30 research outputs found

    CD40LG and GZMB were correlated with adipose tissue macrophage infiltration and involved in obstructive sleep apnea related metabolic dysregulation: Evidence from bioinformatics analysis

    Get PDF
    Both obesity and obstructive sleep apnea (OSA) can lead to metabolic dysregulation and systemic inflammation. Similar to obesity, increasing evidence has revealed that immune infiltration in the visceral adipose tissue (VAT) is associated with obstructive sleep apnea-related morbidity. However, the pathological changes and potential molecular mechanisms in visceral adipose tissue of obstructive sleep apnea patients need to be further studied. Herein, by bioinformatics analysis and clinical validation methods, including the immune-related differentially expressed genes (IRDEGs) analysis, protein-protein interaction network (PPI), functional enrichment analysis, a devolution algorithm (CIBERSORT), spearman’s correlation analysis, polymerase chain reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs, the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20, and GZMB), and the protein expression level of two hub genes (CD40LG and GZMB) were consistent with the bioinformatics analysis results. Immune infiltration results further revealed that obstructive sleep apnea patients contained a higher proportion of pro-inflammatory M1 macrophages and a lower proportion of M2 macrophages. Spearman’s correlation analysis showed that CD40LG was positively correlated with M1 macrophages and GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB might play a vital role in the visceral adipose tissue homeostasis of obstructive sleep apnea patients. Their interaction with macrophages and involved pathways not only provides new insights for understanding molecular mechanisms but also be of great significance in discovering novel small molecules or other promising candidates as immunotherapies of OSA-associated metabolic complications

    Lateral position during severe mono-lateral pneumonia: an experimental study

    Get PDF
    Patients with mono-lateral pneumonia and severe respiratory failure can be positioned in lateral decubitus, with the healthy lung dependent, to improve ventilation-perfusion coupling. Oxygenation response to this manoeuvre is heterogeneous and derecruitment of dependent lung has not been elucidated. Nine pigs (32.2 ± 1.2 kg) were sedated and mechanically ventilated. Mono-lateral right-sided pneumonia was induced with intrabronchial challenge of Pseudomonas aeruginosa. After 24 h, lungs were recruited and the animals were randomly positioned on right or left side. After 3 h of lateral positioning, the animals were placed supine; another recruitment manoeuvre was performed, and the effects of contralateral decubitus were assessed. Primary outcome was lung ultrasound score (LUS) of the dependent lung after 3-h lateral positioning. LUS of the left non-infected lung worsened while positioned in left-lateral position (from 1.33 ± 1.73 at baseline to 6.78 ± 4.49; p = 0.005). LUS of the right-infected lung improved when placed upward (9.22 ± 2.73 to 6.67 ± 3.24; p = 0.09), but worsened in right-lateral position (7.78 ± 2.86 to 13.33 ± 3.08; p < 0.001). PaO2/FiO2 improved in the left-lateral position (p = 0.005). In an animal model of right-lung pneumonia, left-lateral decubitus improved oxygenation, but collapsed the healthy lung. Right-lateral orientation further collapsed the diseased lung. Our data raise potential clinical concerns for the use of lateral position in mono-lateral pneumonia

    Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Thyroid Carcinoma

    Get PDF
    Alternative splicing (AS) is a key mechanism involved in regulating gene expression and is closely related to tumorigenesis. The incidence of thyroid cancer (THCA) has increased during the past decade, and the role of AS in THCA is still unclear. Here, we used TCGA and to generate AS maps in patients with THCA. Univariate analysis revealed 825 AS events related to the survival of THCA. Five prognostic models of AA, AD, AT, ES, and ME events were obtained through lasso and multivariate analyses, and the final prediction model was established by integrating all the AS events in the five prediction models. Kaplan–Meier survival analysis revealed that the overall survival rate of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The ROC results revealed that the prognostic capabilities of each model at 3, 5, and 8 years were all greater than 0.7, and the final prognostic capabilities of the models were all greater than 0.9. By reviewing other databases and utilizing qPCR, we verified the established THCA gene model. In addition, gene set enrichment analysis showed that abnormal AS events might play key roles in tumor development and progression of THCA by participating in changes in molecular structure, homeostasis of the cell environment and in cell energy. Finally, a splicing correlation network was established to reveal the potential regulatory patterns between the predicted splicing factors and AS event candidates. In summary, AS should be considered an important prognostic indicator of THCA. Our results will help to elucidate the underlying mechanism of AS in the process of THCA tumorigenesis and broaden the prognostic and clinical application of molecular targeted therapy for THCA

    SARS-CoV-2-induced Acute Respiratory Distress Syndrome: Pulmonary Mechanics and Gas-Exchange Abnormalities

    Full text link
    In January 2020, the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reported in Europe. Multiple outbreaks have since then led to a global pandemic, as well as to massive medical, economic, and social repercussions. SARS-CoV-2 pneumonia can develop into acute respiratory distress syndrome (ARDS) when mechanical ventilation (MV) is needed (3, 4). ARDS produces abnormalities in gas exchange with a variable degree of shunt (5), high dead space ventilation (dead space volume [Vd]/tidal volume [Vt] ratio) (6), diminished pulmonary compliance (7), and alterations to the pulmonary circulation (8). The cornerstone of ARDS management is to provide adequate gas exchange without further lung injury as a result of MV. To date, information regarding the characteristics of SARS-CoV-2-induced ARDS is not completely known. However, this information is crucial to better apply MV and facilitate organ support strategies. We therefore present the characteristics of gas exchange, pulmonary mechanics, and ventilatory management of 50 patients with laboratory-confirmed SARS-CoV-2 infection, who developed ARDS and underwent invasive MV (IMV). Methods: Descriptive analysis included 50 consecutive patients with laboratory-confirmed SARS-CoV-2 infection who developed ARDS (9) and underwent IMV. These patients were admitted to the SARS-CoV-2-dedicated intensive care units (ICUs) at Hospital Clinic of Barcelona, Spain, between March 7 and March 25, 2020. Upon ICU admission, epidemiological characteristics, the severity of SARS-CoV-2 infection with the Acute Physiology and Chronic Health Evaluation II score, prognostic biomarkers of SARS-CoV-2 infection (described in Reference 4), time from hospital to ICU admission, time from ICU admission to intubation, oxygen therapy or noninvasive ventilation (NIV) use, and microbiology were investigated. On the day that criteria for ARDS diagnosis were met (9) and IMV was needed, the following assessments were performed: impairment in oxygenation was analyzed with the partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio, and abnormalities of CO2 metabolism were studied with the ventilatory ratio (VR), a surrogate parameter of Vd/Vt. In addition, adjunctive therapies and MV parameters related with ventilation-induced lung injury (VILI) described elsewhere (11-15) were investigated. Correlations of SARS-CoV-2 prognostic biomarkers (4), pulmonary mechanics, and gas-exchange data were performed. Twenty-eight-day and hospital mortality, ventilator- and ICU-free days at Day 28, hospital and ICU lengths of stay, and need for tracheostomy were also evaluated (16). Finally, a subanalysis assessing differences before and after prone positioning was performed. For additional detail on the method, see the online supplement. Results: By March 25th, 2020, 50 patients with laboratory-confirmed SARS-CoV-2 infection and ARDS had been admitted to our hospital. Table 1 shows the demographic and clinical characteristics of these patients. The median (interquartile range [IQR]) age was 66 (57-74) years. Thirty-six patients (72%) were men. Upon ARDS diagnosis, 44% of patients were initially classified as having moderate ARDS, whereas 24% were classified as having mild ARDS and 32% were classified as having severe ARDS. The outcomes of these patients are shown in Table 1. ICU and hospital lengths of stay were prolonged, and tracheostomy was performed in 30 (60%) patients. Hospital mortality was 34%

    A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury

    Get PDF
    Background: Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia—the most common risk factor in humans—and analyze the additional effect of ventilator-induced lung injury (VILI). Methods: Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 &lt; 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. Results: All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. Conclusions: In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.</p

    A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury

    Get PDF
    Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO/FiO < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO/FiO was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. In conclusion, we established an accurate pulmonary sepsis-induced ARDS model. The online version contains supplementary material available at 10.1186/s13054-023-04512-8

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
    corecore