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Neural networks based on attention architecture
are robust to data missingness for early
predicting hospital mortality in
intensive care unit patients

Zhixuan Zeng1, Yang Liu2, Shuo Yao1, Jiqiang Liu1, Bing Xiao1, Chenxue Liu3

and Xun Gong1

Abstract

Background: Although the machine learning model developed on electronic health records has become a promising method

for early predicting hospital mortality, few studies focus on the approaches for handling missing data in electronic health

records and evaluate model robustness to data missingness. This study proposes an attention architecture that shows excel-

lent predictive performance and is robust to data missingness.

Methods: Two public intensive care unit databases were used for model training and external validation, respectively. Three

neural networks (masked attention model, attention model with imputation, attention model with missing indicator) based

on the attention architecture were developed, using masked attention mechanism, multiple imputation, and missing indi-

cator to handle missing data, respectively. Model interpretability was analyzed by attention allocations. Extreme gradient

boosting, logistic regression with multiple imputation and missing indicator (logistic regression with imputation, logistic

regression with missing indicator) were used as baseline models. Model discrimination and calibration were evaluated

by area under the receiver operating characteristic curve, area under precision-recall curve, and calibration curve. In add-

ition, model robustness to data missingness in both model training and validation was evaluated by three analyses.

Results: In total, 65,623 and 150,753 intensive care unit stayswere respectively included in the training set and the test set,withmor-

tality of 10.1% and 8.5%, and overall missing rate of 10.3% and 19.7%. attention model with missing indicator had the highest area

under the receiveroperating characteristic curve (0.869; 95%CI: 0.865 to0.873) in external validation; attentionmodelwith imputation

had the highest area under precision-recall curve (0.497; 95% CI: 0.480–0.513). Masked attention model and attention model with

imputation showed better calibration than othermodels. The three neural networks showed different patterns of attention allocation.

In terms of robustness to data missingness, masked attention model and attention model with missing indicator are more robust to

missing data in model training; while attention model with imputation is more robust to missing data in model validation.

Conclusions: The attention architecture has the potential to become an excellent model architecture for clinical prediction

task with data missingness.
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Introduction

Accurate and early prediction of hospital mortality for

patients in intensive care unit (ICU) is essential for clini-

cians to recognize high-risk patients and take timely inter-

ventions. The Severity-of-Illness score is the most

commonly used tool, such as the Acute Physiology and

Chronic Health Evaluation, the Simplified Acute

Physiology Score and the Mortality Probability Models.1

These severity scores generally use clinical variables mea-

sured within the first 24 h of the ICU stay to predict hospital

mortality based on multivariate logistic regression (LR)

algorithm.2–4 Over the past several years, the fast-emerging

machine learning (ML) technology and the popularization

of electronic health records (EHRs) promote researches

that use EHRs to develop ML models for clinical prediction

tasks. The most frequently applied ML algorithms for early

prediction of hospital mortality include classification and

regression tree (CART).5–7 Naive Bayes model,5,8,9

support vector machine,5,8 random forest,5–11 extreme gra-

dient boosting (XGB)5–8,10–13 and artificial neural

network.7,11,14 Compared to conventional severity scores,

ML models have more sophisticated algorithm for mining

data pattern and show improved predictive performance.

However, data missingness in EHRs is poorly handled for

model development, validation, and implementation in

most of the previous related researches,15 and this is a

crucial issue that undermines the credibility of these ML

models for clinical application.

Missing data is unavoidable in all types of clinical

researches,16 especially in retrospective research on EHRs,

since EHRs are originally designed to monitor patients and

improve clinical efficiency rather than to collect complete

data for specific research objectives. When missing data is

encountered, most ML models are not adaptive and need

for preprocessing approaches which delete, impute or indi-

cate missing data. However, these preprocessing approaches

which modify missing data may lead to biased estimation of

the real association between variables and outcome.17–20

Another sort of approach is the built-in algorithmmechanism

which makes model capable of handling missing data by

itself. Tree-based models are representative examples, such

as CART and XGB. Specifically, when a missing variable

is encountered, CART employs so-called surrogate splits

where a surrogate variable similar to the missing variable

is used to decide the split direction,21 while XGB employs

sparsity aware splitting where a unified default split direction

is used.22 Nevertheless, such built-in algorithms also involve

missing data in their computing processes.

Besides the above approaches,we can also design amodel

which neglects missing data and makes predictions only

based on non-missing data, so as to avoid possible adverse

effect caused by involving missing data into the model com-

putation. Unfortunately, most ML algorithms lack flexible

algorithm mechanisms to realize this design. In recent

years, neural networks based on attention architecture have

become popular in natural language processing 23,24 and

computer vision.25 The core mechanism of attention archi-

tecture can be briefly described as: Given a set of inputs,

the model lets one input to pay “attention” to the other

inputs and to achieve an integrated analysis of these inputs,

where the “attention” is obtained by mathematical opera-

tions. This architecture is characterized by the capability of

capturing the association between any two inputs without

regard to their spatial or temporal order and distance, and

the flexibility of allocating “attention” to concerned inputs

rather than all inputs. These inspire us to design an attention

architecture that is competent for mortality prediction and

adaptive to missing data in EHRs.

In this study, we propose a simple and effective attention

architecture. Based on this architecture, we achieve the

design of filtering out missing data from model computation

by introducing a mask function into the regular attention

mechanism. This masked attention model (MAM) takes a

set of clinical variables within the first 24 h during the

ICU stay as inputs and outputs the predicted hospital mortal-

ity. In addition, we also develop other two neural networks

based on this architecture which employ imputation and

missing indicator to handle missing data respectively.

These attention-based models show a state-of-the-art predict-

ive performance, and furthermore they are robust to data

missingness in model training and validation.

Methods

Source of data

We implemented a retrospective cohort study on two large

public ICU databases: The Medical Information Mart for

Intensive Care IV (MIMIC-IV)26 and the eICU Collaborative

Research Database (eICU-CRD).27 MIMIC-IV database con-

tained clinical records of patients admitted to ICUs of the Beth

Israel Deaconess Medical Center between 2008 and 2019,

while eICU-CRD contained records of patients admitted to

335 ICUs in 208 hospitals in the US between 2014 and

2015. These two databases were mutually independent,

without overlapped data. Local ethical review board (ERB)

approvalswere achieved for both the twodatabases and all per-

sonal information was deidentified in accordance with the

Health InsurancePortability andAccountabilityAct standards,

thus an ERB approval from our institution was exempted.

Participants and data extraction

In this study, we used clinical data within the first 24 h of an

ICU stay to predict hospital mortality. In order to develop a

general prediction model, we included all patients from the
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two databases rather than restricting our target population

in a specific disease group. For patients with multiple

hospitalizations, every hospitalization was included; for

hospitalizations with multiple ICU stays, only the first

ICU stay was considered as it provided the earliest clin-

ical data for mortality prediction. The exclusion criteria

were as follows: 1. age not between 18 and 89 years

old at ICU admission; 2. not the first ICU stay of a hos-

pitalization. We extracted all available records of demo-

graphic characteristics, comorbidities, vital signs,

Glasgow Coma Score, laboratory tests, ventilator para-

meters, vasoactive drugs, etc. Each included ICU stay

was treated as a sample in this study. Categorical vari-

ables were represented as 0 for absence and 1 for pres-

ence. One-hot encoding was employed for gender and

admission type. Continuous variables which were prob-

ably observed for multiple times during the first 24 h

were represented as the maximum, minimum, mean,

and standard deviation as appropriate. The finally

employed variables and their ID numbers were summar-

ized in Supplemental Table 1. The label of each sample

was the survival state of the patient at discharge (0 for

survival and 1 for death).

Study design

We selected the eligible samples in MIMIC-IV as the train-

ing set and the eligible samples in eICU-CRD as the test set.

Then a 5-fold cross-validation was implemented on the

training set, where the training set was randomly and

equally split into five mutually exclusive subsets and in

each fold four of them were used for model training and

the rest one was used for internal validation. Thus, for

each type of model, a total of five model instances were

developed. Then all instances were evaluated by the exter-

nal validation on the test set, and the performance of the five

instances was aggregated for final evaluation of a model

type.

Neural networks based on attention architecture

In this section, we introduced the three neural networks

based on our attention architecture: MAM, attention

model with imputation (AM_imp) and attention model

with missing indicator (AM_ind). The proposed attention

architecture contained three major components: embed-

ding layer, multi-head attention layer, and fully con-

nected linear layer. Firstly, the embedding layer was

applied to transform clinical variables into numerical

vectors, followed by layer normalization.28 Then layer-

normalized vectors were sequentially fed into a multi-

head attention layer with the residual connection.29

Finally, a linear layer followed by Sigmoid function

was applied to project the output of the previous layer

to predicted mortality. In addition, we also explored the

interpretability of these models by analyzing the alloca-

tion of attentions on clinical variables.

Model architecture of MAM. MAM was derived from the

attention architecture where a mask function was

introduced in the multi-head attention layer

(Figure 1(a)). We took MAM as an example to provide

a detailed explanation of our attention architecture as

the following.

Embedding layer. The model input was a set of clinical

variables, with each variable containing its textual name

and numerical value (we used the phrase of “numerical

value” here to distinguish it from the conception of

“value” used in the attention mechanism). For example,

when the age of a patient was 75 years old, the textual

name was “age” and the numerical value was “75.” We

transformed clinical variables to numerical vectors by

the embedding layer. The specific procedures included:

(a) erroneous numerical values out of reasonable range

were treated as missing values; (b) a word embedding

layer30 was applied to map each textual name to a

2-dimensional numerical vector; (c) numerical values of

continuous variables were normalized by subtracting

the mean and dividing by the standard deviation, where

the mean and the standard deviation were derived from

the training set; (d) all missing numerical values were

set to zero (although missing variables would be filtered

out in the next layer, this step was needed for running

python code without null error); (e) each clinical variable

was represented as a 3-dimensional vector by concatenat-

ing its name-embedding vector and its normalized

numerical value (Figure 1(c)).

Masked attention layer. The attention mechanism could

be mathematically described as a function that mapped a

query and a set of key-value pairs to an output.

Generally, attentions of the query on every key-value pair

should be computed. In MAM, we employed a masked

attention layer that only allocated attentions to the key-

value pairs of non-missing clinical variables. Specifically,

we firstly introduced a 3-dimensional constant vector c

(c = [1, 1, 1]), then the query, keys, and values were com-

puted as:

q = c WQ (1)

K = X WK (2)

V = X WV (3)

where WQ
∈ R3X3, WK

∈ R3X3, WV
∈ R3X3 were learn-

able weight matrices for generating query, key, and

value, respectively; c ∈ R1X3 was the constant vector

and q ∈ R1X3 was the query vector of c; X ∈ RnX3 was

the matrix containing all clinical variables, where n was

the number of employed variables and each row of X

was an 3-dimentional vector from the embedding layer;

Zeng et al. 3



K ∈ RnX3 and V ∈ RnX3 were matrices for corresponding

keys and values of X. Then the masked attention was

computed as:

a(q, K, V) = softmax mask
q KT

���

dk
√

( )( )

V (4)

where scalar dk was the dimension of key (dk = 3) and
q KT

��

dk
√ was a n-dimentional vector. The ith element of the

vector q KT

��

dk
√ represented the scaled dot-product attention23

between the constant vector c and the ith clinical vari-

able. Then a mask function was used to set scaled dot-

product attention on missing variable to approximate

negative infinity. Given s = q KT

��

dk
√ , the ith element of

mask function applied to s was defined as:

mask(s)i =
si , for non-missing variable

−109, for missing variable

{

(5)

The softmax function in formula (4) ensured that final

attentions of c on all the clinical variables summed to

1. Given m = mask(s), the ith element of softmax

function applied to m was defined as:

softmax(m)i =
emi

∑

j e
mj

(6)

Thus, final attention on missing variables approximately

equaled to zero, which meant that missing variables were

filtered out from the attention-weighted sum of value

vectors and had no impact on the output a(q, K, V) ∈

R1X3 in formula (4). At last, we introduced residual con-

nection in the masked attention layer. That was, the final

output was computed as:

output(q, K, V) = q+ a(q, K, V) (7)

The above algorithm of masked attention was illustrated

in Figure 1(b).

Masked multi-head attention. The multi-head attention

performed multiple sets of above attention algorithm in par-

allel, where each set of attention algorithm was referred to

as a head. Each head had its own learnable weight matrices

WQ, WK , WV , thus multiple heads were capable of captur-

ing different data patterns. For masked multi-head attention

with h heads, a total of h vectors with size of 1 X 3 were

Figure 1. Model architecture of masked attention model (MAM). (a) Overall architecture. (b) Masked attention layer. (c) Embedding layer.
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produced, then the h outputs were concatenated to form an

output vector with size of 1 X 3h . Finally, this output

vector was processed by layer normalization and fed into

the linear layer (Figure 1(a)). The quantity of heads was

an important hyperparameter of the attention architecture.

In this study, we respectively used 1, 3, 5, 7, 9 heads in

multi-head MAM, and the number of heads with the

highest average area under the receiver operating characteristic

curve (AUROC) in the 5-fold cross validation was selected for

subsequent research. For a fair comparison, AM_imp and

AM_ind used the same quantity of heads as MAM.

Attention model with imputation. AM_imp had the same

architecture as MAM except that it did not employ the

mask function. In the embedding layer missing numerical

values were not set to zero. We employed multiple imput-

ation (MI) using multivariate imputation by chained equa-

tions31 to preprocess missing data. Specifically, we

employed multivariate regression models as imputation

models and used the training set to train them. We included

all the clinical variables except the outcome variable in the

imputation procedure to avoid leaking information of the

outcome to prediction model. A total of five imputed data-

sets were created in MI, then estimated regression coeffi-

cients of imputation models in the five imputations were

combined using Rubin’s rules32 to form the final imputation

model. Notably, as it was irrational to impose imputed ven-

tilator parameters to non-ventilation patients, this part of

missing data was to zero as default.

Attention model with missing indicator. AM_ind used a

missing indicator instead of the mask function to handle

missing data. Its architecture was illustrated in Supplemental

Figure 1. In the embedding layer, we set all missing numerical

value to zero, added a binary indicator (0 for non-missing vari-

able and 1 for missing variable), so each clinical variable was

represented as a 4-dimentional vector. And the mask function

was removed from the attention layer.

Interpretability of the attention-based neural networks. We

explored the interpretability of our attention-based neural

networks by analyzing their attention allocations to the

employed clinical variables. As mentioned above, the atten-

tion architecture integrated multiple clinical variables

through the weighted sum of their value vectors, where

the weight of each clinical variable was the attention of

vector c allocated to this variable. Thus, a clinical variable

acquiring higher attention had greater contribution to model

output and was more important for hospital mortality pre-

diction. In order to inspect variable importance captured

by our attention-based models, for all heads of all trained

instances of MAM, AM_imp, and AM_ind, we analyzed

the average acquired attention for all employed clinical

variables among samples in the external validation.

Notably, in MAM, a variable had participated in model

computation only among the samples in which this variable

is non-missing (in the other samples the masked mechanism

made this variable acquiring zero attention). Thus, the

importance of a variable with high missing rate would be

underestimated if its average acquired attention was com-

puted among all samples of the test set. For this reason,

in each head of MAM, the average acquired attention of

the ith variable was defined as 1
ni

∑ni
j=1 ai,j, where ni was

the number of samples whose ith variable was not

missing, and ai,j was the attention value of the ith variable

for the jth sample in the test set. While for AM_imp and

AM_ind, missing variables that were imputed or indicated

also acquired attention and participated in model computa-

tion, so the average acquired attention in these two models

was computed over all samples in the test set.

Baseline models

We employed three baseline models for comparison: XGB,

LR with imputation (LR_imp) and LR with missing indica-

tor (LR_ind).

XGBwaswidely applied in previous researches aiming to

early predict hospital mortality for ICU patients and showed

improved predictive performance over other ML models.5–

8,10–13Asmentioned before, XGB owned a built-in mechan-

ism to handle missing data, which made it competent for our

dataset. For optimizing hyperparameters of XGB, we per-

formed a grid search on different combinations of the follow-

ing hyperparameter settings: n_estimators (400, 600, 800),

learning_rate (0.01, 0.05, 0.1), colsample_bytree (0.6, 0.8),

subsample (0.4, 0.6, 0.8), max_depth (4, 6, 8), min_child_-

weight (1.0, 2.0), gamma (0.2, 0.4), and determined the

optimal setting to achieve the highest average AUROC in

the 5-fold cross-validation on the training set.

LR_imp was a LR model with L1 weight regularization.

And the missing data was preprocessed by the same imput-

ation model used in AM_imp.

LR_ind was another LR model which set missing vari-

able to zero and added a binary indicator for each variable

(0 for non-missing variable and 1 for missing variable) as

model input. Thus, LR_ind took double-quantity inputs

compared to LR_imp.

Statistical analysis and evaluation of model

performance

For both the training set and the test set, clinical variables

were compared between samples in survival group and

death group, using either Student t test, rank-sum test or

Chi-square test as appropriate. Continuous variables were

described as mean (standard deviation) or median [inter-

quartile range], and categorical features were described as

number (percentage). In addition, the number and percent-

age of missing data for each variable were also counted.
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The AUROC and the area under the precision-recall

curve (AUPRC) were employed to evaluate the discrim-

inative ability of models. The mean and 95% confidence

interval (CI) for each type of model were obtained by

aggregating the measurements of five model instances

developed in the 5-fold cross-validation. The calibration

curve was employed to visualize model calibration.33 We

adopted the average predicted probabilities of five model

instances as the final predicted probability for each

sample, and plotted means of decile-binned predicted

probabilities versus corresponding means of actual prob-

abilities in the samples in each bin. The calibration was

assessed by inspecting the proximity between the calibra-

tion curve and the identity line of y= x which represented

perfect calibration.

The attention-based models were built using Pytorch

version 1.7.1, and the XGB, LR, and imputation model were

built using Scikit-learn package version 0.23.1. Statistical ana-

lysis was performed using SciPy package version 1.5.2. Two

tailed P<0.05 was considered as statistical significance.

Model robustness to missing data

We estimated model robustness to data missingness in

both model validation and model training, by analyzing

the alteration of model performance under increasing

missing rate in the test or training set. A total of three ana-

lyses were performed. At first, we focused on the impact

of the inherent missingness in the test set on model valid-

ation. We performed a subgroup analysis in which the

samples in the test set were divided into five subgroups

based on their missing rate: 0%−10%, 10%−20%, 20%

−30%, 30%−40% and more than 40%. Then, we

employed the previously developed prediction models

and imputation models without retraining, and evaluated

their AUROCs and AUPRCs on the above subgroups

respectively. In the second analysis, we focused on the

impact of random missingness on model validation. We

introduced additional random missingness in the raw

test set, by artificially setting every piece of non-missing

variable to missing data under a certain probability P,

while the training set, the previously developed predic-

tion models and imputation models were still fixed.

Then we validated our models on the modified test sets

which were produced under the P of 0.2, 0.4, 0.6, and

0.8. And for each setting of P, we repeated this random

modification on the test set ten times to obtain the mean

and 95% CI of AUROC and AUPRC. In the third analysis,

we focused on the impact of random missingness on

model training. This time the repeated random modifica-

tion under different P values was performed on the raw

training set, while the test set was not modified. For

each modified training set, we retrained our prediction

models and imputation models (for AM_imp and

LR_imp), where 80% of the modified training set was ran-

domly selected for model training and 20% were for

internal validation, and then retrained models were exter-

nally validated on the unmodified test set. We did not

change any architecture or hyperparameters of our

models during model retraining.

Figure 2. Flow chart of patient selection.
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Results

Participants and clinical variables

We ultimately included 65,623 ICU stays for 50,354

patients from MIMIC-IV and 150,753 ICU stays for

126,804 patients from eICU-CRD (Figure 2). In-hospital

death occurred for 6659 (10.1%) and 12,878 (8.5%) ICU

stays in the training set and the test set respectively.

Comparison of the baseline characteristics between

samples in survival and death group for both the training

set and the test set was provided in Table 1. And compari-

son of the other employed clinical variables and statistics of

their missing rate was provided in Supplemental Table 2.

Our results demonstrated the statistical difference of vari-

ables between survival and death group. Regarding to

data missingness, overall missing rate was 10.3% for the

training set and 19.7% for the test set. As shown in

Supplemental Table 2, the test set had a higher missing

rate for most clinical variables compared to the training

set. The four ventilator parameters (Max_TV_setting,

Max_Ppeak, Max_Pplat, Max_PEEP) showed the highest

missing rates in both the training set (>62% in the survival

group and >38% in the death group) and the test set (>79%

in survival group and >49% in death group). As ventilator

parameters for non-ventilation patients were treated as

missing variables, this result was related to the correspond-

ing ventilation rate in the training set (37.3% for survival

group and 61.3% for death group) and the test set (21.2%

for survival group and 53.2% for death group). Other high-

missing variables included Mean_pH, Min_PaO2,

Mean_PaCO2, Min_PaO2/FiO2, Max_Lactate,

Max_TBil, Max_ALT, Max_AST, etc. For these high-

missing variables, the missing rate was obviously higher

in survival group than in the death group, while for the

other variables the difference of missing rate between sur-

vival and death group was relatively small.

Table 1. Comparison of baseline characteristics.

Training set from MIMIC-IV

(n= 65623)

P

Test set from eICU-CRD (n= 150753)

P

Survival

(n= 58964)

Death

(n= 6659)

Survival

(n= 137875)

Death

(n= 12878)

Gender（male），n (%) 33430 (56.696) 3716 (55.804) 0.168 75246 (54.6) 6977 (54.2) 0.391

Age (y, mean (SD)) 62.53 (16.31) 68.66 (14.35) <0.001 61.4 (16.7) 68.2 (14.4) <0.001

Admission type <0.001 <0.001

Medical, n (%) 41298 (70.0) 5540 (83.2) 109777 (79.6) 11849 (92.0)

Unscheduled surgical, n (%) 15912 (27.0) 1087 (16.3) 25623 (18.6) 910 (7.1)

Scheduled surgical, n (%) 1754 (3.0) 32 (0.5) 2475 (1.8) 119 (0.9)

SOFA (median [IQR]) 3.0 [1.0, 5.0] 6.0 [4.0, 9.0] <0.001 2.0 [1.0, 4.0] 6.0 [3.0, 9.0] <0.001

SAPS II (median [IQR]) 33.0 [25.0, 42.0] 55.0 [43.0, 68.0] <0.001 29.0 [21.0, 38.0] 50.0 [37.0, 65.0] <0.001

Length of ICU stay (hours, median [IQR]) 44.3 [25.8, 79.9] 67.3 [28.2, 155.1] <0.001 39.0 [21.0, 70.0] 51.0 [19.0, 119.0] <0.001

SOFA Sequential Organ Failure Assessment, SAPS Simplified Acute Physiology Score; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive

Care IV; eICU-CRD: eICU Collaborative Research Database.

Table 2. AUROCs for MAM with different attention heads in 5-fold cross-validation.

Heads 1 3 5 7 9

AUROC [95%CI] 0.888 [0.880−0.895] 0.892 [0.884−0.900] 0.889 [0.880−0.898] 0.896 [0.885−0.907] 0.894 [0.885−0.903]

AUROC: area under the receiver operating characteristic curve; MAM: masked attention model.
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Model performance

Our result showed that 7-head MAM had the highest

average AUROC in the 5-fold cross-validation

(Table 2). Thus, we selected 7-head MAM for subse-

quent research, and the same setting was used in

AM_imp and AM_ind for comparison. The optimized

hyperparameters of XGB were as following: n_estima-

tors= 600, learning_rate= 0.05, colsample_bytree=

0.8, subsample= 0.6, max_depth= 6, min_child_-

weight= 2.0, gamma= 0.2. In terms of model discrim-

ination, we showed the AUROCs and AUPRCs in the

5-fold cross-validation and the external validation for

all the models in Figure 3. In the external validation,

AM_ind had the highest AUROC (0.869; 95% CI:

0.865–0.873) and AM_imp had the highest AUPRC

(0.497; 95% CI: 0.480–0.513), while LR_ind had the

lowest AUROC (0.781; 95% CI: 0.774–0.788) and

AUPRC (0.364; 95% CI: 0.349–0.378). In terms of

model calibration, we provided the calibration curves

of the models in Figure 4. MAM and AM_imp

showed a better calibration with their curves closely

around the diagonal, while the curves of the other

four models deviated from the diagonal more obviously.

MAM slightly underestimated the risk in low-risk bins

and slightly overestimated the risk in high-risk bins;

AM_ind, LR_imp, and LR_ind overestimated the risk

in middle-risk bins (from 0.3 to 0.7 bins); XGB overes-

timated the risk in almost in all risk bins (from 0.3 to

1.0 bins).

Model interpretation

For all trained instances of MAM, AM_imp, and AM_ind,

the average acquired attentions of all employed variables in

the external validation were shown in Figure 5. We com-

pared the attention allocations among model types, model

instances, and attention heads, respectively. Firstly, at the

level of model type, the three models showed different pat-

terns of attention allocation. Some variables were treated as

important predictors in one model but were neglected in

another. For example, variable 10 (Cerebrovascular

disease) and 57 (Mean white blood cell) had high average

acquired attention in most heads of the five instances of

MAM, but they had relatively low attention in AM_imp

and AM_ind. Such a difference demonstrated the influence

of the approach for handling data missingness on attention

allocation. Secondly, at the level of model instance, smaller

difference of attention allocation was observed among the

five instances of a model type. As shown in Figure 5, for

most MAM instances, most variables between 40 and 51

and between 57 and 70 acquired high attention, while

most variables between 27 and 34 acquired low attention;

for most AM_imp instances, variables between 35 and 45

mostly acquired high attention and variables between 8 and

18mostly acquired low attention; for most AM_ind instances,

the attention allocation was more focused on several vari-

ables, such as variable 3 (Admissiontype_medical), 5

(Admissiontype_unscheduled_surgical), 6 (Age), 51

(Minimum Glasgow Coma Score), 80 (Urine output) and

81 (Invasive mechanical ventilation). Lastly, at the level of

Figure 3. AUROCs and AUPRCs for 5-fold cross validation and external validation. MAM: masked attention model, AM_imp: attention model

with imputation, AM_ind attention model with missing indicator, XGB: extreme gradient boosting, LR_imp: logistic regression with

imputation, LR_ind: logistic regression with missing indicator; AUROC: area under the receiver operating characteristic curve.
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attention head, attention allocations of most heads in one

instance were relatively consistent except for several heads

which showed a different attention allocation, such as the 7th

head of the MAM instance 1, the second and the sixth head

of the AM_imp instance 3, and the fifth head of the AM_ind

instance 4. This indicated that the models were capable of cap-

turing different data patterns through multiple heads.

Model robustness to data missingness

The results of our three analyses about model robustness to

data missingness were demonstrated in Figure 6. Each sub-

graph in Figure 6 showed the means and 95% CIs of

AUROC or AUPRC for all types of models in external vali-

dations under corresponding settings.

The first was the subgroup analysis and its result was

provided in Figure 6(a) and Figure 6(b). The sample size

and hospital mortality of the five subgroups with missing

rates of 0%−10%, 10%−20%, 20%−30%, 30%−40% and

>40% were 27,233 (mortality: 18.8%), 80,900 (5.6%),

15,858 (5.9%), 13,462 (7.9%), and 13,300 (8.9%),

respectively. Overall, most models showed lower

AUROCs in subgroups with higher missing rate, especially

in 30%–40% and >40% subgroups. The AUROCs of

MAM, AM_ind and LR_imp kept stable in the first four

subgroups and started to decline in the last >40% subgroup.

The AUROCs of AM_imp and XGB started to decline in

the 30%−40% subgroup, but the AUROC of AM_imp

kept more stable in the >40% subgroup. The AUROCs of

LR_ind started to decline in the 20%−30% subgroup. In

the last >40% subgroup, the three attention-based models

showed higher AUROC than the other baseline models.

Compared to AUROC, the AUPRCs of all models declined

more obviously, especially in 10%−20% subgroup. And

AM_imp showed the most stable and highest AUPRC in

the last >40% subgroup.

The second analysis was supplementary to the first ana-

lysis for evaluating the impact of random missingness on

model validation, and the results were shown in Figure

6(c) and Figure 6(d). Overall, the AUROCs and AUPRCs

of all the models declined as the missing probability P

increased, which indicated that increasing random

Figure 4. Calibration curves for external validation. For each model, the calibration curve plotted means of decile-binned predicted

probabilities versus corresponding means of actual probabilities in the patients in each bin. As shown, each blue point of a calibration

curve represented a bin and the size of the gray circle around represented the sample size of this bin. The dotted line was the identity line

of y= x representing perfect calibration. MAM: masked attention model, AM_imp: attention model with imputation, AM_ind: attention

model with missing indicator, XGB: extreme gradient boosting, LR_imp: logistic regression with imputation, LR_ind: logistic regression with

missing indicator.
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Figure 5. Model interpretation by attention allocations. For the three model types: MAM, AM_imp and AM_ind, five heat-map subgraphs

were used to show attention allocations for their five trained instances. Each small colored square in a heatmap showed the average

acquired attention of a variable in a head of this instance. The color bar on the right indicated the value of the average acquired attention,

from low (light red) to high (dark red). MAM: masked attention model, AM_imp: attention model with imputation, AM_ind: attention model

with missing indicator.
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missingness in the raw test set impaired the predictive per-

formance of our developed models. The two models using

imputation: AM_imp and LR_imp, showed relatively less

decline of AUROC and AUPRC compared to the other

models as P increased.

Finally, the third analysis was for evaluating the impact of

random missingness on model training. As shown in Figure

6(e) and Figure 6(f), the AUROCs and AUPRCs of MAM

kept stable when it was retrained using modified training sets

with increasing missing data. The performance of AM_ind

was also relatively stable, but its AUROC and AUPRC

declined at P of 0.8. The AUROCs and AUPRCs of

AM_imp kept declining as P increased, but the decreased

extent was obviously less than LR_imp which also used MI

to handle missing data. XGB performed slightly better when

it was retrained at P of 0.2 and 0.4 compared to using the

raw training set, but its AUROC and AUPRC declined

below MAM, AM_ind, and even LR_ind at P of 0.8.

LR_imp showed the most sharply declined AUROCs and

AUPRCs in this analysis. At last, LR_ind is robust in this

test. Its AUROCs and AUPRCs rose at P of 0.2, and then

kept relatively stable as P increased.

Discussion

In this study,wepropose an attention architecture for early pre-

diction of hospital mortality. This neural network architecture

can achieve a novel approach of filtering out missing data, and

is also adaptive to regular MI and missing indicator methods.

Our results indicate that the threemodelsbasedon this attention

architecture have excellent performance for early predicting

hospital mortality and are robust to data missingness in

model training and validation.

Missing data is inevitable in EHRs and should be care-

fully handled in researches using EHRs to develop predic-

tion model. There are three types of missing mechanism34:

(a) missing completely at random (MCAR): missingness

happens without relationship to any other patient variables;

(b) missing at random (MAR): Missingness is related to

other observed variables; (c) missing not at random

Figure 6. Model robustness to data missingness. Each colored point in a subgraph represented the AUROC or AUPRC in external validation

under a certain setting, and different colors indicated corresponding model types. Points of a model were connected for reflecting the

change tendency and the shadow around indicated the 95% confidence interval. (a, b) AUROCs and AUPRCs for subgroup analysis. (c, d)

AUROCs and AUPRCs when random missingness was introduced in the test set under probability of P. (e, f) AUROCs and AUPRCs when

random missingness was introduced in the training set under probability of P. AUROC: area under the receiver operating characteristic

curve; AUPRC: area under precision-recall curve.
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(MNAR): Missingness is related to some unobserved vari-

ables. In theory,the data-missing mechanism should be

taken into account for handling missing data.35 For

instance, complete case analysis (deleting samples contain-

ing missing data) is generally valid for MCAR but not for

MAR; MI is competent for MCAR and MAR18,19;

missing indicators may introduce bias in handling

MAR.20,36 And all these methods may be inappropriate

for MNAR.34 However, the complication is that sometimes

it is difficult and even impossible to distinguish the missing

mechanism, especially to recognize MNAR since the unob-

served variable is hard to be confirmed. With respect to

practical application, we prefer models with excellent pre-

dictive performance, and furthermore its performance can

keep as stable as possible when increasing missing data is

encountered, which is referred to as robustness.

Therefore, we design the attention architecture and test it

in the most concerned clinical task of mortality prediction.

To the best of our knowledge, this is the first study that uses

masked attention mechanism to handle missing data and

makes a comprehensive analysis of model robustness in

both model training and validation.

This study has several advantages. Firstly, we collect

sufficient data resources for model development and valid-

ation. Two large ICU databases are employed as data source

and the extracted clinical variables covers almost all the

routine physiological measures for ICU patients. We used

MIMIC-IV for model training and eICU-CRD for model

external validation, which ensures that the training set and

the test set are mutually independent. Our statistical ana-

lysis demonstrates heterogeneities between included

samples from MIMIC-IV and eICU-CRD, such as the dif-

ference in the distribution of admission type, utilization of

vasoactive drugs, and proportion of invasive mechanical

ventilation. Besides the observable values of clinical vari-

ables, their missing rates also show the difference. These

challenge the generalization ability of a model when it is

trained and validated on these two data sets respectively,

and increase the persuasiveness of model performance com-

pared to research on single center or database.

Secondly, we propose a simple and effective attention

architecture and a novel approach of filtering out missing

data based on the masked mechanism. This architecture

only contains one embedding layer, one multi-head atten-

tion layer and one linear layer to be tuned during model

training. And in the most computationally expensive atten-

tion layer, we abandon using the self-attention mechanism

proposed in Transformer model,23 as it needs to compute

n (n is the number of employed variables) sets of attentions

where each set of attentions is computed using query of one

variable and key-value pairs of all the variables (including

the query variable itself). We introduce a constant vector

c for computing the query instead, and then only one set

of attentions of c on all the variables is computed. The

advantage of this design is to avoid that missing variable

which is possibly encountered if we use variables to

compute query, and in such a situation this missing variable

responsible for computing query is unable to be filtered out

from model computation. On the other hand, we reduce the

computational cost to 1/n of the self-attention. Based on

such an attention architecture, then we can conveniently

filter out any missing variable by a mask function.

Thirdly, we explore the interpretability of our proposed

attention architecture. We take an insight into the data pat-

terns learned by the three attention-based models through

their allocations of average acquired attention among the

variables in the external validation. Our results show differ-

ent patterns of attention allocation among the three models.

For MAM, considering the masked mechanism restricting

attention allocation to non-missing variables, we wonder

whether MAM can capture potential valuable information

of high-missing variables as these variables are less likely

to be encountered during model training. As the heatmaps

of MAM in Figure 5 shown, some previously mentioned

high-missing variables (69: Max_ALT, 70: Max_AST,

85: PEEP) still acquire high average attention in most

MAM instances; while some low-missing variables (29:

Mean_DBP, 30: Std_DBP, 31: Min_MAP) acquire low

attention. This indicates that a high missing rate will not

lead to low attention allocation by MAM. For AM_imp

and AM_ind, missing variables also obtain attention alloca-

tion like non-missing variables. The heatmaps of AM_imp

show a more evenly allocated average attention among vari-

ables than AM_ind (i.e., attention is unlikely to be inten-

sively allocated to minority variables). The probable

reason is that the MI model is essentially composed of

many multivariate regression models31 which integrate

the information of other non-missing variables to impute

missing variables. Therefore, imputed values of an unim-

portant variable may acquire extra attention when it con-

tains valuable information about other non-missing

variables; while the situation is the opposite for an import-

ant variable. As a result, the disparity of average acquired

attention among all variables will be reduced. Unlike

AM_imp, all missing variables in AM_ind are uniformly

represented by missing indicators. The information about

missingness may be valuable when it happens not at

random and is related to the outcome.37,38 For instance,

less serious patients have no record of ventilator parameters

as they are not intubated. Thus, missingness of ventilator

parameters may imply lower mortality. Nevertheless, our

result shows that in AM_ind most variables with high

average acquired attention are low-missing variables (vari-

able 3, 5, 6, 51, 81). This is probably because most missing

indicators fail to provide sufficient valuable information to

the attention architecture for mortality prediction, so high

attention is still allocated to the most valuable several non-

missing variables. Although the attention allocation makes

the attention-based models interpretable rather than to be a

black-box model like conventional neural networks, the
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clinical rationality of such an interpretation is still needed to

be further evaluation.

Fourthly, we provide a comprehensive analysis of model

robustness to data missingness in both model training and

validation. In the first analysis, our results indicate that all

the models generally have lower AUROC and AUPRC in

subgroups with higher missing rate. Although data missing-

ness inevitably undermines model performance, our trained

attention-based models show advantage of robustness over

the baseline models. AM_imp has higher AUROC and

AUPRC in almost all subgroups than LR_imp (except for

AUROC in the 30%–40% subgroup), and so does

AM_ind compared to LR_ind. This indicates that assisted

by the same approach of MI or missing indicator, the atten-

tion architecture outperforms LR. MAM has comparable

performance as AM_imp and AM_ind in most subgroups

despite that its AUPRC in the >40% subgroup is relatively

low, demonstrating the potential of masked mechanism for

handling data missingness. XGB performs slightly better

than the attention-based models in the first three subgroups

but obviously poorer in the 30%−40% and >40% sub-

groups, which indicates the limited robustness of XGB

for high-missing data. In the second analysis, our results

show that the MI model can maintain the robustness of

AM_imp and LR_imp better than the other approaches

when more random missingness is introduced in the test

set. However, both AM_imp and LR_imp are no longer

so robust when we introduce random missingness in the

training set in the third analysis, especially LR_imp.

Considering that the MI model integrate non-missing vari-

ables to impute missing variables and the missing rate of the

training set is lower than the test set (10.3% vs. 19.7%), a

probable explanation for the above results is that when

MI model is developed on a low-missing training set, it is

more likely to learn a valuable data pattern from sufficient

non-missing data and effectively impute a high-missing

test set; but when a high-missing training set is used,

limited available non-missing data may cause the MI to

learn a misleading data pattern for imputing the test set.

Nevertheless, the final model performance should depend

on the prediction model itself as well, and in the second

and third analyses, AM_imp also shows better robustness

than LR_imp, especially in the third analysis, proving the

advantage of the attention architecture again. On the other

hand, MAM, XGB, AM_ind, and LR_ind show opposite

results in the second and third analyses. These four

models are free of interference by imputed data, and this

probably makes them more competent in capturing general-

izable data pattern from high-missing training set. In add-

ition, we have not retrained our models using the

subgroups in the first analysis to evaluate the impact of

inherent missingness on model training. The reason is that

sample sizes among these subgroups differ largely, and in

this situation the performance of models trained on small

subgroups may not only affect by the missing rate but

also by an insufficient sample size, which prevents us to

make a fair comparison.

As mentioned above, the three attention-based models

show different patterns of attention allocation and different

robustness in model training and validation. Based on their

characteristics, we propose a preliminary principle for

selecting an appropriate model in practice as following:

(a) if the training set is low-missing and contains sufficient

information to develop an effective MI model, AM_imp is

preferred; (b) if the training set is high-missing and the

missingness is strongly related to the outcome, AM_ind is

preferred; (c) if the training set is high-missing and the

missingness is weakly related to the outcome, MAM is

preferred.

Our study has several limitations. Firstly, we are unable

to strictly simulate the missing mechanism of MCAR and

MAR, since there is inherent data missingness in our

extracted data sets and this inherent missingness probably

belongs to MNAR. It is unrealistic to obtain a complete

data set without missing data from EHR database as large

as MIMIC-IV and eICU-CRD. This limitation can be

partly compensated as we analyze the impact of random

missingness where the raw data sets with inherent missing-

ness are treated as baseline. Secondly, this attention archi-

tecture is not capable of analyzing clinical time series

data and providing dynamic prediction. And the so-called

last observation carried forward39 imputation which uses

the last observed value to fill current missingness in a

time series is not employed for comparison in this study.

We plan to design attention-based dynamic prediction

model in our future work. Thirdly, in our attention architec-

ture, the average acquired attention can only interpretate the

contribution proportion of a variable for the prediction, but

is unable to clarify whether the impact of a variable is posi-

tive or negative. For instance, for a variable with high atten-

tion, it is not clear whether a higher value will raise the

mortality or a lower value. At last, we only evaluate our

attention architecture in the task of early predicting hospital

mortality, therefore its performance and robustness to data

missingness are needed to be further validated in other clin-

ical prediction tasks in the future, and our proposed prin-

ciple for model selection is also needed to be further

concretized and validated (such as the detailed criterion

for discriminating low-missing set and high-missing set,

and the method for quantifying the relationship between

the missingness and the outcome).

Conclusion

Our proposed attention architecture is a simple and inter-

pretable neural network architecture. It can achieve a

novel masked mechanism to filter out missing data, and is

also adaptive to conventional imputation and missing indi-

cator for handling missing data. The three attention-based

models show the state-of-the-art performance and excellent
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robustness to data missing in the task of early predicting

hospital mortality in ICU patients. Furthermore, in our pre-

diction task the three models show different patterns of

attention allocation and different robustness in model train-

ing and validation, so the selection of an appropriate model

should depend on the specific situation in practice. Overall,

the attention architecture has the potential to become an

excellent model architecture for clinical prediction tasks

with data missingness, and further research is needed to val-

idate its performance and to clarify its applicable

conditions.
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