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Abstract 

Numerical simulation and experiment are regarded as the two major methods in the 

investigation of spray and atomization. Simulation methods major in predicting spray 

developments, whose model are supposed to be calibrated using corresponding experimental 

data, but direct comparisons between simulation data and experimental results might lead to 

confusion when focusing on spray boundaries or penetration, as the light scattering physics 

during imaging is always likely to be ignored in CFD post processing. In many cases, CFD 

provides data points that are invisible to human eyes or cameras, resulting in variance in 

boundary confirming process. Previous studies discussed backlit conditions in Euler-based 

simulations to identify spray boundaries, but for most commonly used Lagrangian-based 

simulations, this topic remains undiscussed. In Lagrangian-based methods, droplets are 

treated as discrete particles, where scattering plays a more crucial role compared with that in 

Euler fields. In this study, light intensity analysis based on Mie Scattering theory and intensity 

integration focusing on Lagrangian field has been presented, aiming to present simulation data 

of spray coincides with Mie Scattering image as much as possible. It is found that particle size 

and in parcel numbers are related with the scattering intensity of droplet particles, and the 

calibrated CFD data using Mie-Scattering theory shows a better coherence with Mie Scattering 

imaging results in tested conditions compared with raw simulation data, and this variance 

tends to be greater when spray density difference is apparent. 
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Introduction 

Computer Fluid Dynamics (CFD) method has been one of the main streams in the design 

and development of internal combustion engine systems, and this trend tends to grow in the 

upcoming years. By selecting suitable physical models and proper algorithms, CFD could 

simulate detailed processes of fuel spray development. In order to obtain valid simulation 

results, physical models must be correlated with real conditions, and for those half-

experimental based models with changing parameters, calibrations must be applied in the first 

place[1,2], adjusting the variable elements to meet up with real conditions.  

One often neglected reason for not satisfying simulation accuracy is the incorrect 

calibration method. In temporary practice, the calibration of spray characters is mainly based 

on optical diagnostic experiments, for penetration and spray angle calibrations, often Mie-

scattering or backlit imaging are conducted to obtain macroscopic photographs[3], spray 

boundaries are adopted using algorithms, and finally penetration and angles are figured out. 

As is often the case, bias exist between CFD researchers and experimental researchers, and 
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none-matching calibration data could often be used as matching ones, resulting in wrong 

calibrated models.  

In CFD simulations, the results faithfully record all spray droplets’ locations and other 

information regardless of its size and visibility, and even if there is only one tiny particle at the 

far end, simulation results regard it as visible, and calculated the penetration based on mass 

accumulations or other criteria. In the optical experiments, however, the boundary 

identification is strongly related with scattering or other light transmitting processes. For 

particles of certain small sizes, or being separated far away from neighboring particles, the 

light intensity tends to be low, and such particles are less likely to be recorded by cameras, or 

are less likely to be estimated as within the threshold of spray boundary judgements, which is 

a common data processing method in optical diagnostics[4]. Such conditions are evident 

especially in heated sprays or far end sprays, and this results in a shifting of spray boundaries. 

If researchers use such shifted boundaries as calibration data, chances are that wrong results 

would be obtained, as the imaged boundary is not the real boundary we should use as criteria.  

It is difficult to reform the invisible drops in imaging results, but by applying optical 

methodology, it is possible to post process the CFD data to match with the imaged results. 

Attempts have been made to correct spray angle simulations with backlit imaging data based 

on Beer-Lambert law[5], and the results have been proved to be helpful for model refinements, 

but due to the theory difference, such refinement is not proper for Mie-scattering based 

experiments, which are also widely used in spray detecting. In this research, efforts are made 

to post-process the CFD data via Mie-scattering theory, and make it ‘apple to apple’ with 

experimental images, so as to achieve effective calibration for following studies. 

 

Mie-scattering Based Particle Light Intensity Analysis 

The light intensity distribution of Mie-scattering image obeys the Mie-scattering theory. 

When the light from light source meets droplets, a part of the light is scattered, and the 

direction of the scattered light, as well as the intensity distribution is highly related with the 

shape, size, and number density of the corresponding particle. As the droplets discussed in 

spray studies normally range from 1-100 micrometers, the scattering phenomenon falls in Mie-

scattering region. There are several factors that mainly governs imaged Mie-scattering 

particles, including particle size, particle density, and particle sheltering effect.  

The governing equations of Mie-scattering of a single, ideal round droplet could be 
depicted as follows[6]: 
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And the descriptions of parameters could be referred in Nomenclature. For practice, the 

distance difference between particles from the camera could be neglected, therefore r could 

be treated as constant. For given fuel and ambient, the refractive indexes are constant, so the 

polarized angle and relative refractive index are also constant. The Legendre functions are 

only changing with α. We assume that the light received by the camera share the same 

scattering angle of 90°, under such assumptions, the scattering intensity distributions with 

varying particle diameters could be obtained, and the trend could be depicted in Figure1. This 

value is highly related with phase function. It should be noted that when particle diameter is 

no greater than certain threshold, which is related with light wavelength and other physical 

properties, the intensity distribution could be well fitted in polymetric form: 

 2I D   (9) 

This is a commonly accepted equation in some highly cited researches[7,8], but it should be 

noted that such relation is no longer suitable as particle diameter exceeds certain value, as 

depicted in Figure1, whose calculation are based on eq(1)-(8) via MiePlot [9], this figure 

depicts the light intensity distribution of water droplets of different sizes under the light of 

650nm wavelength in atmosphere, and the polymetric region could not cover the diameter 

range greater than 20μm. 

 

Figure 1. Mie-Scattering Intensity of Single Particle (wave length=650nm, isooctane) 

In the most applied Lagrangian simulation frame, the droplets with similar size within a 
nearby region are represented by parcels, and the numbers contained by a parcel is depicted 
by parcel number density. The light superposition effect could greatly affect the light intensity 
captured by the camera. Assume the distance difference between particles and camera could 
be neglected compared with the distance from light source to particles, the phase difference 
could be neglected, then the light scattered by different particles could be regarded as 
coherent, then the total light intensity could be depicted as follows: 
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Assume uniform initial intensity, the equation could be treated as: 
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It should be noted that the above effect temporary considers only the superposition effect 
inside of parcel, the superposition between parcels is not considered. This is because the 
distance between parcels is greater than that inside of parcel, thus the summation effect is not 
dominating. However, if the parcel is isolated far away from other parcels, it is more likely to 
be invisible in camera, therefore, a filter should be added to move away the isolated parcels. 
When the parcel is at the behind of the spray plume, even if the light from source could 
enlighten it, the scattered light is not likely to reach the camera, as it could be blocked by the 
parcels in the front, such effect is regarded as the sheltering effect, and the sheltered parcels 
contribute a lower light intensity compared with none sheltered ones. It should be noted that 
multiple scattering effect is not considered in this assumption, if considered, the shelter 
incident should be modified not only for the behind parcel, but also the parcels around it. In 
this research, the sheltering coefficient is simplified based on the order of particles sharing 
approximate x and y values. Further efforts should be made to investigate more reasonable 
calculations. 

To sum up, the combined intensity factor considering size, number density and sheltering 
could be depicted as: 
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Where γ is the sheltering factor that is less than 1, and P(D) is the phase function that is 

determined by particle diameter. 

 

Experimental Setup 

Mie-scattering imaging is a commonly applied optical diagnostic technique in macroscopic 

spray analysis that could obtain spray penetration and spray angle developments. The basic 

experimental setup of Mie-scattering is depicted as Figure2. Details could be referred in 

previous articles[10], and would not be introduced here for brevity. A Delphi single nozzle 

injector has been applied in this study. 

 

Figure 2. Mie-Scattering Imaging Experimental Setup 

In engineering practices, multi cycles of sprays are imaged and averaged so as to denoise 

the signal and capture main features of spray. It should be noted that the detailed information 

especially at the edges of spray are tend to be neglected in the averaging process, and it is 

this averaged data that is used to be the calibration base line of CFD models. Compared with 

the distance between light source to spray and spray to camera, the distance between 
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particles could be neglected in eq(1). Detailed information of this experiment is concluded in 

Table 1. 

 
Table 1 – Experimental Setup Conditions 

Items Specifications 

Fuel type Isooctane 
Injection pressure (MPa) 10 
Ambient pressure (kPa) 100 
Fuel temperature (℃) 20 

Injection duration (ms) 0.5 
Light source wavelength (nm) 650 

Repeated test number 20 
Imaging frequency (kHz) 20 

Nozzle L/D 1.5 

Plume angle (°) 0 

Flowrate @ 10MPa (cc/s) 3.75 

 

Results and Discussions 

The simulation process has been conducted using OpenFOAM5, KH-RT model has been 

selected as the breakup model, as the test condition is ranged in cold spray region, the most 

widely accepted parameters are used without further validation[11], and EnSight v10.1 is 

applied to obtain the particle data. The simulation time step is set to be 1μs, and the mesh is 

of reasonable quality. As the simulation itself is not the focus of this research, default settings 

for mature spray modeling have been used as much as possible, and detailed information 

about simulation settings would not be presented here out of brevity. 

The data processing procedures are presented in Figure 3 for both experimental results 

and simulation data. The image of experiment is an average of 20 injection cycles, and the 

boundary analysis chooses a threshold of 95% of maximum light intensity according to SAE-

J2715 regulations[4]. The simulation results obtained from EnSight provide location, velocity, 

particle diameter and particle number density. The light intensity of each particle is obtained 

using eq(12), and the boundary is also obtained based on same threshold. 

 

Figure 3. Data Processing for Both Experiment and Simulation 

The image of experimental, raw CFD result and correlated CFD result at 1ms ASOF are 

presented in Figure4,  and the penetration of experimental data, penetration of raw simulation 

data (the distance above which accumulated mass fraction is 99% of total injected fuel), and 

the penetration of the post-processed Mie-scattering based data are presented in Figure 5, 
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while panel (a) gives the comparison of the three penetrations from initial time step to the end 

of simulation, panel (b) gives the evolution of the standard variation of the two sets of CFD 

data compared with experimental one. 

 

Figure 4. Spray Macroscopic Image of Different Means of Processing 

 

(a) Overall Comparison Result                                     (b) Standard Deviation 

Figure 5. Comparison of Spray Penetration Under Test Condition 

The results presented in Figure 4 could show that, when considered the correlation, the 

pattern of the simulated spray would be much more similar with the experimental image, with 

a relative dense core in the middle, while the surrounding areas are comparably dilute.  

It could be depicted from Figure 5 that, the three penetrations share the same trend and 

is quite close with each other when it comes to value. This is reasonable as the default settings 

of spray modelling in OpenFOAM is targeted on cold sprays at relatively low injection pressure, 

the model has been proved efficient for the cold spray condition by many previous researches, 

and the well-coincide curves at the initial period presented in Figure 4(a) confirms that the 

simulation as well as experiment conducted in this research is of good quality. Even though 

the results given show a good agreement of penetration in the end, it should be noted that at 

the beginning of spray, the deviation between simulation results and experimental results are 

quite obvious, the experimental curve sees an abrupt acceleration before a relative constant 

growing speed, this might be the caused by the needle lifting reaction, which is difficult for 

simulation studies, further studies would choose other injectors to see if this is a common 

condition or individual result. 

In the time range between 0.4ms to 1.0ms ASOF, the penetration curves share a common 

trend, and the relative errors have been depicted in Figure 5(b), it could be seen that, under 
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the test condition, during the targeted time range, the error between raw simulation result and 

experiment is within 20%, which is of quite good accuracy, as for the correlated data, the error 

could be lowered to no more than 10%, and remains almost constant when the spray is fully 

developed. Such a result proves that the correlation method presented in this study is of good 

importance, and the deviation related to the difference between imaging and simulation could 

be eliminated using the Mie theory-based correlations.  

It should be noted that due to the limitation of the phase-change spray simulation theory, 

it is difficult to apply such calibration to the high temperature fuels like flash-boiling sprays, but 

it is such extreme conditions that creates an obvious density variation between different 

regions of the spray, and would be in more desperate need for experimental to simulation 

calibration compared with sub-cooled spray mentioned in this research. The authors would 

continue focusing on the progress of simulation methods for sprays, and validate the necessity 

of the Mie-Scattering calibration in wider range of test conditions.  

 

Conclusions 
In this research, a Mie-Scattering based spray simulation data calibration method has 

been put forward. Taken scattering coefficient, number density, and other physical parameters 

into consideration, the visibility are given to each particle, making the boundary identification 

process starts from the same basis of Mie-Scattering experiments, which are widely used as 

calibration for spray modelling. The calibration method has been tested under cold spray 

condition, and could precisely fix the gap between raw simulation data and experimental data, 

proving its feasibility and necessity in CFD calibration especially under the high temperature 

conditions when the density difference between regions is apparent. 

It should be noted that the point of this paper is not to prove the in-accuracy of simulation 

or experiment. The point of this paper is to put forward the issue that there exist gaps between 

experiments and simulation studies, and the usage of each other as calibration without any 

bridging would lead to wrong calibration results, which may affect the following investigations. 

The methodology presented in this paper is only feasible for Mie-Scattering based 

experiments, and common efforts should be made to validate other experimental methods 

form the physics basis, therefore, bridge up the gap between experiment and simulation. 

 

Nomenclature 
Nomenclature Explanation 

r Distance between scattering event and camera  

φ Polarize angle, depending on refractive indexes 

θ Scattering angle 

πn First associated Legendre function 

τn Second associated Legendre function 

m Relative refractive index 

α πD/λ 

φk Bessel function 

εk Hankel function 

I0 Light intensity of single droplet 

n 

I                                              

Number of droplets in the parcel 

Theoretical light intensity 
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