68 research outputs found

    Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N

    No full text
    We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further

    A Mathematical Model of Cancer Treatment by Radiotherapy

    No full text
    A periodic mathematical model of cancer treatment by radiotherapy is presented and studied in this paper. Conditions on the coexistence of the healthy and cancer cells are obtained. Furthermore, sufficient conditions on the existence and globally asymptotic stability of the positive periodic solution, the cancer eradication periodic solution, and the cancer win periodic solution are established. Some numerical examples are shown to verify the validity of the results. A discussion is presented for further study

    An Impulsive Periodic Single-Species Logistic System with Diffusion

    Get PDF
    We study a single-species periodic logistic type dispersal system in a patchy environment with impulses. On the basis of inequality estimation technique, sufficient conditions of integrable form for the permanence and extinction of the system are obtained. By constructing an appropriate Lyapunov function, conditions for the existence of a unique globally attractively positive periodic solution are also established. Numerical examples are shown to verify the validity of our results and to further discuss the model

    A Constrained Algorithm Based NMF α

    No full text
    Nonnegative matrix factorization (NMF) is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT) conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets

    Neural networks based on attention architecture are robust to data missingness for early predicting hospital mortality in intensive care unit patients

    Get PDF
    Background Although the machine learning model developed on electronic health records has become a promising method for early predicting hospital mortality, few studies focus on the approaches for handling missing data in electronic health records and evaluate model robustness to data missingness. This study proposes an attention architecture that shows excellent predictive performance and is robust to data missingness. Methods Two public intensive care unit databases were used for model training and external validation, respectively. Three neural networks (masked attention model, attention model with imputation, attention model with missing indicator) based on the attention architecture were developed, using masked attention mechanism, multiple imputation, and missing indicator to handle missing data, respectively. Model interpretability was analyzed by attention allocations. Extreme gradient boosting, logistic regression with multiple imputation and missing indicator (logistic regression with imputation, logistic regression with missing indicator) were used as baseline models. Model discrimination and calibration were evaluated by area under the receiver operating characteristic curve, area under precision-recall curve, and calibration curve. In addition, model robustness to data missingness in both model training and validation was evaluated by three analyses. Results In total, 65,623 and 150,753 intensive care unit stays were respectively included in the training set and the test set, with mortality of 10.1% and 8.5%, and overall missing rate of 10.3% and 19.7%. attention model with missing indicator had the highest area under the receiver operating characteristic curve (0.869; 95% CI: 0.865 to 0.873) in external validation; attention model with imputation had the highest area under precision-recall curve (0.497; 95% CI: 0.480–0.513). Masked attention model and attention model with imputation showed better calibration than other models. The three neural networks showed different patterns of attention allocation. In terms of robustness to data missingness, masked attention model and attention model with missing indicator are more robust to missing data in model training; while attention model with imputation is more robust to missing data in model validation. Conclusions The attention architecture has the potential to become an excellent model architecture for clinical prediction task with data missingness

    S1 fungus_CROP_R_script_rarefied

    No full text
    The HTML outputs of the R scripts using the rarefied CROP dataset

    S1 fungus_CROP_R_script_rarefied

    No full text
    The HTML outputs of the R scripts using the rarefied CROP dataset
    • …
    corecore