8 research outputs found

    Maximizing spin-orbit torque efficiency of Ta(O)/Py via modulating oxygen-induced interface orbital hybridization

    Full text link
    Spin-orbit torques due to interfacial Rashba and spin Hall effects have been widely considered as a potentially more efficient approach than the conventional spin-transfer torque to control the magnetization of ferromagnets. We report a comprehensive study of spin-orbit torque efficiency in Ta(O)/Ni81Fe19 bilayers by tuning low-oxidation of \b{eta}-phase tantalum, and find that the spin Hall angle {\theta}DL increases from ~ -0.18 of the pure Ta/Py to the maximum value ~ -0.30 of Ta(O)/Py with 7.8% oxidation. Furthermore, we distinguish the efficiency of the spin-orbit torque generated by the bulk spin Hall effect and by interfacial Rashba effect, respectively, via a series of Py/Cu(0-2 nm)/Ta(O) control experiments. The latter has more than twofold enhancement, and even more significant than that of the former at the optimum oxidation level. Our results indicate that 65% enhancement of the efficiency should be related to the modulation of the interfacial Rashba-like spin-orbit torque due to oxygen-induced orbital hybridization cross the interface. Our results suggest that the modulation of interfacial coupling via oxygen-induced orbital hybridization can be an alternative method to boost the change-spin conversion rate.Comment: 15 pages, 4 figure

    Thickness-dependent magnetic properties in Pt[CoNi]n multilayers with perpendicular magnetic anisotropy

    Full text link
    We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy (PMA) coefficient, magnetic domain structures, and magnetization dynamics of Pt(5 nm)/[Co(t_Co nm)/Ni(t_Ni nm)]5/Pt(1 nm) multilayers by combining the four standard magnetic characterization techniques. The magnetic-related hysteresis loops obtained from the field-dependent magnetization M and anomalous Hall resistivity (AHR) \r{ho}_xy found that the two serial multilayers with t_Co = 0.2 and 0.3 nm have the optimum PMA coefficient K_U well as the highest coercivity H_C at the Ni thickness t_Ni = 0.6 nm. Additionally, the magnetic domain structures obtained by Magneto-optic Kerr effect (MOKE) microscopy also significantly depend on the thickness and K_U of the films. Furthermore, the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to K_U and H_C, indicating that inhomogeneous magnetic properties dominate the linewidth. However, the intrinsic Gilbert damping constant determined by a linear fitting of frequency-dependent linewidth does not depend on Ni thickness and K_U. Our results could help promote the PMA [Co/Ni] multilayer applications in various spintronic and spin-orbitronic devices.Comment: 17 pages, 4 figure
    corecore