14,389 research outputs found

    No spin-localization phase transition in the spin-boson model without local field

    Full text link
    We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no-degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to unreasonable treatment of the ground state of the model or of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.Comment: 5 pages, 1 figure. Comments are welcom

    Consensus of self-driven agents with avoidance of collisions

    Get PDF
    In recent years, many efforts have been addressed on collision avoidance of collectively moving agents. In this paper, we propose a modified version of the Vicsek model with adaptive speed, which can guarantee the absence of collisions. However, this strategy leads to an aggregated state with slowly moving agents. We therefore further introduce a certain repulsion, which results in both faster consensus and longer safe distance among agents, and thus provides a powerful mechanism for collective motions in biological and technological multi-agent systems.Comment: 8 figures, and 7 page

    Channel Estimation, Equalization and Phase Correction for Single Carrier Underwater Acoustic Communications

    Get PDF
    In this paper, we employ a time-domain channel estimation, equalization and phase correction scheme for single carrier single input multiple output (SIMO) underwater acoustic communications. In this scheme, Doppler shift, which is caused by relative motion between transducer (source) and hydrophones (receiver), is estimated and compensated in the received baseband signals. Then the channel is estimated using a small training block at the front of a transmitted data package, in which the data is artificially partitioned into consecutive data blocks. The estimated channel is utilized to equalize a block of received data, then the equalized data is processed by a group-wise phase correction before data detection. At the end of the detected data block, a small portion of the detected data is utilized to update channel estimation, and the re-estimated channel is employed for channel equalization for next data block. This block-wise channel estimation, equalization and phase correction process is repeated until the entire data package is processed. The receiver scheme is tested with experimental data measured at Saint Margaret\u27s Bay, Nova Scotia, Canada, in May 2006. The results show that it can be applied not only to the scenario of fixed source to fixed receiver, but also to the moving source to fixed receiver case. The achievable uncoded bit error rate (BER) is on the order of 10-4 for moving-to-fixed transmissions, and on the order of 10-5 for fixed-to-fixed transmissions

    Amplification and adaptation of centromeric repeats in polyploid switchgrass species.

    Get PDF
    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat

    TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency.

    Get PDF
    Transition from primed to naive pluripotency is associated with dynamic changes in transposable element (TE) expression and demethylation of imprinting control regions (ICRs). In mouse, ICR methylation and TE expression are each regulated by TRIM28; however, the role of TRIM28 in humans is less clear. Here, we show that a null mutation in TRIM28 causes significant alterations in TE expression in both the naive and primed states of human pluripotency, and phenotypically this has limited effects on self-renewal, instead causing a loss of germline competency. Furthermore, we discovered that TRIM28 regulates paternal ICR methylation and chromatin accessibility in the primed state, with no effects on maternal ICRs. Taken together, our study shows that abnormal TE expression is tolerated by self-renewing human pluripotent cells, whereas germline competency is not

    Geometrical structure effect on localization length of carbon nanotubes

    Full text link
    The localization length and density of states of carbon nanotubes are evaluated within the tight-binding approximation. By comparison with the corresponding results for the square lattice tubes, it is found that the hexagonal structure affects strongly the behaviors of the density of states and localization lengths of carbon nanotubes.Comment: 7 pages, 4 figures, revised version to appear in Chin. Phys. Lett. The title is changed. Some arguments are adde

    Zinc inhibits TRPV1 to alleviate chemotherapy-induced neuropathic pain

    Get PDF
    Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1

    Coupling emission from single localized defects in 2D semiconductor to surface plasmon polaritons

    Full text link
    Coupling of an atom-like emitter to surface plasmons provides a path toward significant optical nonlinearity, which is essential in quantum information processing and quantum networks. A large coupling strength requires nanometer-scale positioning accuracy of the emitter near the surface of the plasmonic structure, which is challenging. We demonstrate the coupling of single localized defects in a tungsten diselenide (WSe2) monolayer self-aligned to the surface plasmon mode of a silver nanowire. The silver nanowire induces a strain gradient on the monolayer at the overlapping area, leading to the formation of localized defect emission sites that are intrinsically close to the surface plasmon. We measure a coupling efficiency with a lower bound of 39% from the emitter into the plasmonic mode of the silver nanowire. This technique offers a way to achieve efficient coupling between plasmonic structures and localized defects of 2D semiconductors
    corecore