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Both obesity and obstructive sleep apnea (OSA) can lead to metabolic
dysregulation and systemic inflammation. Similar to obesity, increasing
evidence has revealed that immune infiltration in the visceral adipose tissue
(VAT) is associated with obstructive sleep apnea-related morbidity. However,
the pathological changes and potential molecular mechanisms in visceral
adipose tissue of obstructive sleep apnea patients need to be further studied.
Herein, by bioinformatics analysis and clinical validation methods, including
the immune-related differentially expressed genes (IRDEGs) analysis, protein-
protein interaction network (PPI), functional enrichment analysis, a devolution
algorithm (CIBERSORT), spearman’s correlation analysis, polymerase chain
reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and
immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs,
the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20,
and GZMB), and the protein expression level of two hub genes (CD40LG
and GZMB) were consistent with the bioinformatics analysis results. Immune
infiltration results further revealed that obstructive sleep apnea patients
contained a higher proportion of pro-inflammatory M1 macrophages and a
lower proportion of M2 macrophages. Spearman’s correlation analysis
showed that CD40LG was positively correlated with M1 macrophages and
GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB
might play a vital role in the visceral adipose tissue homeostasis of obstructive
sleep apnea patients. Their interaction with macrophages and involved
pathways not only provides new insights for understanding molecular
mechanisms but also be of great significance in discovering novel small
molecules or other promising candidates as immunotherapies of OSA-
associated metabolic complications.
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1 Introduction

Obstructive sleep apnea (OSA), accounting for one-seventh
of the world’s adult population, is a condition of apnea and
hypopnea caused by the collapse of the upper airway during
sleep, accompanied by snoring, disturbance of sleep structure,
frequent oxygen desaturation, and daytime sleepiness
(Benjafield et al., 2019). OSA is particularly common in obese
people, and its incidence is increasing in parallel with the obesity
pandemic (Bonsignore 2022). Long-term suffering from the
disease can lead to systemic inflammation and metabolic
dysregulation, such as cardiovascular disease, type 2 diabetes,
non-alcoholic fatty liver disease, and hyperlipidemia (Punjabi
2008; Priou et al., 2012; Tan et al., 2014; Parikh et al., 2019). The
interaction between these conditions has a momentous effect on
patient care and mortality (Lyons et al., 2020). In addition,
Continuous positive airway pressure is the primary treatment
for adult OSA, but its efficacy in improving cardiovascular and
metabolic outcomes is lacking (Light et al., 2018). Taking all
those aspects together, it is of great significance in identifying the
molecular mechanisms involved in OSA development and in
subsequently discovering therapies for OSA-associated
metabolic complications.

Although OSA patients have a 2-3 fold increased risk of
developing multiple end-organ morbidities, none of them emerge
any specific end-organ dysfunction (Kheirandish-Gozal & Gozal
2019). An intense investigation of systemic inflammation as a
contributing factor to OSA-related morbidity has been conducted
because of the heterogeneity of the clinical phenotype (Drager et al.,
2010; Bhattacharjee et al., 2011; Gozal et al., 2012; Kheirandish-
Gozal & Gozal 2013; Drager et al., 2015). Chronic intermittent
hypoxia, one hallmark features of OSA, can preferentially activate
NF-κB mediated proinflammatory signaling pathway, leading to a
systemic inflammatory state in OSA patients, but little is known
about the tissues that produce pro-inflammatory mediators in
reaction to OSA (Murphy et al., 2017). As both obesity and OSA
can lead to similar metabolic complications, it is reasonable to
speculate that adipose tissue may be one of the target tissues in
response to proinflammatory mediators. Adipose tissue is not only
an organ of storing energy but also a highly active endocrine organ
regulating metabolism (Ryan et al., 2019). Evidence from rodent
experiments showed that intermittent hypoxia in OSA induced
insulin resistance and atherogenesis through fat inflammation
(Poulain et al., 2014; Murphy et al., 2017). Similar to obesity,
adipose tissue macrophages play a vital role in intermittent
hypoxia-induced fat inflammation (Poulain et al., 2014; Murphy
et al., 2017). However, the largest and by far best-studied parts of fat
are located in the gonadal region of rodents, there is no similarity to
these pads in humans (Ryan et al., 2019). Hence, we cannot be easily
translated the findings obtained from rodent studies into human
conditions.

To date, most of the research on human adipose tissue has been
focused on the field of obesity, while research on the OSA subject is
relatively rare due to the lack of attention to OSA condition, multi-

disciplinary limitations, and ethical factors in a routine sampling of
adipose tissue in humans. Aron-Wisnewsky J et al. found no
relationship between OSA and HAM56-labeled total adipose
tissue macrophage infiltration by sampling omental adipose tissue
during bariatric surgery (Aron-Wisnewsky et al., 2012), but they did
not analyze the detailed phenotyping of the macrophages. Grab et al.
showed that OSA can alter fat gene expression particularly in
metabolic dysregulation by analyzing the transcriptomic profile of
subcutaneous and visceral fat in humans (Gharib et al., 2013; Gharib
et al., 2020). They also found that “Immunity and Inflammation”
was one of the most upregulated modules in OSA, but detailed
information about inflammatory immune-related gene expression
profiles and their interaction with immune cell infiltration needs to
be further studied.

In the current study, we assessed the microarray dataset
GSE38792 that contains visceral adipose tissue (VAT) of OSA
patients from Gene Expression Omnibus (GEO) and carried out
an integrated bioinformatics analysis. The components of immune
infiltration in VAT of OSA patients were also analyzed using the
CIBERSORT algorithmmethod (Newman et al., 2015; Kawada et al.,
2021). More importantly, VAT samples from obese individuals with
complete overnight polysomnography (PSG) examination (the gold
standard for the diagnosis of OSA) were obtained for external
validation through multidisciplinary approach. To our
knowledge, this is the first study that using clinical samples to
validate the findings of dataset analysis, which provides direct
evidence for adipose tissue as a proinflammatory target organ for
OSA-associated metabolic complications. The aim of this study was
to identify and validate the immune-related differentially expressed
genes (IRDEGs) and the characteristics of immune infiltration in
VAT of OSA patients and to provide new knowledge for
understanding molecular mechanisms of OSA-induced metabolic
complications.

2 Materials and methods

2.1 Ethics statement

The study protocol was ethically authorized by the Ethics
Committees of Zhongnan Hospital of Wuhan University (approval
number: 2019021), and the signatures of informed consent were
obtained from all patients. In order to protect patient confidentiality,
we have settled strict procedures to ensure the privacy and anonymity of
the participants and excluded their identification before data analysis.
We only collected the data we need to meet the research objectives and
ensure that data is kept securely.

2.2 Data sources

Microarray data of GSE38792 was obtained from the GEO
database [GPL6244 platform, Affymetrix Human Gene 1.0 ST
Array (transcript gene version), last accessed on 22 January 2023,
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38792].
The datasets contain eighteen VAT samples, including ten samples
from OSA patients and eight from control patients. The immune-
related gene sets (IRGs) were obtained from the IMMPORT
database (https://www.immport.org/resources,last accessed on
22 January 2023).

2.3 Identification of immune-related
differentially expressed genes

We analysis the differentially expressed genes (DEGs) through a
“limma” package in R software (Ritchie et al., 2015). A
p-value <0.05 was the threshold for identifying DEGs. The Venn
online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/)
was used to identify IRDEGs, namely the intersection part
between DEGs and IRGs.

2.4 Construction protein-protein interaction
network

After determining the IRDEGs between OSA and control
patients, we used the STRING database (https://string-db.org/,
version 11.0) to construct the PPI network, the default
confidence threshold was 0.4 (Szklarczyk et al., 2017). Then
the network was exported to the Cytoscape software (version 3.8.
0) for visualization (Shannon et al., 2003). Next, the MCODE
plugin (version 2.0.0) in Cytoscape was adopted to find
functional gene clusters in the PPI network (Bader and
Hogue 2003). The cluster finding parameters were system
default. The modules with the highest established score were
screened out, and all the genes in this module were identified as
the hub genes.

2.5 Functional enrichment analyses of hub
genes

To further analyze the biological processes and pathways of the
hub genes, gene ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway were performed. A free
online platform was applied for the functional enrichment
analysis and visualization (https://www.bioinformatics.com.cn;
last accessed on 22 January 2023). The powerful enrichment
criteria were a p-value <0.05.

2.6 Analysis of immune cell infiltration

CIBERSORT is a deconvolution algorithm to evaluate the
proportions of immune cell subtypes that has been tested for
RNA (Ribonucleic Acid) sequencing measurements in Gene
expression profiling (Newman et al., 2015). We used the
CIBERSORT package to analysis the immune cell infiltration
based on the formatted gene expression matrix data in VAT
samples. Principal component analysis (PCA) was conducted to
determine the difference between OSA and control samples. The
different immune infiltration levels of each immune cell
between the two groups were analyzed by the “vioplot”
package in R version 4.1.1 (https://github.com/
TomKellyGenetics/vioplot), a p-value <0.05 was thought to
be statistically difference.

2.7 Correlation analysis between hub genes
and immune infiltration cells

Spearman’s correlation analysis was adopted to evaluate the
relationship between hub genes and immune cells. The analysis
process and result visualization were conducted by online platform
(https://www.xiantao.love; http://www.bioinformatics.com.cn; last
accessed on 22 January 2023).

2.8 Construction transcription factors
regulated network and target drugs analysis

To reveal the potential mechanism of the fat immune
dysfunction in OSA patients, we predicted transcription
factors (TFs)-target gene pairs among the hub genes using
the iRegulon plugin in Cytoscape (Janky et al., 2014). The

TABLE 1 The basic clinical characteristics of OSA patients and controls.

Variables Control (n = 10) OSA (n = 10) p-value

Gender(female) 10 10 -

Ages (years) 25 ± 9 30 ± 7 0.229

BMI (kg/m2) 31.6 ± 3.7 32.9 ± 2.7 0.381

AHI (events/h) 3.1 ± 1.1 33.8 ± 22.1 <0.001

Comorbidity

NAFLD 8 8

Hypertension 0 1

T2D 0 3

Hyperlipidemia 2 5

Hyperuricemia 8 5

Abbreviations: OSA, obstructive sleep apnea; BMI, body mass index; AHI, apnea hypopnea index; NAFLD, non-alcoholic fatty liver disease; T2D, type 2 diabetes.
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TF-target pairs from Track rankings database with normalized
enrichment score (NES) > 5 was selected. With the correlation
results between immune-related hub genes and immune cells,
we constructed a TF-mRNA-immune cells regulated network.
Besides, we predicted target drugs through the Drug-Gene
Interaction Database (DGIdb) (Cotto et al., 2018). The
account of hub genes and selected predicted TFs were
uploaded to DGIdb to find potential drugs as therapeutic
targets of OSA. The results were visualized by https://www.
bioinformatics.com.cn (last accessed on 22 January 2023).

2.9 Study population and clinical sample
collection

To external validate the findings from dataset analysis, a total of
20 obese patients were recruited from our Bariatric and Metabolic
Disease Surgery Center, Zhongnan Hospital of Wuhan University,
Wuhan, China, from June 2020 to February 2021. VAT samples
(omental adipose tissues) were harvested during bariatric surgery.
All patients underwent preoperative overnight PSG to screen OSA.
The presence of OSA was diagnosed by apnea-hypopnea index
(AHI). Briefly, the diagnose criteria was AHI ≥5/h. Of the
20 obese patients, ten patients with AHI ≥5/h were divided into
the OSA group, and the rest with AHI <5/h were regard as the
control group. Gender, age, and body mass index were matched
between the two groups. The clinical characteristics of 20 obese
patients can be seen in Table 1.

2.10 RNA extraction

Total RNA from the VAT samples was extracted with TRIzol
reagent (15596-026, Invitrogen, America) following a modified
isolation protocol (Roy et al., 2020). Briefly, weight a maximum
of 500 mg of pure VAT sample and add 1 ml TRIzol accordingly.
Homogenise them and keep the tubes on ice. After centrifuge the
homogenate, carefully remove the fat layer by pipetting. Add
200 µL of chloroform for phase separation, transfer the upper
aqueous layer to another new tube, add 500 µL of isopropyl
alcohol for RNA precipitation. Discard the supernatant and
add 1 ml of 75% ethanol twice for RNA wash. At last, air-dry
the RNA pallet and dissolve it with 30 µL DEPC-treated
(Diethypyrocarbonate) water. Quantify RNA concentration
and purity was detected by an OD (Optical density) at 260 nm
and 280 nm using a Spectrophotometer (NanoDrop One,
Thermo Fisher Scientific, Inc.). RNA integrity was examined
by electrophoresis in a 1% agarose gel.

2.11 Quantitative real-time polymerase
chain reaction analysis

cDNA (complementary Deoxyribo Nucleic Acid) was reverse
transcribed using All-in-one RT Supermix Kit (R333-01, Vazyme,
Nanjing, China) following the manufacturer’s instructions, and RT-
qPCR (Real-time quantitative polymerase chain reaction) was
performed in triplicate using ChamQ SYBR qPCR Master Mix

Kit (Q311-02, Vazyme, Nanjing, China), including the analysis of
identified hub gene and macrophage marker gene expression. The
thermal cycle profile was as follows: an initial activation was 30 s at
95°C, followed by 40 cycles of denaturation (10 s at 95 °C), annealing
(30 s at 60°C) and extension (15 s at 95°C). PCR products were
evaluated by melting curve analysis for their specificity and identity.
The sequences of primers are available in Supplementary Table S1.
The relative expression levels of mRNA (messenger Ribonucleic
Acid) were calculated using the 2−ΔΔCt method with the
normalization to the reference gene of ACTB (Actin Beta).

2.12 Enzyme-linked immunosorbent assay
analysis

Total protein from the VAT samples was extracted using RIPA
buffer (P0013B, Beyotime, Beijing, China), and the concentrations of
protein were detected using a BCA assay (P0009, Beyotime, Beijing,
China). A total of 45 µg protein was used and performed with
sample diluent to make up the volume to 100 µL for each ELISA kit.
The protein expression levels of three genes (CRP, sCD40L, and
GZMB) were analyzed in triplicate using QuantiCyto Human ELISA
kits (Cat#: EHC011 for CRP, EHC118 for sCD40L, EHC117 for
GZMB, Neobioscience, Shenzhen, China) following the
manufacturer’s instructions. Briefly, Standard and sample general
dilution was added to blank wells, and samples or different
concentrations of protein standard (100 µL/well) were added to
the other corresponding wells. The reaction wells then incubated
at 37°C in the dark for 90 min. After washing the plate 5 times,
biotinylated antibody diluent was added to blank Wells, and
biotinylated antibody working solution (1:30 dilution, 100 µL/
well) was added to the remaining Wells. The reaction wells then
incubated at 37 °C in the dark for 60 min. After washing the plate
5 times again, dilution of enzyme conjugate was added to blank wells
and working solution of enzyme conjugate (1:30 dilution, 100 µL/
well) was added to the remaining wells. The reaction wells then
incubated at 37 °C in the dark for 30 min. After washing the plate
another 5 times, chromogenic substrate (TMB) 100 µL/well was
added and incubated at 37°C for 15 min in the dark. The
reaction termination solution 100 µL/well was added, and the
OD 450 nm value was measured immediately after mixing
(within 3 min). Save and record the readings on the instrument.

2.13 Immunohistochemistry analysis

VAT samples were fixed in formalin, embedded in paraffin, and
cut into 5-µm-thick sections, and then stained for immune-
histochemical detection of macrophage polarization markers and
interested protein. Briefly, the paraffin sections were deparaffinized
and rehydrated with graded alcohols after being incubated at 65°C
for 20 min. Antigen retrieval was performed by microwave heating
in pH 6.0 Sodium citrate solution. The sections were incubated in 3%
H2O2 for 10 min and blocked in 5% bovine serum albumin (BSA) for
30 min at room temperature. Then followed by incubation with
primary antibodies overnight at 4°C and secondary antibody for
30 min at room temperature. Negative controls were performed by
replacing the primary antibody with phosphate buffer solution
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(PBS). The use of Diaminobenzidine (DAB) as a chromogen was to
visualize positive cells. Primary antibodies CD11c (1:400 dilution,
17342-1-AP, Proteintech Group, China) and CD206 (1:500 dilution,
ab64693, Abcam,United States) were used to identify M1 and
M2 macrophages, respectively (Julla et al., 2019; Zhou et al.,
2020; Galarraga-Vinueza et al., 2021). Primary antibodies CCL20/
MIP3α (1:100 dilution, DF2238, Affinity, China) was also used for
immunohistochemistry (IHC) analysis. The target protein
expression was evaluated by integrated optical density (IOD)/area
assay through ImageJ software.

2.14 Statistical analysis

Public dataset analysis was completed in R software (version
4.0.1) and online platform, experimental data were analyzed
with GraphPad Prism 8 (Graph-Pad Software, CA,
United States). Values were presented as mean ± SD
(Standard Deviation). The student’s t-test was adopted to
analyze the two independent groups regarding gene and
protein expression levels, and the statistically significant
criteria was a p-value <0.05.

FIGURE 1
Identification of immune-related differentially expressed genes (IRDEGs). Box plots show the distribution of the relative gene expression before (A)
and after (B) normalization of GSE38792. Each box corresponds to one sample. The middle line corresponds to the median. (C) Volcano plot of
differentially expressed genes (DEGs). DEGs were screened with the criteria of p-value <0.05. (D) The cluster circular heat map showing the top
10 upregulated and downregulated DEGs. (E) Venn diagram showing the intersection of DEGs and immune-related genes (IRGs). (F) The heatmap of
122 IRDEGs.
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3 Results

3.1 Identification of immune-related
differentially expressed genes

The rawmicroarray data from GSE38792 was normalized by the
RMA (Robust Multi-Array Average) method to eliminate batch
expression difference (Figures 1A, B). Then we identified a total of
2016 unique DEGs in the VAT of OSA patients compared with
normal controls by the screening threshold of p < 0.05. Figures 1C, D

showed the volcano and heatmap plots of DEGs. Figure 1E displayed
the Venn diagram of 122 IRDEGs. The heatmap of 122 IRDEGs was
shown in Figure 1F, including 44 down-regulated genes and 78 up-
regulated genes.

3.2 Protein-protein interaction network

PPI network comprising 103 nodes and 354 edges was
constructed using the STRING database to investigate the

FIGURE 2
Protein-protein interaction (PPI) network construction, hub gene identification and functional enrichment analysis. (A) The PPI network based on
STRING database and Cytoscape software, red color represents upregulated genes and blue color represent downregulated genes. (B) Hub genes
identified by Cytoscape MCODE plug-in, red color represents upregulated genes and blue color represent downregulated genes. (C) Sankey dot of GO
enrichment analyses of hub genes. (D) Sankey dot of KEGG pathway enrichment analyses of hub genes. The dot plot showed the hub genes specific
to GO terms or KEGG pathways and the total number of genes in each enriched pathway. External validation of the hub genes at mRNA level (E) and
protein level (F).
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underlying biological functions of IRDEGs (Figure 2A). Through the
MCODE plugin in Cytoscape, we found the most significant module
(Score = 8.222) in the PPI network of 122 IRDEGs, comprising
10 immune-related hub genes (TLR3, IL33, GZMB, IL1R1, CRP,
CXCL8, CCL5, TSLP, CCL20, and CD40LG) (Figure 2B). The
functional annotation of these genes was provided by GeneCards
(https://www.genecards.org/) in Supplementary Table S2.

3.3 Functional enrichment analysis of hub
genes

GO and KEGG analysis were performed to explore the biological
processes and pathways of the immune-related hub genes. They
mainly involved in cytokine activity, chemokine activity, CCR
chemokine receptor blinding, G protein-coupled receptor
binding, and phospholipase activator activity from the results of
GO analysis (Figure 2C; Supplementary Table S3). The significantly
enriched pathways were cytokine-cytokine receptor interaction,

rheumatoid arthritis, toll-like receptor signaling pathway,
chemokine signaling pathway, and nod-like receptor signaling
pathway as revealed by KEGG analysis results (Figure 2D;
Supplementary Table S4).

3.4 External validation for the immune-
related hub genes in collected clinical
samples

Through seeking multidisciplinary collaboration, we
successfully collected VAT samples to validate the immune-
related hub genes from OSA and control patients. The relative
mRNA expression level of the 10 immune-related hub genes were
shown in Figure 2E. The levels of CRP, CD40LG, CCL20, GZMB,
IL1R1, IL33, and CCL5 in VAT of OSA group were significantly up-
regulated, while only the relative mRNA expression of CRP,
CD40LG, CCL20 and GZMB were consistent with the
bioinformatics analysis results. As proteins are the executors of

FIGURE 3
The landscape of immune infiltration in VAT between OSA and controls. (A) The relative percentage of 22 subpopulations of immune cells in
11 samples from GSE38792 datasets. (B) Principal components analysis performed on all samples. (C) Violin plot of differences in 22 infiltrating immune
cells between OSA and normal controls. The normal group was marked as blue color and OSA group was marked as red color. p values <0.05 were
considered as statistical significance.
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gene function, we subsequently analyzed the protein expression level
of CRP, CD40LG, CCL20 and GZMB, as shown in Figure 2F. The
sCD40L and GZMB levels were higher in the VAT of OSA patients
(270.71 ± 85.37 vs. 136.99 ± 28.27 pg/ml, p = 0.011; 1,337.68 ±
394.55 vs. 814.95 ± 278.33 pg/ml, p = 0.017), which were consistent
with the relative mRNA expression levels. The CRP levels in VAT
showed the same tendency in OSA patients (2.41 ± 0.55 vs. 2.13 ±
0.46 ng/ml), but no statistically significant (p = 0.369) was found.
While the protein expression levels of CCL20 in IHC showed no
difference (Supplementary Figure S1).

3.5 Immune infiltration analysis

Immune infiltration analysis was performed between OSA and
control patients. Figure 3A displayed the relative proportion of
immune cell subtypes after filtering out the samples with p < 0.05. In
VAT, monocytes and macrophages accounted for the highest
proportion of immune cell types, followed by CD8 T cells. The
PCA results as displayed in Figure 3B showed the group-bias
clustering among the groups. Compared with control patients,
OSA patients were characterized by macrophage infiltration and

contained a higher proportion of M1 and M2 macrophages in VAT
(p < 0.05, respectively) (Figure 3C).

3.6 Analysis of the characteristics of
macrophage infiltration in collected clinical
samples

External validation of human VAT macrophage infiltration
characteristics was also performed. The relative mRNA
expression level of M1 marker CD11c was increased by nearly
0.5-fold change while M2 markers CD206 was decreased by 0.4-
fold change in the OSA group when compared to the control group
(Figure 4A). The protein expression level of human VAT
macrophage markers further revealed that obese OSA patients
were characterized by significantly higher protein expression
levels of M1 macrophages (CD11c,1.43 ± 0.50 vs. 0.61 ±
0.21 IOD/AREA, p < 0.001), while a lower M2 macrophages
(CD206, 0.51 ± 0.15 vs. 1.10 ± 0.38 IOD/AREA, p < 0.001) in
VAT (Figures 4B, C). Compared to control patients, the presence of
OSA accelerated the conversion of VAT macrophages to pro-
inflammatory phenotype in obese patients.

FIGURE 4
Analysis of the characteristics of macrophage infiltration in collected clinical samples. (A) The relative mRNA expression level of macrophage
markers by RT-qPCR methods. (B) The protein expression level of macrophage markers by immunohistochemistry methods. The target protein
expression was evaluated by integrated optical density (IOD)/area assay through ImageJ. (C) Representative immunohistochemistry images from the
same plane. Magnification, ×200, scale bar = 100 μm. Data are presented as the mean ± SD (n = 10), **p < 0.01.
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3.7 Correlation analysis between hub genes
and immune infiltration cells

Significant correlation between four identified hub genes and
immune infiltration cells were shown in Figure 5. CRPwas positively
correlated with neutrophils (r = 0.71, p = 0.014) and negatively
correlated with M2 macrophages (r = -0.68, p = 0.021), and mast
cells resting (r = -0.66, p = 0.027); CD40LG was positively correlated
with CD8 T cells (r = 0.79, p = 0.004) and negatively correlated with
CD4 memory resting T cells (r = -0.69, p = 0.018) and
M0 macrophages (r = -0.72, p = 0.013); CCL20 was positively
correlated with monocytes (r = 0.77, p = 0.005) and negatively

correlated with M1 macrophages (r = -0.72, p = 0.012); GZMB was
positively correlated with monocytes (r = 0.91, p ≤ 0.001),
CD8 T cells (r = 0.61, p = 0.049) and negatively correlated with
M2 macrophages (r = -0.80, p = 0.003), and mast cells resting (r =
-0.61, p = 0.048).

3.8 The transcription factors regulated
network and target drugs in OSA patients

We obtained 11 TFs (NR2F2, FOXA1, NFIC, HDAC2, EP300,
TEAD4, CEBPB, GATA2, RCOR1, FOXA2, and RXRA) and 27 TF-

FIGURE 5
Correlation between hub genes and Immune infiltration cells. Spearman’s correlation analysis between CRP (A), CD40LG (B), CCL20 (C), GZMB (D)
and infiltrating immune cells, respectively.The four hub genes were validated by RT-qPCR. The size of the dots represents the strength of the correlation
between genes and immune cells; the larger the dots, the stronger the correlation. The color of the dots represents the p-value, the redder the color, the
lower the p-value. p < 0.05 was considered statistically significant. CRP, C-Reactive Protein; CCL20, C-C Motif Chemokine Ligand 20; CD40LG,
CD40 Ligand; GZMB, Granzyme B.
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target pairs (Supplementary Table S5). The statistically significant
correlation immune cells (r > 0.5 and p < 0.05) were monocytes,
M0 macrophages, M1macrophages, M2 macrophages, neutrophils,
resting mast cells, CD4 memory resting T cells and CD8 T cells.
Interestingly, RXRA and NR2F2 were also among 122 IRDEGs,
indicating that the two TFs play a key role in the potential
mechanism of VAT homeostasis of OSA patients. The 27 TF-
target pairs and the relationship between target genes and
immune cells were demonstrated in Figure 6A. Through the
DGIdb database, we also found several potential drugs that target
hub genes and TFs, Figure 6B showed a visualization plot of drug-
gene network.

4 Discussion

Given the strong link between OSA, obesity and their related
comorbidity, adipose tissue may act as a key player in the
pathogenesis and progress of OSA (Ryan et al., 2019). Compared to
subcutaneous adipose tissue, VAT secretes more hormones and
proinflammatory cytokines that induce metabolic dysfunction, due
to VAT hormones preferential enter the portal circulation and
directly alter glucolipid metabolism by the liver (Liu and O’Byrne
2020). Therefore, we initially focus on the visceral adipose tissue (VAT)
homeostasis of OSA patients through a multidisciplinary approach. In
addition, Gharib et al. (2013) found that “Immunity and Inflammation”
were the most upregulated modules in the VAT of OSA patients, but
little is known about the key genes and their relationship with immune
cell infiltration in this module. Herein, we performed the dataset
analysis to explore the effect of immune-related genes and immune
infiltration characteristics on OSA-related metabolic dysregulation. To
our knowledge, this is the first study that collects clinical VAT samples
to validate the findings from bioinformatics analysis, which provides
direct evidence for adipose tissue as a proinflammatory target organ for
OSA-associated metabolic complications. Furthermore, our study
found the biological function of CD40LG and GZMB might be
important for the VAT homeostasis of OSA patients, those two
immune-related genes were first reported in the VAT of OSA
patients, and their interaction with macrophages and involved
pathways might provide new insights for understanding molecular
mechanisms of OSA-related metabolic dysregulation.

In the present study, we reanalyzed the only visceral fat
transcriptome dataset GSE38792 including OSA patients and
identified a total of 122 IRDEGs. Then we used the 122 IRDEGs to
construct a PPI network and found 10 hub immune-related genes,
including IL1R1, CRP, IL33, CD40LG, CCL5, CCL20, CXCL8, TLR3,
TSLP, and GZMB. After an initial validation by RT-qPCR, the relative
mRNA expression of four hub genes (CRP, CD40LG, CCL20, and
GZMB) was consistent with the bioinformatics results, while three genes
(IL1R1, IL33, and CCL5) showed the opposite results, and the rest three
genes (CXCL8, TLR3, and TSLP) showed no significant difference.
Interestingly, the seven validated hub genes played a pro-inflammatory
role when the relative mRNA expression level increased. We further
validated the protein expression level of the four hub genes (CRP,
CD40LG, CCL20, and GZMB) by ELISA and IHC methods. Finally,
CD40LG and GZMB were verified to be consistent with the
bioinformatics results regardless of the mRNA and protein
expression levels. Hence, the results of the bioinformatic analysis are
not always reliable, especially in small sample datasets, experimental
validation is necessary to increase confidence. In addition, we did not
further establish an immune-related diagnostic model for OSA when
compared to previous studies (Li et al., 2017; Gu et al., 2019; Cao et al.,
2021; Peng et al., 2021; Liu et al., 2022), because of the invasive
procedures for harvesting VAT.

CD40LG, which binds CD40 and triggers pro-inflammatory
mediators on the surface of various cell types, was also found to
increase in children with OSA and decreased after
adenotonsillectomy (Gozal et al., 2007). Soluble CD40 ligand
(sCD40L) can be a marker for endothelium-related activation and a
variety of cardiovascular disorders (Mach et al., 1998; Lutgens &
Daemen 2002; Lobbes et al., 2006). Adult male patients with
moderate to severe OSA also had significantly higher serum sCD40L

FIGURE 6
The transcription factors (TFs) regulated network and target
drugs in OSA patients. (A) The alluvial plot showing the regulatory
network of TFs-genes-immune cells. The left column represents
predicted TFs, the middle column represents immune-related
hub genes, the right column represents immune cells, and the edge
represents the relationship between them. A larger edge width
indicates the number of TFs and immune cells (B)Drug-gene network
using drug-centric fashions. Yellow circles indicate predictive drug,
and blue squares indicate immune-related hub genes.
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levels than obese control subjects and nasal continuous positive airway
pressure significantly decreased serum levels of sCD40L (Minoguchi
et al., 2007). Previous studies have only examined serum sCD40L levels
in OSA patients, and we detected the protein expression of sCD40L in
the VAT for the first time. Our GO analysis results revealed that
CD40LG was mainly involved in receptor-ligand activity, chemokine
activity, cytokine activity, signaling receptor activator activity and
regulation of production of molecular mediator of immune
response. With regard to KEGG pathway analysis, CD40LG was
mainly involved in Cytokine-cytokine receptor interaction pathway.
Notably, CD40LG in adipose tissue was mainly involved in the
progression of OSA by regulating cytokine interaction. GZMB
belongs to the granzyme subfamily of proteins and is involved in
the signaling pathways of apoptosis, necrosis, and inflammation.
Mahzad Akbarpour found that the low GZMB levels in intratumoral
CD8+ T cells under tumor microenvironment contributes to the
maintenance of self-renew ability of cancer stem cells, which might
explain the poorer outcomes of the presence of OSA in cancer patients
(Akbarpour et al., 2017). To date, rare studies have reported the
expression of GZMB in VAT, and our study showed that GZMB
was upregulated in VAT of OSA patients, but the role of GZMB in the
occurrence and development of OSA-related morbidity needs further
studied. In addition, the correlation between OSA and elevated CRP
levels has been reported (Gozal et al., 2012; Tie et al., 2016). Although
our results showed no statistical difference, the relative expression of
CRP in VAT was slightly elevated. White fat inflammation was a major
contributor to increased CRP in obesity, and OSA should be taken into
consideration to explain the high CRP levels in obese patients
(Paepegaey et al., 2015). In summary, the biological functions and
involved signaling pathways of CD40LG and GZMB indicated their
important roles in immunity and inflammation modules in the VAT of
OSA patients, which may broaden the knowledge of previous findings.

The biological functions of CD40LG and GZMB were associated
with immune cells, so we performed adipose tissue immune infiltration
analysis between OSA and control patients. Our data demonstrated the
immune cell changes of VAT in the OSA group. Consistent with
previous findings (Peng et al., 2021),monocyte-macrophages accounted
for the highest proportion of immune cell types, followed by
CD8 T cells. The changes in M1 and M2 macrophage proportion
showed a significant difference between OSA and the control
group. Macrophages are mainly involved in inflammatory responses
and microbial killing and their role in the adipose tissue immune
microenvironment that induces the pro-inflammatory M1 phenotype
and subsequent insulin resistance has been reported in rodent
experiments (Murphy et al., 2017; Ryan 2017). Similarly, chronic
intermittent hypoxia in OSA-induced adipose tissue macrophage
inflammation contributes to dyslipidemia and atherogenesis (Poulain
et al., 2014). Then we validated the results using RT-PCR and IHC
methods and found that macrophage infiltration, especially pro-
inflammatory M1 phenotype in VAT, was a hallmark feature in
OSA patients independently of obesity. The presence of OSA
exacerbates macrophage infiltration in adipose tissue and is
metabolically dysfunctional in obese patients. Our results favor
macrophages and inflammation are involved in OSA-related
metabolic dysfunction, CD11c-labeled proinflammatory macrophage
may be the predominant macrophage subset in VAT of OSA patients,
which provides direct evidence for adipose tissue as a proinflammatory
target organ for OSA-associated metabolic complications.

By analyzing the correlation between the validated hub genes and
immune cells, we found that the expression of CD40LG was positively
correlated with CD8 T cells and negatively correlated with
M0 macrophages and memory resting CD4 T cells. CD40LG is
expressed on the surface of T cells, and CD8 T cells are crucial
members of adaptive immune response (Stelzer et al., 2016). The
interaction between T cells and macrophages may be induced by
CD40LG. GZMB was positively correlated with monocytes and
CD8 T cells and negatively correlated with M2 macrophages and
resting mast cells. GZMB is generally secreted by cytotoxic T
lymphocytes and induces target cell apoptosis (Stelzer et al., 2016).
The negatively correlation with M2 macrophages hinted that GZMB
might occur in the early stage of adipose tissue inflammation. CRP was
positively correlated with neutrophils and negatively correlated with
M2 macrophages and resting mast cells. CCL20 was significantly
positively correlated with monocytes, and negatively correlated with
M1 macrophages. Studies have shown that adipose-resident
macrophage numbers are positively related to circulating
inflammatory markers such as CRP and TNFα (CD40LG belongs to
TNF family members), and adipose inflammation is thought to be the
main source of systemic inflammation and metabolic disorder
associated with obesity (Paepegaey et al., 2015; Kunz et al., 2021).
Therefore, better understanding of the relationship between immune-
related genes and immune infiltration cells may contributes to
discovering novel small molecules or other promising candidates as
immunotherapies of OSA-associated metabolic complications.

In order to find novel immunotherapies of OSA-associated
metabolic complications, we predicted candidate TFs and target
drugs for the hub genes by cytoscape software and online database.
We discovered two TFs, namely RXRA and NR2F2, were also
belonging to the 122 IRDEGs. RXRA, Retinoid X Receptor
Alpha, is a common binding partner to many other nuclear
receptors such as PPARs, vitamin D receptors and liver X
receptors. It also promotes myelin debris phagocytosis and
remyelination by macrophages (Natrajan et al., 2015).
Bexarotene, one of the small molecules predicted for target
RXRA gene, can improve cholesterol homeostasis and inhibit
atherosclerosis progression in a mouse model of mixed
dyslipidemia (Lalloyer et al., 2006). NR2F2, Nuclear Receptor
Subfamily two Group F Member 2, is an important regulator of
differentiation, which has been linked to tissue homeostasis and its
abnormal expression may lead to infertility, aberrant development
of the vascular system, and metabolic diseases (Stelzer et al., 2016).
Although no drugs were predicted to target NR2F2 gene in the
DGIdb database, its role in inflammation and immunity cannot be
ignored. Imatinib, a protein kinase inhibitor predicted for target
CD40LG gene, has been reported to ameliorate COVID-19-induced
metabolic complications (Li et al., 2022). In summary, the candidate
TFs and target drugs for the immune-related hub genes contribute to
finding novel immunotherapies of OSA-associated metabolic
complications, but more animal and clinical trials are essential
for drug efficacy validation and achieving clinical translation.

Nevertheless, our research also has some limitations. Firstly,
CIBERSORT is an analytical tool based on limited existing gene
expression data that may underestimate the potential heterotypic
interactions of cells. We believe that the immune cell characteristics
of adipose tissue in OSA patients will be better illumination with the
widespread of single-cell sequencing (Acosta et al., 2017). Secondly, the
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sample size is small both in the training dataset and in external
validation, owing to the difficulty of collecting VAT samples that
meet the inclusion criterion (eg. overnight PSG completed; gender,
age, and body mass index must be matched). Thirdly, we only chose
CD11c and CD206 primary antibodies to label M1 and
M2 macrophages, respectively. Since there are so many markers for
macrophages (Shapouri-Moghaddam et al., 2018), we might have
overlooked the role of other macrophage subsets in fat homeostasis
of OSA patients. Finally, we only validate the hub genes and
macrophage infiltration in the VAT of OSA, further research is
needed to comprehensively identify the potential mechanism of each
IRDEG (immune-related differentially expressed gene) and their
interaction with immune cells in OSA-related cell and mouse models.

5 Conclusion

In conclusion, our research found that CD40LG and GZMB
played important roles in immunity and inflammation modules in
the VAT of OSA patients, and pro-inflammatory M1macrophage in
VAT was a hallmark feature in OSA patients independently of
obesity. The interaction between CD40LG, GZMB and adipose tissue
macrophages not only provides new insights for understanding
molecular mechanisms but also be of great significance in
discovering novel small molecules or other promising candidates
as immunotherapies of OSA-associated metabolic complications.
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