186 research outputs found

    Clinical, neurophysiological evaluation and genetic features of axonal Charcot–Marie–Tooth disease in a Chinese family

    Get PDF
    Charcot–Marie–Tooth disease (CMT) is a group of inherited peripheral neuropathies related to variants in the mitochondrial transfer RNA (mt-tRNAval) gene. Here, we report a Chinese family harboring the m.1661A>G variant in the mt-tRNAval gene. Clinical evaluation, neuroelectrodiagnostic testing, and nerve biopsy were performed on four affected family members. Weakness, spasms, and pain in the limbs (especially in the lower limbs) were the main complaints of the proband. Physical examination revealed atrophy and weakness in the distal limbs, increased muscle tone, and hyperreflexia in four limbs. Neuroelectrodiagnostic tests and nerve biopsy supported an axonal polyneuropathy. This study furthers the understanding of phenotype diversity caused by variants in the mt-tRNAval gene in CMT

    Plasmid-mediated novel blaNDM-17 gene encoding a Carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) have spread worldwide, leaving very few treatment options available. New Delhi metallo-beta-lactamase (NDM) is the main carbapenemase mediating CRE resistance and is of increasing concern. NDM-positive Enterobacteriaceae of human origin are frequently identified; however, the emergence of NDM, and particularly novel variants, in bacteria of food animal origin has never been reported. Here, we characterize a novel NDM variant (assigned NDM-17) identified in a β-lactam-resistant sequence type 48 (ST48) Escherichia coli strain that was isolated from a chicken in China. Compared to NDM-1, NDM-17 had three amino acid substitutions (V88L, M154L, and E170K) that confer significantly enhanced carbapenemase activity. Compared to NDM-5, NDM-17 had only one amino acid substitution (E170K) and slightly increased isolate resistance to carbapenem, as indicated by increased MIC values. The gene encoding NDM-17 (blaNDM-17) was located on an IncX3 plasmid, which was readily transferrable to recipient E. coli strain J53 by conjugation, suggesting the possibility of the rapid dissemination of blaNDM-17. Enzyme kinetics showed that NDM-17 could hydrolyze all β-lactams tested, except for aztreonam, and had a significantly higher affinity for all β-lactams tested than did NDM-5. The emergence of this novel NDM variant could pose a threat to public health because of its transferability and enhanced carbapenemase activity

    Presence of VIM-positive pseudomonas species in chickens and their surrounding environment

    Get PDF
    Metallo-β-lactamase gene blaVIM was identified on the chromosome of four Pseudomonas sp. isolates from a chicken farm, including one Pseudomonas aeruginosa isolate from a swallow (Yanornis martini), one Pseudomonas putida isolate from a fly, and two P. putida isolates from chickens. The four isolates shared two variants of blaVIM-carrying genomic contexts that resemble the corresponding regions of clinical metallo-β-lactamase-producing Pseudomonas spp. Our study suggests that the surveillance of carbapenemase-producing bacteria in livestock and their surrounding environment is urgently needed

    Microwave Synthesis and High‐Mobility Charge Transport of Carbon‐Nanotube‐in‐Perovskite Single Crystals

    Get PDF
    Organolead trihalide perovskites have emerged as a new class of competitive solution-processed semiconductors due to their unique optoelectronic properties. However, poor ambient stability and charge transport are the Achilles’ heel of hybrid perovskites, thus limiting their applications. In this work, microwave-assisted synthesis is applied for the first time to rapidly grow perovskite single crystals embedded with single-wall carbon nanotubes. These nanotube-in-perovskite single crystals are endowed with a carrier mobility one order of magnitude higher than the pure counterpart and the related photodetectors show an ultrafast photo-response speed (5 and 80 ns for rise and decay time, respectively). The fast and uniform heating of microwave irradiation facilitates the synthesis of ambient-stable crystals with nanoscale additives, paving the way to creating a wide range of mixed-dimensional perovskite-based nanocomposites with optimal properties and device performance

    Single nucleotide polymorphisms at the TRAF1/C5 locus are associated with rheumatoid arthritis in a Han Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic variants in <it>TRAF1C5 </it>and <it>PTPN22 </it>genes have been shown to be significantly associated with arthritis rheumatoid in Caucasian populations. This study investigated the association between single nucleotide polymorphisms (SNPs) in <it>TRAF1/C5 </it>and <it>PTPN22 </it>genes and rheumatoid arthritis (RA) in a Han Chinese population. We genotyped SNPs rs3761847 and rs7021206 at the <it>TRAF1/C5 </it>locus and rs2476601 SNP in the <it>PTPN22 </it>gene in a Han Chinese cohort composed of 576 patients with RA and 689 controls. The concentrations of anti-cyclic citrullinated peptide antibodies (CCP) and rheumatoid factor (RF) were determined for all affected patients. The difference between the cases and the controls was compared using <it>χ</it><sup>2 </sup>analysis.</p> <p>Results</p> <p>Significant differences in SNPs rs3761847 and rs7021206 at <it>TRAF1/C5 </it>were observed between the case and control groups in this cohort; the allelic p-value was 0.0018 with an odds ratio of 1.28 for rs3761847 and 0.005 with an odds ratio of 1.27 for rs7021206. This significant association between rs3761847 and RA was independent of the concentrations of anti-CCP and RF. No polymorphism of rs2476601 was observed in this cohort.</p> <p>Conclusions</p> <p>We first demonstrated that genetic variants at the <it>TRAF1/C5 </it>locus are significantly associated with RA in Han Chinese, suggesting that <it>TRAF1/C5 </it>may play a role in the development of RA in this population, which expands the pathogenesis role of <it>TRAF1/C5 </it>in a different ethnicity.</p
    corecore