3 research outputs found
Stretchable Surface Electromyography Electrode Array Based on Liquid Metal and Conductive Polymer
Electromyography (EMG), the science of detecting and interpreting muscle electrical activity, plays a crucial role in clinical diagnostics and research. It enables assessment of muscle function, detection of abnormalities, and monitoring of rehabilitation progress. However, the current use of EMG devices is primarily limited to clinical settings, preventing its potential to revolutionize personal health management. If surface electromyography (sEMG) electrodes are stretchable, arrayed, reusable and able to continuously record, their applications for personal health management are broadened. Existing electrodes lack these essential features, hampering their widespread adoption. This thesis addresses these limitations by designing an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). Through meticulous optimization, TPP electrodes offer superior stretchability and adhesiveness compared to conventional Ag/AgCl electrodes. This ensures stable and long-term skin contact for recording. Furthermore, a metal-polymer electrode array patch (MEAP) is introduced, featuring liquid metal (LM) circuits and TPP electrodes. MEAPs exhibit better conformability than current commercial arrays, resulting in higher signal quality and stable recordings, even during significant skin deformations caused by muscle movements. Manufactured using scalable screen-printing, MEAPs combine stretchable materials and array architecture for real-time monitoring of muscle stress, fatigue, and tendon displacement. They hold great promise in reducing muscle and tendon injuries and enhancing performance in both daily exercise and professional sports. In addition, a pilot study compares MEAP performance in clinical electrodiagnostics with needle electrodes, demonstrating the non-invasive advantage of MEAP by successfully recording the signals from the same motor unit as the needle. These advancements position MEAP at the forefront of the EMG field, poised to drive breakthroughs in electrodiagnostics, personalized medicine, sports science, and rehabilitation
Electronic exoneuron based on liquid metal for the quantitative sensing of the augmented somatosensory system
Abstract The increasing demands in augmented somatosensory have promoted quantitative sensing to be an emerging need for athletic training/performance evaluation and physical rehabilitation. Neurons for the somatosensory system in the human body can capture the information of movements in time but only qualitatively. This work presents an electronic Exo-neuron (EEN) that can spread throughout the limbs for realizing augmented somatosensory by recording both muscular activity and joint motion quantitatively without site constraints or drift instability, even in strenuous activities. Simply based on low-cost liquid metal and clinically used adhesive elastomer, the EEN could be easily fabricated in large areas for limbs. It is thin (~120âÎŒm), soft, stretchable (>500%), and conformal and further shows wide applications in sports, rehabilitation, health care, and entertainment
Technology roadmap for flexible sensors
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.Agency for Science, Technology and Research (A*STAR)National Research Foundation (NRF)Submitted/Accepted versionY.L., Z.L., M.Z., and X.C. acknowledge the National Research Foundation, Singapore (NRF) under NRFâs Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation ÎŒElectronics (SHINE) Centre funding programme, and AME programming funding scheme of Cyber Physiochemical Interface (CPI) project (no. A18A1b0045). Y.L. acknowledges National Natural Science Foundation of China (62201243). C.J. acknowledges funding support from the National Key R&D Program of China (no. 2019YFA0706100), the National Natural Science Foundation of China (82151305), Lingang Laboratory (LG-QS-202202-09). T.Q.T. and N.E.L. acknowledge support by the Basic Science Research Program (no. 2020R1A2C3013480) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT. A.F. acknowledges the AFOSR (grant FA9550-22-1-0423). Y.L. and Y.Z. would like to acknowledge the NSF (award no. 2134664) and NIH (award no. R01HD108473) for financial support. X.F. acknowledges the support from the National Natural Science Foundation of China (grant no. U20A6001). L.Y. would like to thank the A*STAR Central Research Fund (CRF) and the AME Programmatic A18A1b0045 (Cyber Physiochemical Interfaces) for funding support. C.F.G. acknowledges the National Natural Science Foundation of China (no. T2225017). T.Q.T. acknowledges the Brain Pool Program (No. 2020H1D3A2A02111068) through the National Research Foundation (NRF) funded by the Ministry of Science. Z.L. acknowledges the support from RIE2020 AME Programmatic Grant funded by A*STAR-SERC, Singapore (Grant No. A18A1b0045). X.G. acknowledges funding support through the Shanghai Science and Technology Commission (grant no. 19JC1412400), the National Science Fund for Excellent Young Scholars (grant no. 61922057). C.D. acknowledges National Science Foundation CAREER: Conformable Piezoelectrics for Soft Tissue Imaging (grant no. 2044688) and MIT Media Lab Consortium funding. D.K. and O.G.S. acknowledge Leibniz Association and the German Research Foundation DFG (Gottfried Wilhelm Leibniz Program SCHM 1298/22-1, KA5051/1-1 and KA 5051/3-1), as well as the Leibniz association (Leibniz Transfer Program T62/2019). C.W. acknowledges the National Key Research and Development Program of China (grant no. 2021YFA1202600), National Natural Science Foundation of China (grant no. 62174082). A.V.-Y.T., E.Z., Y.Z., X.Z., and J.P. acknowledge the National Research Foundation, Singapore (NRF) under NRFâs Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation ÎŒElectronics (SHINE) Centre funding programme, and AME programming funding scheme of Cyber Physiochemical Interface (CPI) project (no. A18A1b0045). R.Z. acknowledges National Natural Science Foundation of China (grant no. 51735007) and Beijing Natural Science Foundation (grant no. 3191001). N.M. acknowledges the support by JST PRESTO Grant Number JPMJPR20B7 and JST Adaptable and Seamless Technology transfer Program through Target-driven R&D (ASTEP) grant number JPMJTM22BK. C.P. acknowledges the Korean government (Ministry of Science and ICT, MSIT) (2022R1A4A3032923). M.W. acknowledges the National Key R&D Program of China under Grant (2021YFB3601200). X.Z. acknowledges National Natural Science Foundation of China (no. 62074029). S.X. acknowledges the 3M nontenured faculty award. T.-W.L. and D.-G.S. acknowledge the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (grant no. NRF-2022M3C1A3081211). C.T.L. would like to acknowledge support from the Institute for Health Innovation and Technology (iHealthtech), the MechanoBioEngineering Laboratory at the Department of Biomedical Engineering and the Institute for Functional Intelligent Materials (I-FIM) at the National University of Singapore (NUS). C.T.L. also acknowledges support from the National Research Foundation and A*STAR, under its RIE2020 Industry Alignment Fund â Industry Collaboration Projects (IAF-ICP) (grant no. I2001E0059) â SIA-NUS Digital Aviation Corp Lab and the NUS ARTIC Research (grant no. HFM-RP1). X.Y. acknowledges funding support by City University of Hong Kong (grant no. 9667221). T.X. and X.Z. acknowledge National Natural Science Foundation of China (22234006). B.C.K.T. acknowledges Cyber-Physiochemical Interfaces CPI, A*STAR A18A1b0045. H.G. acknowledges a research start-up grant (002479-00001) from Nanyang Technological University and the Agency for Science, Technology and Research (A*STAR) in Singapore. W.G. acknowledges National Science Foundation grant 2145802. D.J.L. acknowledges support from the US National Science Foundation grant number CBET-2223566. G.Y. acknowledges support from The Welch Foundation award F-1861, and Camille Dreyfus Teacher-Scholar Award. M.D.D. acknowledges funding support from NSF (grant no. EEC1160483). J.-H.A acknowledges the National Research Foundation of Korea (NRF-2015R1A3A2066337). J.C. acknowledges the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles for startup support and a Brain & Behavior Research Foundation Young Investigator Grant. K.T. acknowledges JST AIP Accelerated Program (no. JPMJCR21U1) and JSPS KAKENHI (grant no. JP22H00594). P.S.W. acknowledges the National Science Foundation (CMMI1636136) for support. A.M.A., M.C.H., and P.S.W. thank the National Institute on Drug Abuse (DA045550) for support. S.M. and X.C. appreciated the support from the Smart Grippers for Soft Robotics (SGSR) Programme under the National Research Foundation, Prime Ministerâs Office, Singapore under its Campus of Research Excellence and Technological Enterprise (CREATE) programme