305 research outputs found

    Effects of Low Intensity Focused Ultrasound on Liposomes Containing Channel proteins.

    Get PDF
    The ability to reversibly and non-invasively modulate region-specific brain activity in vivo suggests Low Intensity Focused Ultrasound (LIFU) as potential therapeutics for neurological dysfunctions such as epilepsy and Parkinson's disease. While in vivo studies provide evidence of the bioeffects of LIFU on neuronal activity, they merely hint at potential mechanisms but do not fully explain how this technology achieves these effects. One potential hypothesis is that LIFU produces local membrane depolarization by mechanically perturbing the neuronal cell membrane, or activating channels or other proteins embedded in the membrane. Proteins that sense mechanical perturbations of the membrane, such as those gated by membrane tension, are prime candidates for activating in response to LIFU and thus leading to the neurological responses that have been measured. Here we use the bacterial mechanosensitive channel MscL, which has been purified and reconstituted in liposomes, to determine how LIFU may affect the activation of this membrane-tension gated channel. Two bacterial voltage-gated channels, KvAP and NaK2K F92A channels were also studied. Surprisingly, the results suggest that ultrasound modulation and membrane perturbation does not induce channel gating, but rather induces pore formation at the membrane protein-lipid interface. However, in vesicles with high MscL mechanosensitive channel concentrations, apparent decreases in pore formation are observed, suggesting that this membrane-tension-sensitive protein may serve to increase the elasticity of the membrane, presumably because of expansion of the channel in the plane of the membrane independent of channel gating

    Psychosocial Adjustment of Women with Work-related Disabilities in Rural China

    Get PDF
    The impact of gender roles on the psychosocial adjustment of women in rural China with work related disabilities is explored. The influence of economic reform, traditional family orientation, and gender expectations on the ability of women to work in rural China are discussed via three case studies

    ShiBASE: an integrated database for comparative genomics of Shigella

    Get PDF
    Among the major enteric bacterial pathogens, Shigella is found to display extreme genome diversity and dynamics, which imposes a challenge in comparative genomic studies. To facilitate further studies in this area, we have constructed an integrated online database, ShiBASE (),which contains Shigella genomic sequences of four species and additional comparative genomic hybridization (CGH) data of 43 serotypes. ShiBASE offers online comparative analysis on DNA sequences, gene orders, metabolic pathways and virulence factors. In addition, ShiBASE has a newly developed online comparative visualization service, Shi-align, which enables the alignment of any query sequence with the reference genome sequences

    Should We Expect Each Year in the Next Decade (2019–28) to be Ranked Among the Top 10 Warmest Years Globally?

    Get PDF
    Annual rankings of global temperature are widely cited by media and the general public, not only to place the most recent year in a historical perspective, but also as a first-order metric of recent climate change that is easily digestible by the general public. Moreover, all annual NOAAGlobalTemp anomalies from 1880 (the earliest reading available) through the mid-1970s are well below anomalies of the top 10 warmest years in Table 1, even when considering the uncertainty of the NOAAGlobalTemp time series values. While we expect the algorithm\u27s performance to be largely independent of any changes made to the way that NOAAGlobalTemp (or any other annual global temperature time series) is calculated, we do envision monitoring the algorithm\u27s performance and proposing future fine tuning of the algorithm if warranted. Similarly, the AR with trend extension approach (and the AR without trend extension approach to a lesser extent) appears to slightly outperform the AR+ENSO approach in terms of simulation error and prediction interval width, but again the differences are not statistically significant

    VFDB: a reference database for bacterial virulence factors

    Get PDF
    Bacterial pathogens continue to impose a major threat to public health worldwide in the 21st century. Intensified studies on bacterial pathogenesis have greatly expanded our knowledge about the mechanisms of the disease processes at the molecular level over the last decades. To facilitate future research, it becomes necessary to form a database collectively presenting the virulence factors (VFs) of various medical significant bacterial pathogens. The aim of virulence factor database (VFDB) (http://www.mgc.ac.cn/VFs/) is to provide such a source for scientists to rapidly access to current knowledge about VFs from various bacterial pathogens. VFDB is comprehensive and user-friendly. One can search VFDB by browsing each genus or by typing keywords. Furthermore, a BLAST search tool against all known VF-related genes is also available. VFDB provides a unified gateway to store, search, retrieve and update information about VFs from various bacterial pathogens

    Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a

    Get PDF
    BACKGROUND: Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401) and compared it with S. flexneri 2a (Sf301). RESULTS: The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI). Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS). There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. CONCLUSION: Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri

    D2.1 - Report on Selected TRNG and PUF Principles

    Get PDF
    This report represents the final version of Deliverable 2.1 of the HECTOR work package WP2. It is a result of discussions and work on Task 2.1 of all HECTOR partners involved in WP2. The aim of the Deliverable 2.1 is to select principles of random number generators (RNGs) and physical unclonable functions (PUFs) that fulfill strict technology, design and security criteria. For example, the selected RNGs must be suitable for implementation in logic devices according to the German AIS20/31 standard. Correspondingly, the selected PUFs must be suitable for applying similar security approach. A standard PUF evaluation approach does not exist, yet, but it should be proposed in the framework of the project. Selected RNGs and PUFs should be then thoroughly evaluated from the point of view of security and the most suitable principles should be implemented in logic devices, such as Field Programmable Logic Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) during the next phases of the project

    The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conidia are considered to be the primary cause of infections by <it>Trichophyton rubrum</it>.</p> <p>Results</p> <p>We have developed a cDNA microarray containing 10250 ESTs to monitor the transcriptional strategy of conidial germination. A total of 1561 genes that had their expression levels specially altered in the process were obtained and hierarchically clustered with respect to their expression profiles. By functional analysis, we provided a global view of an important biological system related to conidial germination, including characterization of the pattern of gene expression at sequential developmental phases, and changes of gene expression profiles corresponding to morphological transitions. We matched the EST sequences to GO terms in the <it>Saccharomyces </it>Genome Database (SGD). A number of homologues of <it>Saccharomyces cerevisiae </it>genes related to signalling pathways and some important cellular processes were found to be involved in <it>T. rubrum </it>germination. These genes and signalling pathways may play roles in distinct steps, such as activating conidial germination, maintenance of isotropic growth, establishment of cell polarity and morphological transitions.</p> <p>Conclusion</p> <p>Our results may provide insights into molecular mechanisms of conidial germination at the cell level, and may enhance our understanding of regulation of gene expression related to the morphological construction of <it>T. rubrum</it>.</p

    Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery

    Get PDF
    The Shigella bacteria cause bacillary dysentery, which remains a significant threat to public health. The genus status and species classification appear no longer valid, as compelling evidence indicates that Shigella, as well as enteroinvasive Escherichia coli, are derived from multiple origins of E.coli and form a single pathovar. Nevertheless, Shigella dysenteriae serotype 1 causes deadly epidemics but Shigella boydii is restricted to the Indian subcontinent, while Shigella flexneri and Shigella sonnei are prevalent in developing and developed countries respectively. To begin to explain these distinctive epidemiological and pathological features at the genome level, we have carried out comparative genomics on four representative strains. Each of the Shigella genomes includes a virulence plasmid that encodes conserved primary virulence determinants. The Shigella chromosomes share most of their genes with that of E.coli K12 strain MG1655, but each has over 200 pseudogenes, 300∼700 copies of insertion sequence (IS) elements, and numerous deletions, insertions, translocations and inversions. There is extensive diversity of putative virulence genes, mostly acquired via bacteriophage-mediated lateral gene transfer. Hence, via convergent evolution involving gain and loss of functions, through bacteriophage-mediated gene acquisition, IS-mediated DNA rearrangements and formation of pseudogenes, the Shigella spp. became highly specific human pathogens with variable epidemiological and pathological features
    corecore