24 research outputs found

    GABA Neuronal Deletion of Shank3 Exons 14–16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities

    Get PDF
    Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, neuronal and brain functions, whether Shank3 expression in specific cell types distinctly contributes to mouse phenotypes remains largely unclear. In the present study, we generated two Shank3-mutant mouse lines (exons 14–16) carrying global and GABA neuron-specific deletions and characterized their electrophysiological and behavioral phenotypes. These mouse lines show similar decreases in excitatory synaptic input onto dorsolateral striatal neurons. In addition, the abnormal social and locomotor behaviors observed in global Shank3-mutant mice are strongly mimicked by GABA neuron-specific Shank3-mutant mice, whereas the repetitive and anxiety-like behaviors are only partially mimicked. These results suggest that GABAergic Shank3 (exons 14–16) deletion has strong influences on striatal excitatory synaptic transmission and social and locomotor behaviors in mice

    Deposition of Crystalline GdIG Samples Using Metal Organic Decomposition Method

    Get PDF
    Fabrication of high quality ferrimagnetic insulators is an essential step for ultrafast magnonics, which utilizes antiferromagnetic exchange of the ferrimagnetic materials. In this work, we deposit high-quality GdIG thin films on a (111)-oriented GGG substrate using the Metal Organic Decomposition (MOD) method, a simple and high throughput method for depositing thin film materials. We postannealed samples at various temperatures and examined the effect on structural properties such as crystallinity and surface morphology. We found a transition in the growth mode that radically changes the morphology of the film as a function of annealing temperature and obtained an optimal annealing temperature for a uniform thin film with high crystallinity. Optimized GdIG has a high potential for spin wave applications with a low damping parameter in the order of 10(-3), which persists down to cryogenic temperatures

    Mechanical Properties of Silicon Nanowires

    Get PDF
    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm

    Genome structure and diversity among Cynanchum wilfordii accessions

    Get PDF
    Abstract Background Cynanchum wilfordii (Cw) and Cynanchum auriculatum (Ca) have long been used in traditional medicine and as functional food in Korea and China, respectively. They have diverse medicinal functions, and many studies have been conducted, including pharmaceutical efficiency and metabolites. Especially, Cw is regarded as the most famous medicinal herb in Korea due to its menopausal symptoms relieving effect. Despite the high demand for Cw in the market, both species are cultivated using wild resources with rare genomic information. Results We collected 160 Cw germplasm from local areas of Korea and analyzed their morphological diversity. Five Cw and one Ca of them, which were morphologically diverse, were sequenced, and nuclear ribosomal DNA (nrDNA) and complete plastid genome (plastome) sequences were assembled and annotated. We investigated the genomic characteristics of Cw as well as the genetic diversity of plastomes and nrDNA of Cw and Ca. The Cw haploid nuclear genome was approximately 178 Mbp. Karyotyping revealed the juxtaposition of 45S and 5S nrDNA on one of 11 chromosomes. Plastome sequences revealed 1226 interspecies polymorphisms and 11 Cw intraspecies polymorphisms. The 160 Cw accessions were grouped into 21 haplotypes based on seven plastome markers and into 108 haplotypes based on seven nuclear markers. Nuclear genotypes did not coincide with plastome haplotypes that reflect the frequent natural outcrossing events. Conclusions Cw germplasm had a huge morphological diversity, and their wide range of genetic diversity was revealed through the investigation with 14 molecular markers. The morphological and genomic diversity, chromosome structure, and genome size provide fundamental genomic information for breeding of undomesticated Cw plants

    GABA neuronal deletion of Shank3 exons 14-16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities

    Get PDF
    Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, neuronal and brain functions, whether Shank3 expression in specific cell types distinctly contributes to mouse phenotypes remains largely unclear. In the present study, we generated two Shank3-mutant mouse lines (exons 14?16) carrying global and GABA neuron-specific deletions and characterized their electrophysiological and behavioral phenotypes. These mouse lines show similar decreases in excitatory synaptic input onto dorsolateral striatal neurons. In addition, the abnormal social and locomotor behaviors observed in global Shank3-mutant mice are strongly mimicked by GABA neuron-specific Shank3-mutant mice, whereas the repetitive and anxiety-like behaviors are only partially mimicked. These results suggest that GABAergic Shank3 (exons 14?16) deletion has strong influences on striatal excitatory synaptic transmission and social and locomotor behaviors in mice. (c) 2018 Yoo, Cho, Lee, Park, Yoo, Yang, Kim, Kim and Ki

    Biomimetic detection of aminoglycosidic antibiotics using polydiacetylene-phospholipids supramolecules

    No full text
    We rationally designed highly sensitive and selective polydiacetylene (PDA)-phospholipids liposomes for the facile detection of aminoglycosidic antibiotics. The detecting mechanism mimics the cellular membrane interactions between neomycin and phosphatidylinositol-4,5-bisphosphate (PIP2) phospholipids. The developed PDA-PIP2 sensory system showed a detection limit of 61 ppb for neomycin and was very specific to aminoglycosidic antibodies only.close

    Comparing the spatial coherence of the natural and focused X-rays from a free electron laser

    No full text
    The degree of spatial coherence, as basic characteristics of the radiation, becomes an important guide to evaluate the performance of X-rays from newly introduced advanced light sources including the X-ray free electron laser (XFEL). Often the modification of the Xray wavefronts to fulfill various applications is necessary, but also there is the need to preserve its coherence property. However, experimental investigation directly comparing the coherence property of focused X-ray radiations with the unmodified ones has not been available. We have performed Young's double-slit experiments by recording diffraction patterns both from slit apertures for unfocused XFEL radiation and from pairs of Au nanoparticles for one-micron focused XFEL radiations. The results confirm that the degree of spatial coherence is preserved for well-built K-B focusing mirrors. (c) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement11Nsciescopu

    The complete plastome of Cynanchum rostellatum (Apocynaceae), an indigenous plant in Korea

    No full text
    The climbing plant Cynanchum rostellatum (Turcz.) Liede & Khanum is widely distributed throughout Korea and Northeast Asia as a member of the Apocynaceae family. Although this plant has a high value in medicinal and industrial purposes, genetic research on this plant is insufficient. This study announces the complete plastid genome (plastome) sequence of C. rostellatum with 663× mean coverage, which was assembled using 763 Mbp short-read data generated by the Illumina HiSeq X platform. The C. rostellatum plastome was 158,018 bp in length and displayed the typical quadripartite structure composed of the large single-copy (LSC) region (89,058 bp), the small single-copy (SSC) region (18,718 bp), and a pair of inverted repeat (IR) regions (25,116 bp). A total of 129 genes have been annotated, including 84 protein-coding genes, 37 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic analysis indicated the genus Cynanchum including 12 Cynanchum plastome sequences, was monophyletic and was located within the sub-family Asclepiadoideae. Two C. rostellatum plastomes, including the plastome assembled in this study, formed a subclade and were sister to the C. thesioides plastome, whereas the other C. rostellatum, which was previously reported one, was located within the clade of C. wilfordii and C. bungei

    Deterministic Current-Induced Perpendicular Switching in Epitaxial Co/Pt Layers without an External Field

    No full text
    Current-induced spin-orbit torques (SOTs) have emerged as a powerful tool to control magnetic elements and non-uniform magnetic textures such as domain walls and skyrmions. SOT-induced switching of perpendicular magnetization generally requires an external field to break the rotational symmetry of the spin-orbit effective fields responsible for the deterministic reversal. The proposed mechanisms to eliminate this requirement often rely on complex multilayer structures that necessitate laborious optimization in the material and spin transport properties, making them less attractive for applications. Herein, current-induced, external field-free switching of an epitaxial MgO/Pt/Co trilayer with an extremely large perpendicular anisotropy in excess of 3 Tesla is reported. It is found that switching occurs due to the interplay of strong SOTs, local anisotropy fluctuations, and the Dzyaloshinkii-Moriya interaction inherent to this epitaxial system. Given that these layers constitute the base stack of a magnetic tunnel junction, this switching mechanism offers the most technologically viable path toward devices such as field-free SOT-based magnetic random-access memories.J.R. and C.O.A. contributed equally to this work. This work was supported by the Japan Society for the Promotion of Science with Grant-in-Aid 15H05699, 25220604, 15H02099, 25220604 and 15H05854. Work at MIT was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Award no. DE-SC0012371. K-J. K. acknowledge the support by KAIST-funded Global Singularity Research Program for 2021. The authors acknowledge technical support from Dr. David Bono, Dr. Keita Nakagawara, Dr. Maxwell Mann, and Dr. Takamichi Miyazaki.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    The complete plastome of <i>Cynanchum rostellatum</i> (Apocynaceae), an indigenous plant in Korea

    No full text
    The climbing plant Cynanchum rostellatum (Turcz.) Liede & Khanum is widely distributed throughout Korea and Northeast Asia as a member of the Apocynaceae family. Although this plant has a high value in medicinal and industrial purposes, genetic research on this plant is insufficient. This study announces the complete plastid genome (plastome) sequence of C. rostellatum with 663× mean coverage, which was assembled using 763 Mbp short-read data generated by the Illumina HiSeq X platform. The C. rostellatum plastome was 158,018 bp in length and displayed the typical quadripartite structure composed of the large single-copy (LSC) region (89,058 bp), the small single-copy (SSC) region (18,718 bp), and a pair of inverted repeat (IR) regions (25,116 bp). A total of 129 genes have been annotated, including 84 protein-coding genes, 37 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic analysis indicated the genus Cynanchum including 12 Cynanchum plastome sequences, was monophyletic and was located within the sub-family Asclepiadoideae. Two C. rostellatum plastomes, including the plastome assembled in this study, formed a subclade and were sister to the C. thesioides plastome, whereas the other C. rostellatum, which was previously reported one, was located within the clade of C. wilfordii and C. bungei.</p
    corecore