41 research outputs found

    Fourier domain mode locking laser sweeping based on optical parametric amplification

    Get PDF
    We present a Fourier domain mode locked (FDML) laser scanning from 1516 to 1550 nm and 1567 to 1597 nm using optical parametric amplifier (OPA) as the gain medium. The output power of -4.85 dBm with sweep rate of 39.6 kHz is achieved. © 2010 IEEE.published_or_final_versionThe 2010 Conference on Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference (OFC/NFOEC), San Diego, CA., 21-25 March 2010. In Proceedings of OFC/NFOEC, 2010, p. 1-

    Acoustic Disturbances in Galaxy Clusters

    Get PDF
    Galaxy cluster cores are pervaded by hot gas which radiates at far too high a rate to maintain any semblance of a steady state; this is referred to as the cooling flow problem. Of the many heating mechanisms that have been proposed to balance radiative cooling, one of the most attractive is dissipation of acoustic waves generated by Active Galactic Nuclei (AGN). Fabian (2005) showed that if the waves are nearly adiabatic, wave damping due to heat conduction and viscosity must be well below standard Coulomb rates in order to allow the waves to propagate throughout the core. Because of the importance of this result, we have revisited wave dissipation under galaxy cluster conditions in a way that accounts for the self limiting nature of dissipation by electron thermal conduction, allows the electron and ion temperature perturbations in the waves to evolve separately, and estimates kinetic effects by comparing to a semi-collisionless theory. While these effects considerably enlarge the toolkit for analyzing observations of wavelike structures and developing a quantitative theory for wave heating, the drastic reduction of transport coefficients proposed in Fabian (2005) remains the most viable path to acoustic wave heating of galaxy cluster cores

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm

    Get PDF
    Background Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses, and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the current implementations of these methods are intended to analyse only single nucleotide and short indel variation, and they usually assume that the two alleles in a heterozygous individual are sampled with equal probability. This is generally false for structural variants detected with paired ends or split reads. Therefore, the population genetics of structural variants cannot be studied, unless a painstaking and potentially biased genotyping is performed first. Results We present svgem, an expectation-maximization implementation to estimate allele and genotype frequencies, calculate genotype posterior probabilities, and test for Hardy-Weinberg equilibrium and for population differences, from the numbers of times the alleles are observed in each individual. Although applicable to single nucleotide variation, it aims at bi-allelic structural variation of any type, observed by either split reads or paired ends, with arbitrarily high allele sampling bias. We test svgem with simulated and real data from the 1000 Genomes Project. Conclusions svgem makes it possible to use low-coverage sequencing data to study the population distribution of structural variants without having to know their genotypes. Furthermore, this advance allows the combined analysis of structural and nucleotide variation within the same genotype-free statistical framework, thus preventing biases introduced by genotype imputation

    Transcriptional activity and strain-specific history of mouse pseudogenes

    Get PDF
    Abstract: Pseudogenes are ideal markers of genome remodelling. In turn, the mouse is an ideal platform for studying them, particularly with the recent availability of strain-sequencing and transcriptional data. Here, combining both manual curation and automatic pipelines, we present a genome-wide annotation of the pseudogenes in the mouse reference genome and 18 inbred mouse strains (available via the mouse.pseudogene.org resource). We also annotate 165 unitary pseudogenes in mouse, and 303, in human. The overall pseudogene repertoire in mouse is similar to that in human in terms of size, biotype distribution, and family composition (e.g. with GAPDH and ribosomal proteins being the largest families). Notable differences arise in the pseudogene age distribution, with multiple retro-transpositional bursts in mouse evolutionary history and only one in human. Furthermore, in each strain about a fifth of all pseudogenes are unique, reflecting strain-specific evolution. Finally, we find that ~15% of the mouse pseudogenes are transcribed, and that highly transcribed parent genes tend to give rise to many processed pseudogenes
    corecore