0.40%

2
the quick brown fox jumps

over the lazy dog (3)

tqbFOXjotlDOG (1); tqbfjotld (1);

Tqbfjotld (1)
0.40%

3 once upon a time (2)
O345$&on@tim8 (1); 1ce-

upontme (1)
0.27%

4 I love to eat pizza (2) eyeL2EZa (1); ILtePi&&a (1); 0.27%

5 I love dark chocolate (2) eyeluvdrkchoco (1); heartDlate (1); 0.27%

MneYanEx (799)

1

the quick brown fox

jumped over the lazy

dog (2)

tqbfjotld (2); 0.25%

2
i like big butts and i cannot

lie (2)
ilbbaicl (1); Ilbbaicl (1); 0.25%

3
the quick brown fox

jumped over the dog (2)
Tqbf&jotD (1); TQbfdreg (1); 0.25%

In terms of resulting passwords, if passwords are case-insensitive, 36 passwords gener-

ated by following the MneGenEx strategy appeared more than once, and the most common

password was chosen 8 times, with λ̃10 = 5.3%. Even taking case-sensitivity into ac-

103

count, there were still 27 non-unique passwords, with the top count number to be 7, and

λ̃10 = 3.1%, as the majority of the participants did not use upper-case letters. Compar-

ing λ̃10 resulted from Control (2.9%) and MneGenEx (4.1%), it appears that the password

distribution resulted from MneGenEx is likely to be weaker than Control.

Finding 2: Instructions specifically requesting personalized sentences and appropri-

ate examples lead to strong passwords. MnePerEx explicitly asked people to choose

personalized sentences that other people are unlikely to choose with an example “I went to

London four and a half years ago”. Among the 777 participants, there was no sentence or

password selected more than once. We observed that 536 sentences start with “I” or “my”,

suggesting a personalized choice. In comparison, such sentences appeared only 125 times

in MneGenEx. We noted that not all participants chose personalized sentences. Common

sentences such as “to be or not to be, that is the question” still occur in the dataset. Because

they occur with much lower frequencies, we did not observe any collision in the dataset.

With larger datasets, collisions are bound to occur. As a result, the λ̃10 (1.3%) in sen-

tences selected in MnePerEx was significantly smaller than the quantity from MneGenEx

(z = 6.26, p < 0.001), and the comparison of the resulted passwords between MneGenEx

and MnePerEx leads to similar results. This indicates that in terms of security, MnePerEx

is significantly better than MneGenEx based on λ̃1 and λ̃10 metrics.

Finding 3: Commonly suggested instantiations are worse than MnePerEx. Seeing

results from MneGenEx and MnePerEx, it was clear to us that the instructions played an

extremely critical role in the level of security. We then tried to evaluate the precise instruc-

tions suggested in Bruce Schneier’s two blog posts [26, 27]. We noted that the instructions

in the two posts were slightly different. Our version, MneSchEx, was based on the ver-

sion in [26], which was the more elaborated one. MneSchEx had several differences from

MnePerEx. First, it gave 4 examples, some of which are popular, e.g., “Long time ago in

a galaxy not far away at all”, others are more personalized “When I was seven, my sister

threw my stuffed rabbit in the toilet”. Second, in the examples, some words are completely

kept. Third, while the instructions said “Choose your own sentence – something personal”;

it did not include the phrase “other people are unlikely to use”.

104

The results came back at somewhere in between MneGenEx and MnePerEx. Among

753 participants, 9 different sentences were not uniquely chosen, with the most common

sentence appearing 3 times and the λ̃1 was 0.4%. The λ̃10 of sentence selected was 2.8%.

There was only a single password selected twice. The λ̃10 from MneSchEx was significantly

larger than that from MneGenEx (z = 4.47, p < 0.001), and was significantly smaller than

MnePerEx (z = 2.08, p = 0.019). One might notice that if passwords are not case-sensitive,

the frequency of the most common password was more than the max count of sentences.

The four repeated passwords actually came from 3 variations of the same sentence “the

quick brown fox jumps over the lazy dog”, “the quick brown fox jumped over the lazy

dogs”, and “the quick brown fox jumped over the lazy dog”.

We also studied the effect of the instructions and examples used in Yan et al. [46, 47]

(MneYanEx). In MneYanEx, the instructions for creating passwords was relatively generic.

However, “hard for anyone else to guess” was explicitly mentioned in the examples. As

a result, both the λ̃1 (0.3%) and λ̃10 (1.6%) in sentence choices from MneYanEx was less

than those from MneSchEx, but is more than that from MnePerEx. The difference in the

λ̃10 between MneYanEx and MneGenEx was significant (z = 5.91, p < 0.001). 3 sentences

were chosen twice.

Finding 4: Both personalized sentences and high-quality examples are needed to

achieve better security. Another question is whether the instructions or the examples have

more influence on the unpredictability of the chosen sentences and consequently the gen-

erated passwords. This led us to study the two variants MnePer and MneEx. MnePer asked

for personalized sentences in instructions, but did not provide any example; while MneEx

did not explicitly ask for personalized sentence in the instructions, but provided a list of

personal sentences as examples. For MnePer, the most popular one was chosen 5 times

(λ̃1 = 0.7%), and λ̃10 was 2.8%. λ̃10 from MnePer was significantly smaller than that from

MneGenEx (z = 4.42, p < 0.001), and was significantly larger than that from MnePerEx

(z = 2.11, p = 0.017). For MneEx, the most popular one was chosen 6 times (λ̃10 = 0.7%),

and λ̃10 was 2.2%. λ̃10 from MnePer was significantly smaller than that from MneGenEx

105

(z = 5.41, p < 0.001), and was larger than that from MnePerEx (z = 1.39, p = 0.083).

There was no significant difference between the MnePer and MneEx.

An unexpected finding is that in MnePer, while the 10 most popular sentences were

chosen only 19 times, λ̃10 in password choices was 5.6% (top10 = 42). In all other strate-

gies, the λ̃10 in password selections was less than that in sentence selections, since the same

sentence can result in different passwords. Why do we have higher frequency in popular

passwords than in popular sentences? Examining the dataset we found that a significant

fraction of users choose pure digit sequence passwords (such as 12345678, 233425233525)

that did not appear to match the sentences. (Since we allow letters to be replaced with dig-

its, we did not check for such situations.) It appears that when users are not shown any

examples, some users do not know how to follow the instruction.

Overal, our results suggest that neither explicit request for personalized sentences nor

high-quality examples by itself suffice (in fact, neither appears to be more important than

the other), and one needs both to get high security.

Table 5.6.: Potential popular and personalized sentence counts evaluated by Google search
results.

Strategy MneGenEx MnePerEx MnePer MneEx MneSchEx MneYanEx

Popular 242(28%) 13(1.7%) 42(5.6%) 27(3.1%) 89(12%) 126(16%)
Personal 521(60%) 757(97%) 680(91%) 825(95%) 635(84%) 644(81%)

Sentence Popularity. We further examined the popularity of the sentences by searching

them on Google using exact matching, and obtain the estimated number of results. Ideally,

a “true” personalized sentence should have 0 result returned. On the other hand, famous

quotes and popular sentences yielded a high number of results. For example, the 5 sen-

tences with highest estimated result numbers are “to be or not to be”, “the quick brown fox

jumps over the lazy dog”, “when you wish upon a star”, “do, or do not, there is no try”,

and “you can’t always get what you want”, which are all famous quotes. We say that a sen-

tence is popular if Google’s estimated result number is more than 100, and that a sentence

is personalized if the estimated result number if less than 5. Table 5.6 shows the num-

106

bers of popular and personalized sentences for all mnemonic-based strategies. From the

table, we can observe that the rates of popular sentences were reduced dramatically from

28% to around 4% when either personalization instructions or examples were introduced,

and the combination of them further reduced the rate to 1.7%. This latter finding confirms

the necessity of combining explicit request for personalization sentences and high-quality

examples.

5.3.3 Cracking Mnemonic Passwords

We now develop a method for cracking passwords generated using the mnemonic strat-

egy. Our goal is to demonstrate that the step of converting sentences to passwords provides

only limited extra entropy. Given the sentences, we can crack more than half of the pass-

words selected by the users in between 5 and 10 guesses.

For ease of exposition, we first explain our method for case-insensitive passwords.

When generating passwords by following the mnemonic strategy, a word can theoretically

be mapped to any character; however, given a word, the number of characters that are cho-

sen by the users is limited in practice. People generally just pick the first letter of each

word. When ignoring case differences, on average, each word is converted to 4 possible

characters.

Table 5.7 lists the character usage in passwords generated in mnemonic strategies. In

the table, Upper, Lower, Digit and Symbol means the number of corresponding type of

character used in passwords. First means the number of words whose first character is

directly used in the password. First + Leet means the number of words whose first character

or the Leet substitution of the first character is used in the password. Total Trans means the

total number of pairs of word and resulted characters. Unique Trans means the number of

word-character pairs that only appear once in the dataset. Distinct Words are the number of

distinct words used in all sentences.

From Table 5.7, we can see that on average 81.2% of the words are converted into

their first character; furthermore, about 3.3% of the time, an additional leet substitution is

107

applied. For mappings not using the first letters, the characters chosen are almost fixed for

a given word; most of them are based on pronunciation or the meaning of the word. For

instance, “to” is mapped to “2”, “question” is mapped to “?”, and “first” is mapped to “1”.

Given a training dataset which contains pairs of sentences and passwords, we first learn

the probability distribution of the word-to-character mappings. We classify words into

normal words and special words. Normal words are typically mapped to the first character,

with a possible leet substitution. For each letter, we maintain a probability distribution of

how that letter is likely to mapped into. Special words are often not mapped to its first

letter. For each special word, we maintain a probability distribution for its mappings.

The classification of words is an iterative process. At the beginning, we assume that all

words which appear at least 5 times are normal words. In each iteration, we first calculate

the probability distribution of each character by averaging the converted character distri-

bution of all corresponding words. Then, we find the L1 distance between the converted

character distribution of each word and the probability distribution of its first character. If

the L1 distance is larger than a certain threshold, we say that the word is a special word. In

our experiment, the threshold value we use is 0.6. We repeat the process until no words are

removed from normal words.

For password cracking, given a sentence, we first generate a guess by taking the first

character of all the words. Then, we generate the passwords by converting words into

characters. We assume that in a sentence, the same words are always converted in the

same way, and different words are converted into characters independently. Therefore, the

probability of each generated password is the product of the probabilities of the transitions

from all unique words to characters. We generate passwords in the descending order of

probability.

We evaluate the method on the sentences and passwords we collected from MneGenEx,

MnePerEx, MnePer, MneEx by cross validation, i.e., we train the model on data from three

strategies and attempt to crack passwords in the other strategy. MneSchEx and MneYanEx

are excluded in the evaluation, as in the two strategies, a word is not always converted into

one character. The percentage of passwords cracked when varying the number of guesses

108

Table 5.7.: Character usage in mnemonic strategies.

Strategy Upper Lower Digit Symbol First First+Leet Total
Trans

Unique
Trans

Distinct
Words

MneGenEx 6838.6% 607376.4% 79210.0% 3995.0% 663383.5% 1942.4% 7947 175822.1% 2034
MnePerEx 5597.8% 546576.7% 74110.4% 3645.1% 608085.3% 1742.4% 7129 171824.1% 1954
MnePer 81712.0% 429063.2% 112316.6% 5548.2% 502774.1% 3324.9% 6784 222832.8% 2334
MneEx 99412.2% 553968.1% 104612.9% 5536.8% 665181.8% 2773.4% 8132 254731.3% 2207

109

is illustrated in Figure 5.2(a). For all of the strategies, we can crack 60% of the passwords

within 10 guesses, where most of them are in the first 5 attempts.

The method performs less effective on MnePer and MneEx. From Table 5.7, we can

observe that the percentages of unique conversions from a word to a character contribute to

32.8% and 31.3% of all such conversions in MnePer and MneEx. The quantities are much

higher than those from MneGenEx (22.1%) and MnePerEx (24.1%). The more unique con-

versions leads to more character mappings that are never guessed. Table 5.7 also shows that

participants in MneEx and MnePer are more likely to use digits, symbols, and upper-case

letters than participants in MneGenEx and MnePerEx. One likely explanation is that just a

single example is presented in MneGenEx and MnePerEx; while no example is presented

in MnePer and six examples are given for MneEx. It is possible that both no example and

lots of examples cause people to be more creative in mapping words to characters.

(a) case-insensitive (b) case-sensitive

Figure 5.2.: Percentage of passwords cracked within 10 attempts for case-insensitive pass-
words, and 20 attempts for case-sensitive passwords.

We adapt our method to be case-sensitive when guessing as follows. The training pro-

cess is identical to the case-insensitive condition. When generating password guesses,

every time a password (with the highest probability) is generated, instead of 1 guess, 4

guesses are made. We try the original password, capitalize all letters, capitalize the first let-

ter, and capitalize all letters whose corresponding words are capitalized. The performance

of the method on case-sensitive passwords is shown in Figure 5.2(b). More than 50% of

110

passwords in all the 4 strategies can be guessed in 20 attempts, with most successes from

the first 10 guesses.

Crack from Scratch. Now, we apply the cracking method described above to a real-world

scenario, in which sentence selection in the testing dataset is unknown. Given a training

dataset, we generate candidate passwords as follows. We first order the sentences selected

in the training dataset by the descending order of their frequencies. Then, starting from the

most popular sentence, for each sentence, we generate 20 case-sensitive guesses.

(a) MneGenEx (b) MnePer

(c) MnePerEx (d) MneEx

Figure 5.3.: Guess number graph on passwords created by using mnemonic strategies.

Fig 5.3 shows the effect of our method evaluated on the four datasets by cross validation,

i.e., for each testing dataset, the training dataset is the union of the other three datasets. In

the graphs, each curve represents a cracking method, and a point (x, y) on the curve means

y percentage of passwords in the testing dataset are cracked within x attempts. We also plot

the curves of 5-order Markov Model (MC5), PCFG method (PCFG) trained on Rockyou

dataset, and two blacklist-based methods, which use Rockyou (Rockyou) dataset and the

passwords in the training datasets (Train), respectively. Because of the limited number of

111

sentences in the training dataset (less than 2400), we are able to generate less than 50,000

candidate passwords using the new method, and used 50,000 as the number of passwords

generated for all methods.

The evaluation on MneGenEx is illustrated in Fig 5.3(a). From the figure, we can ob-

serve that all the generic cracking methods perform poorly, and can crack no more than

0.4% passwords within 50,000 guesses. In fact, the only passwords covered by the meth-

ods are “!@#$%ˆ” and “!@#$%ˆ&*”, which are apparently created without following the

strategy. On the other hand, 3.2% of the passwords in MneGenEx are covered in the 211

passwords in the training datasets, which confirm the need to using strategy-specific meth-

ods. Our proposed method can crack 6.4% passwords with 50,000 guesses. We expect

performance of the method will increase with the size of training data. The performance of

our method as well as the dictionary obtained from the training dataset drops significantly

on the other datasets, and passwords from MnePerEx appears to the strongest. Less than

1% passwords in MnePerEx are cracked with 50,000 guesses. The reduced performance

of the methods is mainly due to the requirement of personalized sentence choice and the

resulted increasing number of unique sentences. The result is consistent with the findings

from λ̃1 and λ̃10 analysis described in Section 5.3.2.

One may also notice that in MnePer, the relative order of the methods is quite different.

This is because of high frequency of passwords generated not following the strategy, such

as 12345678 (17), !@#$%ˆ&* (6), 123456789 (5). These passwords are hard to predict

based on our method, but are easy to guess based on the other methods. As a result, our

method performs worse than all the other methods in the graph.

5.4 Study 2: Usability

We conducted another user study evaluating the usability of the mnemonic strategies

from two aspects: (I) Creation usability: Time and effort required from the user to generate

a password by following the given strategy; (II) Memorability: long-term retention of the

password generated with the given strategy. In this study, three strategies were evaluated,

112

MneGenEx, MnePerEx, which are evaluated as the most and the least secure mnemonic

strategy in the previous analysis, and Control, which serves as a baseline.

Time used for password generation, the success rate of password recall, and password

recall time were measured. We also examined the effort that participants spent during

password generation and retention utilizing the NASA-Task Load Index (TLX) [66], in

which the workload is rated on 6 subscales: mental demand, physical demand, temporal

demand, performance, effort and frustration. In the NASA-TLX, participants rated the

workload of each subscale ranging on a linear scale from 0 to 20, where 0 means very low

workload and 20 means high workload.

5.4.1 Study Overview

This study was conducted on MTurk in two phases. The first phase was similar to the

previous experiment except as noted. At the beginning, we explicitly told participants that

they would be asked to return and use the password in about one week, and they could

take whatever measures they would normally take to remember and protect the passwords.

Also, a concrete creation scenario was provided to simulate a real-world password gen-

eration context. Specifically, each participant was asked to create an online account for

a bank named “Provident Citizens Bank”. One strategy randomly selected from Control,

MneGenEx, and MnePerEx was assigned to each participant for password generation. For

participants using MneGenEx and MnePerEx, the sentence creation and password genera-

tion were separated into two pages, such that the created sentence was not visible to partic-

ipants during password generation, in order to mimic the password generation environment

in practice. Participants were allowed to arbitrarily switch back and forth between the two

pages.After the password generation, each participant was asked to measure the workload

spent on creating the passwords utilizing the NASA-Task Load Index. About half of the

participants were randomly selected to recall the password that they had just created at

the end of the study, to evaluate the impact of short-term rehearsal on long-term password

recall.

113

Participants were invited back for the second phase by email. We sent the invitation

emails through MTurk starting from the 6th day after participants finished the first phase.

For those participants who did not come back to the study, we re-sent the same invitation

email for another two days. In the second phase, participants were instructed to login to

“Provident Citizens Bank” with the password they created and then to update the password.

Each participant was allowed up to 4 attempts until failure. If a participant could not recall

the password within the first 2 attempts, the strategy was displayed as a hint. Regardless of

the performance in the login process, all participants were asked to evaluate the workload

during password recall by using the NASA-TLX afterwards.

Table 5.8 and Table 5.9 list the general statistics of the first-phase and second-phase

study, respectively. In the first phase, for each condition, we list the number of participants,

average password creation time, and statistics for short-term password recall (if applica-

ble) including success rate before and after seeing the strategy as a hint, failure rate after

4 attempts, and time used in password recall. In the second phase, we list the number

(percentage) of participants that returned to the study; statistics about long-term password

recall, including the number (percentage) of participants who did not write down pass-

words; the success/failure rate and average time used in password recall for those who did

not write passwords down; the number (percentage) of participants who used the strategy

provided to update their passwords. In the table, Succ1 means the the number of partici-

pants who successfully recall the password within 2 attempts. Succ2 means the the number

of participants who successfully recall the password in the third or fourth attempts, and the

strategy was displayed as a hint. No WDP means the number of participants who did not

write down passwords. Time is measured in seconds.

5.4.2 First Phase Results

We recruited 425, 400, and 435 participants for Control, MneGenEx, and MnePerEx,

accordingly, with a total of 1260 (614 females). The participants’ ages ranged from 18

114

to over 50, with 76% between 23 to 50 years. Most participants were college students or

professionals who had bachelor or higher degrees.

Table 5.8.: Statistics for first-phase usability study for mnemonic strategies.

Strategy
Short Phase 1
Term

Count
Creation Short-term Recall

Recall Time Succ1 Succ2 Failed Time

Control
Yes 217 38.7 213(98%) 1(0%) 3(1%) 26.0
No 208 39.8 N/A N/A N/A N/A
All 425 39.2 N/A N/A N/A N/A

MneGenEx
Yes 185 177.2 178(96%) 5(3%) 2(1%) 30.6
No 215 146.7 N/A N/A N/A N/A
All 400 160.9 N/A N/A N/A N/A

MnePerEx
Yes 221 133.3 212(96%) 3(1%) 6(3%) 30.4
No 214 149.5 N/A N/A N/A N/A
All 435 141.3 N/A N/A N/A N/A

Password Creation Time. The average time used in password creation for each strat-

egy is listed in Table 5.8. The password creation time was significantly different among

the three strategies. As expected, participants spent the least time when there was no re-

striction (Control), and time spent in Control is significantly less than that MneGenEx and

MnePerEx (p < 0.001). Compared with MneGenEx, password generation time was shorter

in MnePerEx (t = 2.14, p = 0.033). That’s mainly due to the additional requirement for

personalized choice that narrowed down the search space of sentences and resulted in a

faster decision.

Workload. Fig 5.4(a) shows the average ratings in each subscale of NASA-TLX for the

three strategies. Overall, the perceived workload was relatively low, with the average rat-

ings for all subscales being below or close to 10. The workload required in Control were

lower than that from the two mnemonic strategies. The workload required in MneGenEx

115

Table 5.9.: Statistics for second-phase usability study for mnemonic strategies.

Strategy
Short Phase 2
Term Number Long-term Recall Update
Recall Returned No WDP Succ1 Succ2 Failed Time Use Strategy

Control
Yes 169(78%) 140(83%) 51(36%) 9(6%) 80(57%) 43.6 N/A
No 154(74%) 125(81%) 48(38%) 9(7%) 68(54%) 48.6 N/A
All 323(76%) 265(82%) 99(37%) 18(7%) 148(56%) 46.0 N/A

MneGenEx
Yes 156(84%) 129(83%) 62(48%) 10(8%) 57(44%) 70.1 105(67%)
No 166(77%) 142(86%) 47(33%) 13(9%) 82(58%) 113.1 113(68%)
All 322(80%) 271(84%) 109(40%) 23(8%) 139(51%) 92.6 218(68%)

MnePerEx
Yes 180(81%) 146(81%) 44(30%) 8(5%) 94(64%) 112.9 124(69%)
No 161(75%) 135(84%) 38(28%) 9(7%) 88(65%) 103.5 116(72%)
All 341(78%) 281(82%) 82(29%) 17(6%) 182(65%) 108.4 240(70%)

116

and MnePerEx is similar, and MnePerEx results in a lower workload in most of the sub-

scales. This is consistent with the comparison in password creation time.

Short-term Memorability. About half of the participants in each strategy were asked

to recall the password at the end of the first phase. From Table 5.8, we can observe that

regardless of the strategy used, almost all participants could enter the correct password.

(a) Password Generation (b) Password Recall

Figure 5.4.: Mean scores of TLX as a function of strategy and subscale for Control,
MneGenEx, and MnePerEx. Error bars represent standard errors of the scores.

5.4.3 Second Phase Results

Approximately 78% of participants from each strategy condition returned to the second

phase of the study.

Long-term Memorability. For participants who came back for the study, approximately

83% indicated that they did not write down the password or the sentence (in MneGenEx

and MnePerEx), and the ratio for the three strategies is similar, indicating that participants

using mnemonic stratetics were as confident as those in the control group, that they could

remember the passwords. We analyzed the password memorability from the participants

who claimed that they did not write down passwords or sentences.

The ratio of participants recalled the passwords successfully within first two attempts

range from 29% to 40%, depending on the strategy used, and an extra 7% of participants

were able to recall the passwords when the strategy was displayed as a hint. The per-

formance of Control and MneGenEx are similar (χ2 = 1.31, p = 0.521). Both Control

117

(χ2 = 4.66, p = 0.097) and MneGenEx (χ2 = 10.31, p = 0.006) perform significantly bet-

ter than MnePerEx, indicating that the long-term memorability of MnePerEx is relatively

bad. When there was a short-term recall, the long-term recall success rates were generally

increased for each strategy, and the increase in rates was larger for the mnemonic strategies,

especially for the MneGenEx strategy.

Long-term Recall Time. The password recall time in Control was shorter than that for

MneGenEx (t = 4.64, p < 0.001) or MnePerEx (t = 2.82, p = 0.005), whereas there was

no significant difference between MneGenEx and MnePerEx (t = 0.67, p = 0.505). Again,

whether or not short-term recall had been required did not have any significant impacts.

Workload. The workload of password retention evaluated by TLX is illustrated in

Fig 5.4(b). Comparing Fig 5.4(a) and Fig 5.4(b), perhaps the most noticeable difference is

that the subscale of performance in Fig 5.4(b) is almost double that in Fig 5.4(a), which was

mainly due to large portion of failed recall. Except physical demand and temporal demand,

which are not directly related to the task, the average rates of all the other 3 subscales also

increased dramatically, suggesting that password recall was more difficult than password

generation.

For the subscales, mental workload and frustration ratings of mnemonics strategies

were higher than those of the Control, and the rating for MneGenEx is slightly higher than

MnePerEx, which is consistent with the first phase results, suggesting the overhead from

the extra requirements of the mnemonic strategies and MnePerEx is considered to be easier

to use than MneGenEx.

Password Update. At the end the task, we asked participants to update the password,

without any restriction except that the password could not be the same as the old one. For

MneGenEx and MnePerEx, after the password was created, we asked participants whether

they used the strategy we provided. About 70% of participants said “yes” to the question,

and the percentage for MnePerEx was slightly higher. The results indicated that most of

the participants were willing to use the instructed strategy even if not forced to do so.

118

Overall, the study suggests that although workload required for MneGenEx are sig-

nificantly larger than that for Control, no significant difference in password memorabil-

ity between the two strategies is observed, which is consistent with the previous litera-

ture [46, 47]. However, MnePerEx, which shows advantage over MneGenEx in terms of

security, has a quite different behavior. It is considered to be easier to use than MneGenEx,

with the cost of higher failure rate in long-term memorability.

5.5 Discussion and Conclusion

We conducted our study with the MTurk population, which is more diverse than the

participants in typical laboratory studies [67]. The use of MTurk also allowed us to re-

cruit more participants and collect data with larger samples, which cannot be easily done

in traditional in-person data collection. We found that passwords created in the control

group (Control) is stronger than that of the existing real-world password datasets, such as

Rockyou. Therefore, the security of passwords created in the study can serve as a lower-

bound measurement.

In this chapter, we investigated the security and usability of 6 variants of mnemonic

strategies. Our studies improved the understanding of password generation strategies

through the following contributions.

• We showed that using the standard cracking-based methodology, password sets ob-

tained under all variants had similar strengths and were all much more secure than

the baseline. However, using β-guess-rates, we found that using generic instructions

that had been suggested in the literature resulted in 2.5% of the group choosing the

same sentence, and the top 10 sentences chosen by 7.8% of the group. We have also

found that converting a sentence to a password added very limited entropy. These

two facts together suggested that this variant of mnemonic strategy is no more secure

than the baseline.

• We showed that combining explicit instruction of choosing a personalized sentence

that is unlikely to be chosen by others, with the inclusion of such personalized ex-

119

amples, dramatically increased the security of the resulting passwords. Furthermore,

using only the explicit instruction or the examples alone resulted in less secure dis-

tributions.

• We showed that the instructions for the mnemonic strategy found in the literature

and recommended by security experts were not optimal in inducing secure password

distributions.

• We found that requiring personalized choice of sentences in mnemonic strategies

effected the usability of the mnemonic strategy. With the additional requirement, the

strategy turned out to be easier to use in terms of password creation. However, the

performance of long-term memorability decreased.

120

6. UNDERSTANDING WORD-BASED PASSWORD GENERATION

STRATEGIES

In this chapter, we evaluate variants of another commonly suggested password generation

strategy made famous by the xkcd comic [25]. In the xkcd comics, one is suggested to

choose 4 random words and concatenate the words to make a password. Similar strategies

were also recommended by the security community. For example, combining two or three

unrelated words and changing some of the letters to numbers or symbols [24]; mixing

letters from two words was suggested in [31], etc.

Observing that password creation steps in these strategies are similar: first pick 2 to

4 words, then somehow combine the words into a password; and passwords are generally

constructed based on words, we categorize these strategies as word-based password strate-

gies. In this chapter, we analyze the security and usability of 7 variants of word-based

strategies in a series of human subject studies which are similar to those described in Chap-

ter 5.

6.1 Introduction

Beyonds mnemonic sentence-based strategies, word-based strategies are commonly

recommended [24, 25, 31] as well. In such strategies, a password is generally created in

a two-step process: first choose some unrelated or random words (usually 2 to 4), then

combine the words into a password.

Despite the popularity of the strategies, to the best of our knowledge, the strategies have

not been evaluated in any human subject studies and little is known about the effectiveness

of them in helping users create usable and secure passwords.

In this chapter, we examine the security and usability of 7 variants of the strategy in a

series of studies. The security of the variants was evaluated in a study conducted on MTurk

121

in which a total number of 5, 484 participants were involved. In the study, each participant

was asked to create 1 or 2 passwords following different variants of the strategy. When

assessing the security of the variants, we adopt the approach of using statistical quantities

to measure the distributions of the passwords, as articulated by Bonneau [28]. In particular,

we chose to use the β-guess-rate (λβ) [29], which measures the expected success for an

attacker limited to β guesses per account. We chose to use β = 1 and β = 10, as they were

suggested in [30] as appropriate for defense against online guessing attacks and because a

larger β is not very meaningful for our sample sizes.

The usability of the variants is evaluated in a separate user study, in which password

creation time, short-term and long-term password memorability, and the workload required

in both password creation and retention are evaluated.

Our studies were conducted on Amazon Mechanical Turk, and the studies were similar

to those described in Chapter 5.

6.2 Study 1: Security

In this section, we present an overview of the first study.

We study 7 variants of word-based strategies. In such a strategy, a participant is asked to

first select a few (2, 3, or 4) unrelated words, and then combine (e.g., through concatenation,

interleaving of the words, connected with punctuation) them to obtain the password. For

instance, if the user is asked to select 3 words, and selects the words, “correct”, “horse”, and

“stable”, then one possible password according to this strategy can be “correcthorsestable”.

122

Table 6.1.: Word-based strategy description

Strategy
Short

Description
Exact instruction given to the users in the study

4WordEx
4 unrelated

words [25]

1. Choose 4 unrelated words that make sense to you.

For example, “correct, horse, battery, staple”.

2. Combine them in order into one string and use that

string as a password: “correcthorsebatterystaple”.

3WordEx

3 unrelated

words with

example

1. Choose 3 unrelated words that make sense to you.

For example, “correct, horse, battery”.

2. Combine them in order into one string and use

that string as a password: “correcthorsebattery”.

3Word
3 unrelated

words

1. Choose 3 unrelated words that make sense to you.

2. Combine them in order into one string and use

that string as a password.

3or2WordEx

2/3 unrelated

words

concatenated

together and

some letters

tweaked [24]

1. Choose two or three unrelated words.

2. Combine the words and change some of the letters

to numbers or special characters.

Examples:

“bank” and “camera” might become

“B@nkC@mera”.

“mail” and “phone” might become “m4!lf0N3”.

continued on next page

123

Table 6.1.: continued

Strategy
Short

Description
Exact instruction given to the users in the study

2WordMixEx
Two words

mixed [31]

1. Choose two unrelated words of approximately the

same length. For example, “house” and “plane”.

2. Interleave the two words (Start from the first let-

ter of the first word and the first letter of the second

word, and repeat this until you get to the last letter

of each word) to create the password. For example,

“hpoluasnee”.

2WordPunEx

Two words

connected by

punctuation.

1. Choose two unrelated short words. For example,

“house” and “plane”.

2. Concatenate them together with a punc-

tuation character between them. For example,

“house+plane”.

2WordPun

Two words

without

example.

1. Choose two unrelated short words.

2. Concatenate them together with a punctuation

character between them.

Table 6.1 gives details of the 7 variants in our study. We urge readers to read the table

before proceeding, as the differences in the strategy descriptions are an important part of

the study. Below is a summary.

• 4WordEx (4-Words-Example, 4 unrelated words, with the xkcd example [25]),

• 2WordMixEx (2-Words-Mix-Example, interleaving 2 words, with an example, used

in [31]),

• 2WordPunEx (2-Words-Punctuation-Example, two words with a punctuation con-

necting them, with an example),

124

• 3WordEx (3-Words-Example, 3 unrelated words, with an example),

• 3or2WordEx (2-or-3-Words-Example, 2 or 3 unrelated words with some letters re-

placed with special symbols or digits, with examples, suggested in [24]),

• 3Word (3-Words, 3 unrelated words, no example),

• 2WordPun (2-Words-Punctuation, two words with a punctuation, no example).

In addition to the 7 variants, a control group Control, in which we ask for passwords

containing at least 8 characters without any extra restriction, was included in the study as

well.

Table 6.2.: Word-based strategies used in each round of the study.

Study Number Strategies
1 864 4WordEx, 2WordMixEx
2 777 4WordEx, 2WordPunEx
3 753 3WordEx, 3or2WordEx
4 745 3Word, 2WordPun
5 868 4WordEx
6 799 4WordEx
7 678 Control

6.2.1 Study Design

We conducted the study through Amazon Mechanical Turk (MTurk), and all partic-

ipants were at least 18 years old. We limited our data collection to participants from the

United State because the strategies were constructed using the English language. The study

has 7 rounds. Except the control group (Control in Round 7), in each round, participants

were asked to create passwords for one or two variants of word-based strategy. The vari-

ants presented in each round as well as the number of participants recruited are listed in

Table 6.2. If multiple variants were studied in one round, the order of the variants presented

was randomized among participants. Participants were allowed to participate in only one

125

round. If a participant was in more than one rounds of the study, we kept only the data from

the first time that the participant was in.

In the study, participants were asked to type the words used in the intermediate step. Af-

ter that, participants were asked to enter the password they created twice, and the password

typed in each time had to match each other before they could proceed.

We warned participants not to use their actual passwords. In the study, we forbade pass-

words that were the same as the examples and that did not appear to be generated following

the instructions. In all the variants of word-based strategies except 3or2WordEx, once the

words were chosen, the sequence of letters in the passwords was fixed. We checked if the

password one generated matched with the words. In 3or2WordEx, since we asked partici-

pants to change some letters to numbers or special symbols, and participants were allowed

to, e.g., replace syllables with letters with similar pronunciation (e.g., “ph”→“f”), we only

required that there were non-letter characters in the passwords.

6.3 Results From Study 1

We evaluate the security of passwords as well as words used in password creation uti-

lizing the same metrics described in Chapter 5.

6.3.1 Analyzing Passwords Using Probability Models and Password Strength Me-

ters.

Figure 6.1 illustrates the evaluation of the strength of passwords generated using the

strategies as well as two commonly used datasets Yahoo and Phpbb against today’s attacks

utilizing (1) the 5-order Markov Model trained on Rockyou dataset, (2) Google password

strength API1, and (3) Zxcvbn [23] deployed by Dropbox.

In all the three graphs, the curve for the control group (Control) is below the curves for

Yahoo and Phpbb, indicating that passwords created in the study are stronger than that in

real-world datasets. Therefore, the security of passwords created in the study can serve as

1https://accounts.google.com/RatePassword

126

(a) 5-order Markov Model (Part 1) (b) 5-order Markov Model (Part 2)

(c) Google API (Part 1) (d) Google API (Part 2)

(e) Zxcvbn (Part 1) (f) Zxcvbn (Part 2)

Figure 6.1.: Comparison of strength of passwords from different word-based strategies and
datasets using probabilistic models and password strength meters.

127

a lower-bound measurement. On the other hand, curves for Yahoo, Phpbb, and Control are

significantly higher than the other curves in most of the graphs. The only exception is that

Figure 6.1(e), the performance of 2WordPunEx and 2WordPun is relatively good. This is

because in zxcvbn, the entropy of passwords created in the two strategies are the sum of the

entropy of the two selected words and the entropy of the punctuation. Since the entropy of

a single charater (the punctuation) is limited, the estimated entropy in zxcvbn is approxi-

mately the entropy of two words. The comparison between Yahoo, Phpbb, Control and the

other strategies indicates that according to the metrics, passwords created without any spe-

cific strategy are significantly weaker than the other datasets. When guessing according to

the order suggested by the metrics, more passwords in Yahoo, phpbb, and Control will be

cracked than passwords from any word-based strategy. However, this conclusion is due to

the fact that the model or the meters are designed to evaluate generally selected passwords,

which is broadly similar to passwords in Yahoo and Phpbb, and passwords generated from

the word-based strategies result in quite different distributions.

Among the word-based strategies, the variants requiring more words are evaluated as

stronger in general. The only exception is 2WordMixEx. Based on Markov Model and

zxcvbn, 2WordMixEx performs similar to 4WordEx in terms of security. After interleaving

letters, the resulted passwords are likely to be considered as random strings by the models

and password meters, which results in high entropy assigned.

6.3.2 Analyzing Passwords Using Statistical Quantities.

We evaluate the strength of words used in strategies as well as the resulted passwords

utilizing λ̃1 and λ̃10 metrics. The evaluation of Control is listed in Table 5.3 and has been

discussed in Chapter 5. Table 6.3 gives the λ̃1 (top) and λ̃10 (top10) values of sentences and

the resulted passwords for all mnemonic sentence-based variants.

When counting the collisions in word selections, the order of the words is not taken

into account, i.e., we first sort the chosen words and then evaluated on the sorted words. In

2WordMixEx, the minimum length requirement of passwords is 6, while the other variants

128

Table 6.3.: λ̃1 (top) and λ̃10 (top10) in word-based strategies.

Strategy Count
λ̃1 (top) λ̃10 (top10)

Words
Password

Words
Password

Case
Insensitive

Case
Sensitive

Case
Insensitive

Case
Sensitive

3WordEx 753 0.1%(1) 0.1%(1) 0.1%(1) 1.3%(10) 1.3%(10) 1.3%(10)
3Word 745 0.3%(2) 0.3%(2) 0.3%(2) 1.6%(12) 1.6%(12) 1.5%(11)

3or2WordEx 753 0.3%(2) 0.1%(1) 0.1%(1) 2.1%(16) 1.3%(10) 1.3%(10)
2WordMixEx 864 3.8%(33) 2.0%(17) 2.0%(17) 6.8%(59) 6.1%(53) 6.0%(52)
2WordMixEx8 761 0.5%(4) 0.5%(4) 0.5%(4) 3.7%(28) 3.2%(24) 3.0%(23)
2WordPunEx 777 0.4%(3) 0.3%(2) 0.3%(2) 3.2%(25) 1.5%(12) 1.5%(12)
2WordPun 745 0.4%(3) 0.1%(1) 0.1%(1) 2.6%(19) 1.3%(10) 1.3%(10)

4WordEx 3307 0.1%(2) 0.1%(2) 0.1%(2) 0.5%(15) 0.4%(14) 0.4%(13)

3WordAll 1709 0.2%(3) N/A N/A 1.1%(19) N/A N/A
2WordAll 2927 1.2%(34) N/A N/A 2.7%(79) N/A N/A

Control 678 N/A 1.2%(8) 0.9%(6) N/A 3.4%(23) 2.9%(20)

129

all require passwords with at least 8 characters. If we remove all passwords whose length is

less than 8 in 2WordMixEx, we are left with 761 passwords. We label this set of passwords

as 2WordMixEx8.

We observe that there is no significant differences in terms of λ̃1 and λ̃10 for variants

requiring the same number of words. We find that the most frequently used words in each

variant and present the results in Table 6.4. The table suggests that the most popular words

are almost identical in all the variants.

Table 6.5.: Popular passwords and probability for top 5 frequently chosen word combina-
tions in word-based strategies.

Rank Words Passwords Frequency

4WordEx (3307)

1 ate cat dog food (2) dogatecatfood (2); 0.06%

2 brown fox quick the (2) thequickbrownfox (2); 0.06%

3 four one three two (2)
onetwothreefour (1); ONET-

WOTHREEFOUR (1);
0.06%

4 dog fox lazy quick (2)
quickfoxlazydog (1); quickdoglazy-

fox (1);
0.06%

5 blue green red yellow (2)
redyellowgreenblue (1); redblue-

greenyellow (1) ;
0.06%

3WordEx (753) No collisions found.

3Word (745)

1 battery horse staple (2) horsebatterystaple (2); 0.27%

2 i love you (2) Iloveyou (1); iloveyou (1); 0.27%

3or2WordEx (753)

1 blanket dog (2) d@gblank*t (1); d@gb1anket (1); 0.27%

2 cat school (2) c4t$c#00l (1); c4t$ch00l (1); 0.27%

3 car house (2) H0us3c@r (1); h0us3ca7 (1); 0.27%

continued on next page

130

Table 6.5.: continued

Rank Words Passwords Frequency

4 dog phone (2) p40ned0g (1); d09ph0n3 (1); 0.27%

5 fuck you (2) Fuck&you (1); f@#$ y@u (1); 0.27%

2WordMixEx (864)

1 cat dog (33) cdaotg (17); dcoagt (16); 3.8%

2 chair table (4) tcahbalier (3); cthaabilre (1); 0.46%

3 hate love (4) lhoavtee (4); 0.46%

4 house mouse (4)
hmoouussee (2); mhoouussee (1);

MHOOUUSSEE (1);
0.46%

5 chair couch (3) ccohuacihr (2); 0.35%

2WordPunEx (777)

1 dog tree (3)
tree&dog (1); dog!tree (1);

dog+tree (1);
0.39%

2 car tree (3) tree:car (1); tree-car (1); car!tree (1); 0.39%

3 house tree (3)
tree-house (1); tree&house (1);

tree!house (1);
0.39%

4 car horse (3) horse!car (2); horse+car (1); 0.39%

5 cat chair (3)
cat!chair (1); chair+cat (1);

cat+chair (1);
0.39%

2WordPun (745)

1 hate love (3)
love;hate (1); love*hate (1);

love$hate (1);
0.40%

2 ninja tiger (2) ninja@tiger (1); tiger ninja (1); 0.27%

3 box house (2) box.house (1); box!house (1); 0.27%

4 dog flying (2) dog.flying (1); dog!flying (1); 0.27%

continued on next page

131

Table 6.5.: continued

Rank Words Passwords Frequency

5 cat computer (2)
cat@computer (1);

Cat.Computer (1);
0.27%

3WordAll (1709)

1 battery horse staple (3) N/A 0.18%

2 i love you (2) N/A 0.12%

3 car dog house (2) N/A 0.12%

4 bat corn dog (2) N/A 0.12%

5 car dog poker (2) N/A 0.12%

2WordAll (2927)

1 cat dog (34) N/A 1.2%

2 hate love (8) N/A 0.27%

3 house mouse (6) N/A 0.21%

4 cats dogs (6) N/A 0.21%

5 dog phone (5) N/A 0.17%

Two Words. When asked to choose two random words and merge their letters one by

one (2WordMixEx), 19 pairs of words were selected more than once, for a total of 77, and

the 10 most popular pairs of words (top10) were picked 59 times. 33 participants chose the

words “cat dog”. This yielded λ̃1 = 3.8%, λ̃10 = 6.8%. If we remove the passwords with

length less than 8 from 2WordMixEx, then λ̃1 and λ̃10 are reduced to 0.5% and 3.7%, as the

most frequently appeared words are “cat dog”.

Beyond “cat dog”, the other frequently chosen word combinations were “house mouse”,

and “hate love”. See Table 6.5 for other commonly chosen words, and the resulted pass-

words.

Although the instructions explicitly asked the users to choose two unrelated words in

the description, people leaned towards choosing two words that were somewhat related to

132

Table 6.4.: Word frequency in word-based strategies.

Strategy Total W1 W2 W3 W4 W5
4WordEx 13504 dog (3802.81%) cat (2661.97%) car (2251.67%) phone (1721.27%) house (1601.18%)
3WordEx 2259 dog (572.52%) cat (441.95%) car (391.73%) house (220.97%) love (200.89%)
3Word 2235 dog (753.36%) cat (472.10%) car (371.66%) love (261.16%) blue (231.03%)

3or2WordEx 1717 dog (502.91%) cat (392.27%) car (281.63%) phone (281.63%) tree (181.05%)
3or2WordEx 2w 1084 dog (272.49%) phone (211.94%) cat (201.85%) book (121.11%) chair (100.92%)
3or2WordEx 3w 633 dog (233.63%) car (203.16%) cat (193.00%) tree (101.58%) phone (71.11%)
2WordMixEx 1727 cat (472.72%) dog (472.72%) mouse (321.85%) phone (221.27%) book (221.27%)
2WordPunEx 1554 dog (654.18%) cat (493.15%) car (362.32%) tree (231.48%) house (211.35%)
2WordPun 1490 dog (493.29%) cat (463.09%) car (191.28%) apple (130.87%) house (120.81%)
3WordAll 5127 dog (1553.02%) cat (1102.15%) car (961.87%) love (510.99%) blue (440.86%)
2WordAll 5854 dog (1883.21%) cat (1622.77%) car (761.30%) phone (671.14%) mouse (601.02%)

133

each other. This observation can be explained by Spreading Activation, which has been

recognized in Cognitive Psychology [68]. A fairly widely accepted view is that memory

is organized as a network of associations, and when one activates one item it will activate

related ones.

For 2WordPunEx, 17 word combinations were chosen more than once, and λ̃10 is 3.2%.

For 2WordPun, 8 word combinations were chosen more than once, and λ̃10 is 2.6%. The

λ̃10’s in password selections for 2WordPunEx and 2WordPun are much less than those

in the word selections, this is primarily due to the choice of punctation. No significant

difference is observed in λ̃10 in word selections from the three two-word variants.

Combining all variants that require 2 words and those who chose only two words in

3or2WordEx, 2, 927 word pairs were collected, with 88 word combinations selected more

than once, and λ̃1 = 1.2%, λ̃10 = 2.7%. The quantities are similar to that from Control, and

no significant difference is observed (z = 0.98, p = 0.16). Observing that both λ̃1 and λ̃10

from word combination selections are larger than those of password choices in Rockyou

dataset, the security provided by 2-word based variants is far from satisfactory. Additional

entropy (e.g., adding punctuation between words) can be introduced during the step where

words are transformed into password but they are likely to be predictable. Table 6.6 lists

the 5 most popular chosen punctuations in 2WordPunEx and 2WordPun as well as their

frequency. From the table, we can observe that the top 5 punctuations count for more

than 70% of all punctuation choices. If the word combination is known, more than 70%

passwords will be cracked within 5 attempts.

Table 6.6.: Punctuation frequency in 2WordPunEx and 2WordPun.

Strategy Total P1 P2 P3 P4 P5
2WordPunEx 777 +(24%) !(13%) -(12%) .(11%) &(11%)
2WordPun 745 .(31%) !(26%) -(12%) ,(6%) ?(3%)

Three Words. For the two three-words variants, the only two word combinations selected

more than once are “battery horse staple” and “I love you”. The former is the first three

words from the example in the xkcd comics. Not surprisingly, λ̃1 and λ̃10 from three-word

134

based variants are all much lower than those from the two-word based variants. Observing

that there is no significant difference between 3WordEx and 3Word (for λ̃10, z = 0.45, p =

0.325), we combine all variants requiring three words in order to get a larger sample of data.

For all the 1, 709 passwords collected from 3WordEx, 3Word, and those in 3or2WordEx that

use three words, the observed λ̃1 is 0.2% and λ̃10 is 1.1%, both are significantly less than

that from two word variants and the control group (Control), indicating that passwords

created using three word variants are likely to be stronger than the baseline.

Four Words. For the 3, 307 total passwords collected from the four words strategy, λ̃1

and λ̃10 are 0.06% and 0.4%. λ̃10 observed in the 4 word variant is even smaller than that

of 3 word variant (z = 2.69, p = 0.004).

Overall, λ̃1 and λ̃10 in words selection reduce with the increasing number of words

required. Since the entropy introduced in the step converting words into passwords is

limited, the results indicate that variants requiring more words provide stronger passwords,

where at least three words is sufficient to provide passwords stronger than those chosen by

typical users without any strategy specified.

6.4 Study 2: Usability

We conducted a two-phase user study evaluating the usability of the word-based strate-

gies. The study design was almost identical to that described in Chapter 5.4 except that the

usability of Control, 3WordEx, and 4WordEx was evaluated in this section.

Table 6.7 and Table 6.8 list the general statistics of the first-phase and second-phase

study, respectively. In the first phase, for each condition, we list the number of participants,

average password creation time, and statistics for short-term password recall (if applica-

ble) including success rate before and after seeing the strategy as a hint, failure rate after

4 attempts, and time used in password recall. In the second phase, we list the number

(percentage) of participants that returned to the study; statistics about long-term password

recall, including the number (percentage) of participants who did not write down pass-

words; the success/failure rate and average time used in password recall for those who did

135

not write passwords down; the number (percentage) of participants who used the strategy

provided to update their passwords. In the table, Succ1 means the the number of partici-

pants who successfully recall the password within 2 attempts. Succ2 means the the number

of participants who successfully recall the password in the third or fourth attempts, and the

strategy was displayed as a hint. No WDP means the number of participants who did not

write down passwords. Time is measured in seconds.

6.4.1 First Phase Results

We recruited 425, 388, and 403 participants for Control, 3WordEx, and 4WordEx, ac-

cordingly, with a total of 1216 (624 females).

Table 6.7.: Statistics for first-phase usability study for word-based strategies.

Strategy
Short Phase 1
Term

Count
Creation Short-term Recall

Recall Time Succ1 Succ2 Failed Time

Control
Yes 217 38.7 213(98%) 1(0%) 3(1%) 26.0
No 208 39.8 N/A N/A N/A N/A
All 425 39.2 N/A N/A N/A N/A

3WordEx
Yes 194 74.9 192(99%) 1(1%) 1(1%) 25.5
No 194 68.5 N/A N/A N/A N/A
All 388 71.7 N/A N/A N/A N/A

4WordEx
Yes 202 95.7 200(99%) 0(0%) 2(1%) 28.8
No 201 92.3 N/A N/A N/A N/A
All 403 94.0 N/A N/A N/A N/A

Password Creation Time. The average time used in password creation for each strategy

is listed in Table 6.7. The password creation time was significantly different among the

three strategies. As expected, participants spent the least time when there was no restriction

(Control), and time spent inControl is significantly less than that 3WordEx (t = 10.506, p <

0.001) and 4WordEx (t = 12.67, p < 0.001). The time required for selecting an additional

136

Table 6.8.: Statistics for second-phase usability study for word-based strategies.

Strategy
Short Phase 2
Term Number Long-term Recall Update
Recall Returned No WDP Succ1 Succ2 Failed Time Use Strategy

Control
Yes 169(78%) 140(83%) 51(36%) 9(6%) 80(57%) 43.6 N/A
No 154(74%) 125(81%) 48(38%) 9(7%) 68(54%) 48.6 N/A
All 323(76%) 265(82%) 99(37%) 18(7%) 148(56%) 46.0 N/A

3WordEx
Yes 151(78%) 121(80%) 37(31%) 11(9%) 73(60%) 187.8 105(70%)
No 149(77%) 126(85%) 29(23%) 10(8%) 87(69%) 66.2 107(72%)
All 300(77%) 247(82%) 66(27%) 21(9%) 160(65%) 125.8 212(71%)

4WordEx
Yes 156(77%) 128(82%) 42(33%) 9(7%) 77(60%) 77.1 102(65%)
No 155(77%) 116(75%) 25(22%) 5(4%) 86(74%) 75.2 99(64%)
All 311(77%) 244(78%) 67(27%) 14(6%) 163(67%) 76.2 201(65%)

137

word was significant as well. Time spent in 4WordEx was significantly longer than that in

3WordEx (t = 4.54, p < 0.001).

Workload. Fig 6.2(a) shows the average ratings in each subscale of NASA-TLX for the

three strategies. Overall, the perceived workload was relatively low, with the average rat-

ings for all subscales being below or close to 7. Among the 6 subscales, physical demand

was rated the lowest in general, as it is not critical to the current task. The temporal effort

and overall performance among the three strategies were similar, because all participants

successfully created their passwords. For the other three subscales, the workload required

in Control is similar to that in 3WordEx, indicating that using 3WordEx did not require-

ment extra workload in creating passwords comparing with the baseline. However, the

three subscales for 4WordEx was significantly higher. The difficulty in creating passwords

significantly increased when the fourth word was required.

Short-term Memorability. About half of the participants in each strategy were asked

to recall the password at the end of the first phase. From Table 6.7, we can observe that

regardless of the strategy used, almost all participants could enter the correct password.

(a) Password Generation (b) Password Recall

Figure 6.2.: Mean scores of TLX as a function of strategy and subscale for Control,
3WordEx, and 4WordEx. Error bars represent standard errors of the scores.

138

6.4.2 Second Phase Results

Approximately 77% of participants from each strategy condition returned to the second

phase of the study.

Long-term Memorability. For participants who came back for the study, approximately

80% indicated that they did not write down the password or the words (in 3WordEx and

4WordEx), and the ratio for the three strategies was similar, indicating that participants

were confident that they could remember the passwords without writing them across the

strategies, and they did not believe passwords created in word-based strategies were harder

to recall. We analyzed the password memorability from the participants who claimed that

they did not write down passwords or sentences.

About 37% of participants in Control and about 27% participants using word-based

strategies recalled the passwords successfully within first two attempts. When the strat-

egy was displayed as a hint, the ratio of participants were able to recall the passwords

increase ranging from 5% to 9% depending on the strategy. Control gave the low-

est failure rate (56%) in long-term password recall, followed by 3WordEx (65%), and

4WordEx (67%). The performance of Control was significantly better that from 3WordEx

(χ2 = 6.67, p = 0.036), and 4WordEx (χ2 = 6.54, p = 0.038), and no significant differ-

ence between 3WordEx and 4WordEx was observed (χ2 = 1.42, p = 0.492). When there

was a short-term recall, the long-term recall success rates were generally increased for each

strategy, and the increase in rates was larger for the word-based strategies. However, the

difference among the strategies was not significant.

Long-term Recall Time. The password recall time in Control was similar to 3WordEx

(t = 1.25, p = 0.21), but was significantly shorter than that for 4WordEx (t = 5.25, p <

0.001). The comparison result is consistent with the comparison of password creation

among the strategies. Again, whether or not short-term recall had been required did not

have any significant impacts.

Workload. The workload of password retention evaluated by TLX is illustrated in

Fig 6.2(b). Comparing Fig 6.2(a) and Fig 6.2(b), perhaps the most noticeable difference is

139

that the subscale of performance in Fig 6.2(b) is almost double that in Fig 6.2(a), which was

mainly due to large portion of failed recall. Except physical demand and temporal demand,

which are not directly related to the task, the average rates of all the other 3 subscales also

increased dramatically, suggesting that password recall was more difficult than password

generation.

For the subscales, mental workload and frustration ratings of word-based strategies

were higher than those of the Control, suggesting the overhead from the extra requirements

of the word-based strategies. No significant difference is observed between 3WordEx and

4WordEx, which is consistent with the comparison in success rate in long-term retention.

Password Update. At the end the task, we asked participants to update the password,

without any restriction except that the password could not be the same as the old one. For

3WordEx and 4WordEx, after the password was created, we asked participants whether they

used the strategy we provided. About 71% of participants using 3WordEx said “yes” to the

question, and the ratio is higher than that for 4WordEx (65%). The results indicated that

most of the participants were willing to use the instructed strategy even if not forced to do

so, and 3WordEx is more preferable.

Overall, the study suggests that both 3WordEx and 4WordEx perform worse than

Control in terms of long-term password retention. Although 3WordEx and 4WordEx have

similar failure rate in long-term password retention, paricipants believed 4WordEx was

harder to use than 3WordEx. 3WordEx outperform 4WordEx in almost all the measure-

ments. Comparing with 3WordEx, passwords from 4WordEx takes longer time and more

workload to create, and participants are less willing to use the strategy.

6.5 Conclusion

In this chapter, we investigated the security and usability of 7 variants of word-based

password creation strategies. We showed that popular words, such as “cat” and “dog” were

commonly selected among the variants, and the security of the variants depended on the

number of words required. Using the standard cracking-based methodology, password sets

140

obtained under all variants were all much more secure than the baseline. However, using

β-guess-rates, we found that variants with two words required were likely to produce pass-

words with similar security level to the baseline. On the other hand, requiring 3 or 4 words

significantly reduced the number of word combinations that are chosen more than once,

suggesting significantly stronger resulted passwords, where the variant requiring 4 words

performs better. In terms of usability, both 3WordEx and 4WordEx performed worse than

Control in terms of long-term password retention, and no significant difference between

3WordEx and 4WordEx was observed. However, 4WordEx was considered to be harder to

use than 3WordEx. Comparing with 3WordEx, passwords from 4WordEx took longer time

and more workload to create, and participants were less willing to use the strategy.

141

7. SUMMARY

In this dissertation, we improved the eco-system of passwords from multiple aspects.

First, we provided methodology to help password research. We introduced probability

threshold graphs for evaluating password datasets. We introduced knowledge and tech-

niques from the rich literature of statistical language modeling into password modeling.

We also identified new issues (such as normalization) that arise from modeling passwords,

and a broad design space for password models, including both whole-string models and

template-based models. Third, we have conducted a systematic study of many password

models, and obtained a number of findings. In particular, we showed that the PCFGW

model, which has been assumed to be the state of the art and has been widely used in

password research, underperformed whole-string Markov models in our experiments. We

expect that the new methodology and knowledge of effectiveness of Markov models can

benefit future password research.

Second, we improved the password policies and practice used by websites by address-

ing the question how to best check weak passwords. In particular, we modeled different

password strength checking methods (including password strength meters) as Password

Ranking Algorithms (PRAs), and we introduced two metrics: the β-Residual Strength

Graph (β-RSG) and the Normalized β-Residual Strength Graph (β-NRSG), to compare

them using real world password datasets. In our evaluation, we found unreasonably high

frequency of some suspicious passwords. We removed the associated accounts by identify-

ing suspicious account IDs. We then, applied the metrics on cleansed datasets, and showed

that dictionary-based PRA had similar performance with the sophisticated PRAs. If the

size of PRAs are limited in order to be fit into a client, a hybrid method combining a small

dictionary of weak passwords and a Markov Model with backoff with a limited size can

provide the most accurate strength measurement.

142

Finally, we studied the most commonly suggested password creation strategies. We

investigate the security and usability of 6 variants of mnemonic sentence-based strategies

and 7 variants of word-based strategies. Regarding mnemonic sentence-based strategies,

we showed that using the standard cracking-based methodology, password sets obtained

under all variants have similar strengths and were all much more secure than the base-

line. However, using β-guess-rates, we found that different instructions had tremendous

impact on the security level of the resulted passwords. In particular, the instructions for

the mnemonic strategy found in the literature and recommended by security experts are not

optimal in inducing secure password distributions. However, combining explicit instruc-

tions of choosing a personalized sentence that is unlikely to be chosen by others, with the

inclusion of corresponding examples, dramatically increased the security of the resulting

passwords. For word-based strategies, we showed that popular words, such as “cat” and

“dog” were commonly selected among the variants, and the security of the strategies de-

pended on the number of words required. Using β-guess-rates, we found that variants with

two words required are likely to produce passwords with similar security level to the base-

line. On the other hand, the requirement of 3 or 4 words significantly reduced the number

of word combinations that are chosen more than once, suggesting significantly stronger

resulted passwords, where the variant requiring 4 words performed better. In terms of us-

ability, both 3-word based strategies and 4-word based strategies performed worse than the

control group in terms of long-term password retention. The extra difficulty in password

creation introduced by requiring the fourth word was observed.

Overall, in this dissertation, we discussed metrics evaluating password datasets and

password models. Based on that, we improved password policies used by websites. If

weak passwords are checked and filtered properly, typical users will be encouraged or

even forced to create passwords that are less predictable and more crack-resistant. On

the other hand, users need knowledge and skills, which is generally known as password

creation strategies, to create strong and memorable passwords. We study the security and

memorability of passwords induced by several commonly suggested strategies. We expect

a combination of proper weak password checking by websites and the skill of creating

143

strong and memorable passwords by users has significant impact on reducing weak and

predictable passwords, and therefore improve the eco-system of passwords.

REFERENCES

144

REFERENCES

[1] C. Herley and P. C. van Oorschot, “A research agenda acknowledging the persistence
of passwords,” IEEE Security & Privacy, vol. 10, no. 1, pp. 28–36, 2012.

[2] A. Adams and M. A. Sasse, “Users are not the enemy,” Communications of the ACM,
vol. 42, no. 12, pp. 40–46, 1999.

[3] R. Morris and K. Thompson, “Password security: A case history,” Communications
of the ACM, vol. 22, no. 11, pp. 594–597, 1979.

[4] D. V. Klein, “Foiling the cracker: A survey of, and improvements to, password secu-
rity,” in Proceedings of the 2nd USENIX Security Workshop, 1990, pp. 5–14.

[5] F. T. Grampp and R. H. Morris, “The unix system: Unix operating system security,”
AT&T Bell Laboratories Technical Journal, vol. 63, no. 8, pp. 1649–1672, 1984.

[6] D. Florêncio and C. Herley, “A large-scale study of web password habits,” in Proceed-
ings of the 16th International Conference on World Wide Web, 2007, pp. 657–666.

[7] S. Riley, “Password security: What users know and what they actually do,” in Usabil-
ity News, ser. 1, B. S. Chaparro, Ed., vol. 8. Software Usability Research Laboratory
(SURL) at Wichita State University, 2006.

[8] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin,
L. F. Cranor, and J. Lopez, “Guess again (and again and again): Measuring password
strength by simulating password-cracking algorithms,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2012, pp. 523–537.

[9] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cra-
nor, and S. Egelman, “Of passwords and people: Measuring the effect of password-
composition policies,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2011, pp. 2595–2604.

[10] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer, N. Christin,
and L. F. Cranor, “Encountering stronger password requirements: User attitudes and
behaviors,” in Proceedings of the 6th Symposium on Usable Privacy and Security,
2010, p. 2.

[11] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek, T. Passaro, R. Shay,
T. Vidas, L. Bauer et al., “How does your password measure up? the effect of strength
meters on password creation,” in Proceedings of the 21st USENIX Security Sympo-
sium, 2012, pp. 65–80.

[12] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern password expira-
tion: An algorithmic framework and empirical analysis,” in Proceedings of the 17th
ACM Conference on Computer and Communications Security, 2010, pp. 176–186.

145

[13] J. H. Huh, S. Oh, H. Kim, K. Beznosov, A. Mohan, and S. R. Rajagopalan, “Sur-
pass: System-initiated user-replaceable passwords,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security, 2015, pp. 170–181.

[14] “John the ripper password cracker,” 2014, http://www.openwall.com/john/.

[15] W. E. Burr, D. F. Dodson, and W. T. Polk, Electronic authentication guideline. US
Department of Commerce, Technology Administration, National Institute of Stan-
dards and Technology, 2004.

[16] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, 2010, pp. 162–
175.

[17] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords using time-
space tradeoff,” in Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, 2005, pp. 364–372.

[18] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password cracking using
probabilistic context-free grammars,” in Proceedings of the IEEE Symposium on Se-
curity and Privacy, 2009, pp. 391–405.

[19] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-strength meters from
Markov models,” in Proceedings of the Network and Distributed System Security Sym-
posium, 2012.

[20] C. Castelluccia, A. Chaabane, M. Dürmuth, and D. Perito, “When privacy meets
security: Leveraging personal information for password cracking,” arXiv preprint
arXiv:1304.6584, 2013.

[21] X. de Carné de Carnavalet and M. Mannan, “From very weak to very strong: Analyz-
ing password-strength meters,” in Proceedings of the Network and Distributed System
Security Symposium, 2014.

[22] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri, D. Kurilova,
M. L. Mazurek, W. Melicher, and R. Shay, “Measuring real-world accuracies and bi-
ases in modeling password guessability,” in Proceeding of the 24th USENIX Security
Symposium, 2015, pp. 463–481.

[23] D. Wheeler, “zxcvbn: realistic password strength estimation. Dropbox blog article,”
2012.

[24] K. Scarfone and M. Souppaya, “Guide to enterprise password management (draft),”
2009, NIST Special Publication 800-118 (Draft).

[25] “xkcd password generator,” 2011, http://preshing.com/20110811/xkcd-password-
generator.

[26] B. Schneier, “Choosing secure passwords,” 2014, https://www.schneier.com/blog/
archives/2014/03/choosing secure 1.html.

[27] ——, “Passwords are not broken, but how we choose them sure is,” 2008,
https://www.schneier.com/blog/archives/2014/03/choosing secure 1.html.

146

[28] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus of 70 million
passwords,” in Proceedings of the IEEE Symposium on Security and Privacy, 2012,
pp. 538–552.

[29] S. Boztas, “Entropies, guessing, and cryptography,” Department of Mathematics,
Royal Melbourne Institute of Technology, Tech. Rep. 6, 1999.

[30] S. Brostoff and M. A. Sasse, ““Ten strikes and you’re out”: Increasing the number
of login attempts can improve password usability,” in Proceedings of the Human-
computer Interaction Security Workshop, 2003.

[31] “How to create a password you can remember,” 2013,
http://www.wikihow.com/Create-a-Password-You-Can-Remember.

[32] E. H. Spafford, “Opus: Preventing weak password choices,” Computers & Security,
vol. 11, no. 3, pp. 273–278, 1992.

[33] F. Bergadano, B. Crispo, and G. Ruffo, “Proactive password checking with decision
trees,” in Proceedings of the 4th ACM Conference on Computer and Communications
Security, 1997, pp. 67–77.

[34] U. Manber and S. Wu, “An algorithm for approximate membership checking with
application to password security,” Information Processing Letters, vol. 50, no. 4, pp.
191–197, 1994.

[35] J. J. Yan, “A note on proactive password checking,” in Proceedings of the 2001 Work-
shop on New Security Paradigms, 2001, pp. 127–135.

[36] A. Forget, S. Chiasson, P. C. van Oorschot, and R. Biddle, “Improving text passwords
through persuasion,” in Proceedings of the 4th Symposium on Usable Privacy and
Security, 2008, pp. 1–12.

[37] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley, “Does my
password go up to eleven?: The impact of password meters on password selection,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
2013, pp. 2379–2388.

[38] S. Schechter, C. Herley, and M. Mitzenmacher, “Popularity is everything: A new
approach to protecting passwords from statistical-guessing attacks,” in Proceedings
of the 5th USENIX Conference on Hot Topics in Security, 2010, pp. 1–8.

[39] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of passwords and
their security impact,” in Proceedings of the Network and Distributed System Security
Symposium, 2014.

[40] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An empirical anal-
ysis.” in INFOCOM, vol. 10, 2010, pp. 983–991.

[41] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation: Fast and reliable
password checking,” in Proceedings of the 22nd ACM Conference on Computer and
Communications Security, 2015, pp. 158–169.

[42] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F. Cranor, P. G.
Kelley, R. Shay, and B. Ur, “Measuring password guessability for an entire univer-
sity,” in Proceedings of the 20th ACM Conference on Computer and Communications
Security, 2013, pp. 173–186.

147

[43] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled web of pass-
word reuse.” in Proceedings of the Network and Distributed System Security Sympo-
sium, vol. 14, 2014, pp. 23–26.

[44] R. Shay, L. Bauer, N. Christin, L. F. Cranor, A. Forget, S. Komanduri, M. L. Mazurek,
W. Melicher, S. M. Segreti, and B. Ur, “A spoonful of sugar?: The impact of guid-
ance and feedback on password-creation behavior,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2015, pp. 2903–2912.

[45] S. Komanduri, R. Shay, L. F. Cranor, C. Herley, and S. Schechter, “Telepathwords:
Preventing weak passwords by reading users’ minds,” in Proceedings of the 23rd
USENIX Security Symposium, 2014, pp. 591–606.

[46] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “The memorability and security
of passwords: some empirical results,” Technical Report-University Of Cambridge
Computer Laboratory, p. 1, 2000.

[47] J. J. Yan, A. F. Blackwell, R. J. Anderson, and A. Grant, “Password memorability and
security: Empirical results.” IEEE Security & Privacy, vol. 2, no. 5, pp. 25–31, 2004.

[48] K.-P. L. Vu, B.-L. B. Tai, A. Bhargav, E. E. Schultz, and R. W. Proctor, “Promoting
memorability and security of passwords through sentence generation,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 48, no. 13, 2004,
pp. 1478–1482.

[49] C. Kuo, S. Romanosky, and L. F. Cranor, “Human selection of mnemonic phrase-
based passwords,” in Proceedings of the 2nd Symposium on Usable Privacy and Se-
curity, 2006, pp. 67–78.

[50] “Passwords,” 2009, http://wiki.skullsecurity.org/Passwords.

[51] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and critique of two
password managers,” in Proceedings of the 15th USENIX Security Symposium, 2006.

[52] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password manager:
Security analysis of web-based password managers,” in Proceedings of the 23rd
USENIX Security Symposium, 2014, pp. 465–479.

[53] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson, “Password managers: Attacks
and defenses,” in Proceedings of the 23rd USENIX Security Symposium, 2014, pp.
449–464.

[54] R. Zhao and C. Yue, “All your browser-saved passwords could belong to us: A secu-
rity analysis and a cloud-based new design,” in Proceedings of the 3rd ACM Confer-
ence on Data and Application Security and Privacy, 2013, pp. 333–340.

[55] ——, “Toward a secure and usable cloud-based password manager for web browsers,”
Computers & Security, vol. 46, pp. 32–47, 2014.

[56] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu, and X. Han, “Cracking
app isolation on Apple: Unauthorized cross-app resource access on MAC OS X and
iOS,” in Proceedings of the 22nd ACM Conference on Computer and Communications
Security, 2015, pp. 31–43.

148

[57] W. A. Gale and G. Sampson, “Good-turing frequency estimation without tears,” Jour-
nal of Quantitative Linguistics, vol. 2, no. 1, pp. 217–237, 1995.

[58] S. M. Katz, “Estimation of probabilities from sparse data for the language model
component of a speech recogniser,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 35, no. 3, p. 400401, 1987.

[59] J. Bonneau, “Guessing human-chosen secrets,” Ph.D. dissertation, University of Cam-
bridge, 2012.

[60] “CSDN cleartext passwords,” 2011, http://dazzlepod.com/csdn/.

[61] “Openwall wordlists collection,” 2013, http://www.openwall.com/wordlists/.

[62] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “Passwords and the evo-
lution of imperfect authentication,” Communications of the ACM, vol. 58, no. 7, pp.
78–87, 2015.

[63] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discov-
ering clusters in large spatial databases with noise.” in Proceedings of the 2nd ACM
Conference on Knowledge Discovery and Data Mining, vol. 96, no. 34, 1996, pp.
226–231.

[64] M. Burnett, “Today I am releasing ten million passwords,” 2015,
https://xato.net/passwords/ten-million-passwords/.

[65] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek, S. M. Segreti, B. Ur,
L. Bauer, N. Christin, and L. F. Cranor, “Can long passwords be secure and usable?”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
2014, pp. 2927–2936.

[66] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task load index): Re-
sults of empirical and theoretical research,” Advances in Psychology, vol. 52, pp.
139–183, 1988.

[67] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s Mechanical Turk a new
source of inexpensive, yet high-quality, data?” Perspectives on Psychological Sci-
ence, vol. 6, no. 1, pp. 3–5, 2011.

[68] P. S. Foster, K. M. Roosa, V. Drago, K. Branch, G. Finney, and K. M. Heilman,
“Recall of word lists is enhanced with increased spreading activation,” Aging, Neu-
ropsychology, and Cognition, vol. 20, no. 5, pp. 553–566, 2013.

VITA

149

VITA

Weining Yang was born and raised in Shanghai, China. He attended Tsinghua Univer-

sity, and graduated with a Bachelor of Engineering in computer science in July of 2011.

Weining entered Purdue University in the Fall of 2011, and worked under the supervision

of Dr. Ninghui Li in the Department of Computer Science. Weining’s graduate work and

research was in the area of private data publishing and user authentication. He received his

Master of Science in computer science in December of 2013, and his Ph.D. in computer

science in August of 2016.

	Purdue University
	Purdue e-Pubs
	8-2016

	Improving the Eco-system of Passwords
	Weining Yang
	Recommended Citation

	Blank Page

