14 research outputs found

    Reflectivity of diffuse, transcritical interfaces

    Get PDF

    Does Intensive Land Use Contribute to Energy Efficiency?—Evidence Based on a Spatial Durbin Model

    No full text
    In order to ensure the safety of cultivated land and promote urban productivity, the Chinese government began to promote intensive land use at the legislative level from 2014. At the same time, China faces problems of carbon emissions and energy, so we need to improve energy efficiency. Therefore, this paper aims to verify the spatial effects of intensive land use on energy efficiency of China from 2009 to 2018. We further use an index system to quantify intensive land use and use chain DEA (data envelope analysis) to quantify energy efficiency. This paper finds that: (1) intensive land use can significantly improve energy efficiency. A 1% increase in the level of intensive land use will increase energy efficiency by 1.3%. (2) The intensive use of land in one city will have a negative impact on the energy efficiency of surrounding cities. The reason is that the intensive use of land in a single city may lead to the transfer of energy-consuming industries to surrounding cities. (3) The impact of intensive land use on the energy efficiency of surrounding cities has negative threshold characteristics, and the negative impact will be weakened as the level of integration of the city increases

    A study of Novec 649 fluid jets injected into sub-, trans- and super-critical thermodynamic conditions using planar laser induced fluorescence and elastic light scattering diagnostics

    No full text
    This dataset contains 4 folders that include relevant data to a study done on transcritical fluid jets within the Institute for Multiscale Thermofluids at the University of Edinburgh. Information provided varies from image and video files to tabulated data and MatLab scripts. A description of the information provided in each zipped folder has been added to facilitate finding relevant data

    FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function

    Get PDF
    Forkhead box A1 (FOXA1) is an FKHD family protein that plays pioneering roles in lineage-specific enhancer activation and gene transcription. Through genome-wide location analyses, here we show that FOXA1 expression and occupancy are, in turn, required for the maintenance of these epigenetic signatures, namely DNA hypomethylation and histone 3 lysine 4 methylation. Mechanistically, this involves TET1, a 5-methylcytosine dioxygenase. We found that FOXA1 induces TET1 expression via direct binding to its cis-regulatory elements. Further, FOXA1 physically interacts with the TET1 protein through its CXXC domain. TET1 thus co-occupies FOXA1-dependent enhancers and mediates local DNA demethylation and concomitant histone 3 lysine 4 methylation, further potentiating FOXA1 recruitment. Consequently, FOXA1 binding events are markedly reduced following TET1 depletion. Together, our results suggest that FOXA1 is not only able to recognize but also remodel the epigenetic signatures at lineage-specific enhancers, which is mediated, at least in part, by a feed-forward regulatory loop between FOXA1 and TET1
    corecore