7 research outputs found

    Effect of DNA methyltransferase 1 on transmission ratio distortion and epigenetic inheritance

    No full text
    Epigenetic modification of DNA plays an important role in gene regulation. During gametogenesis and early embryogenesis epigenetic states are reset to ensure embryonic-specific gene expression patterns after fertilization. However, certain genomic regions may resist epigenetic reprogramming. This may result in transgenerational epigenetic inheritance. Earlier, a grandparental origin dependent (GPO) transmission ratio distortion (TRD) of alleles in the distal region of mouse chromosome 12 had been found (Croteau et al ., 2002). The distorted region overlaps with the imprinted region of chromosome 12. The mechanism underlying this TRD is unknown, and we hypothesized that it was due to failure to reset imprints in the imprinted region in a proportion of germ cells. Such an imprint resetting failure would represent a particular case of transgenerational epigenetic inheritance. DNA (Cytosine-5) methyltransferase 1 (DNMT1) plays a key role in the maintenance of epigenetic states in mammalian genomes. To test the role of DNA methylation and DNMT1 in the genesis of TRD and its relationship to epigenetic inheritance we investigated the effect of Dnmt1 loss-of-function mutations using two mouse models: GPO (grandparental origin dependent)-TRD (transmission ratio distortion) and epigenetic inheritance at the agouti locus. Here, we report that Dnmt1 mutations have a modifying parental effect on the transmission of grandparental chromosome 12 alleles. However, the same Dnmt1 mutation did not affect the agouti coat color inheritance patterns in mice that inherited the Avy (agouti viable yellow) mutant allele from the father. Our results suggest that Dnmt1 is a trans-acting modifier of allelic transmission and support the role of epigenetic states in the genesis of TRD

    Coordinated diurnal regulation of genes from the Dlk1–Dio3 imprinted domain: implications for regulation of clusters of non-paralogous genes

    No full text
    International audienceThe functioning of the genome is tightly related to its architecture. Therefore, understanding the relationship between different regulatory mechanisms and the organization of chromosomal domains is essential for understanding genome regulation. The majority of imprinted genes are assembled into clusters, share common regulatory elements, and, hence, represent an attractive model for studies of regulation of clusters of non-paralogous genes. Here, we investigated the relationship between genomic imprinting and diurnal regulation of genes from the imprinted domain of mouse chromosome 12. We compared gene expression patterns in C57BL/6 mice and congenic mice that carry the imprinted region from a Mus musculus molossinus strain MOLF/Ei. In the C57BL/6 mice, a putative enhancer/oscillator regulated the expression of only Mico1/Mico1os, whereas in the congenic mice its influence was spread onto Rtl1as, Dio3 and Dio3os, i.e. the distal part of the imprinted domain, resulting in coordinated diurnal variation in expression of five genes. Using additional congenic strains we determined that in C57BL/6 the effect of the putative enhancer/oscillator was attenuated by a linked dominant trans-acting factor located in the distal portion of chromosome 12. Our data demonstrate that (i) in adult organs, mRNA levels of several imprinted genes vary during the day, (ii) genetic variation may remove constraints on the influence of an enhancer and lead to spreading of its effect onto neighboring genes, thereby generating genotype-dependent expression patterns and (iii) different regulatory mechanisms within the same domain act independently and do not seem to interfere with each other

    Parental Effect of DNA (Cytosine-5) Methyltransferase 1 on Grandparental-Origin-Dependent Transmission Ratio Distortion in Mouse Crosses and Human Families

    No full text
    Transmission ratio distortion (TRD) is a deviation from the expected Mendelian 1:1 ratio of alleles transmitted from parents to offspring and may arise by different mechanisms. Earlier we described a grandparental-origin-dependent sex-of-offspring-specific TRD of maternal chromosome 12 alleles closely linked to an imprinted region and hypothesized that it resulted from imprint resetting errors in the maternal germline. Here, we report that the genotype of the parents for loss-of-function mutations in the Dnmt1 gene influences the transmission of grandparental chromosome 12 alleles. More specifically, maternal Dnmt1 mutations restore Mendelian transmission ratios of chromosome 12 alleles. Transmission of maternal alleles depends upon the presence of the Dnmt1 mutation in the mother rather than upon the Dnmt1 genotype of the offspring. Paternal transmission mirrors the maternal one: live-born offspring of wild-type fathers display 1:1 transmission ratios, whereas offspring of heterozygous Dnmt1 mutant fathers tend to inherit grandpaternal alleles. Analysis of allelic transmission in the homologous region of human chromosome 14q32 detected preferential transmission of alleles from the paternal grandfather to grandsons. Thus, parental Dnmt1 is a modifier of transmission of alleles at an unlinked chromosomal region and perhaps has a role in the genesis of TRD

    Enhanced Metal–Insulator Transition Performance in Scalable Vanadium Dioxide Thin Films Prepared Using a Moisture-Assisted Chemical Solution Approach

    No full text
    Vanadium dioxide (VO<sub>2</sub>) is a strong-correlated metal–oxide with a sharp metal–insulator transition (MIT) for a range of applications. However, synthesizing epitaxial VO<sub>2</sub> films with desired properties has been a challenge because of the difficulty in controlling the oxygen stoichiometry of VO<sub><i>x</i></sub>, where <i>x</i> can be in the range of 1 < <i>x</i> < 2.5 and V has multiple valence states. Herein, a unique moisture-assisted chemical solution approach has been developed to successfully manipulate the oxygen stoichiometry, to significantly broaden the growth window, and to significantly enhance the MIT performance of VO<sub>2</sub> films. The obvious broadening of the growth window of stoichiometric VO<sub>2</sub> thin films, from 4 to 36 °C, is ascribed to a self-adjusted process for oxygen partial pressure at different temperatures by introducing moisture. A resistance change as large as 4 orders of magnitude has been achieved in VO<sub>2</sub> thin films with a sharp transition width of less than 1 °C. The much enhanced MIT properties can be attributed to the higher and more uniform oxygen stoichiometry. This technique is not only scientifically interesting but also technologically important for fabricating wafer-scaled VO<sub>2</sub> films with uniform properties for practical device applications
    corecore