3,304 research outputs found

    UHF diagnostic monitoring techniques for power transformers

    Get PDF
    This paper initially gives an introduction to ultra-high frequency (UHF) partial discharge monitoring techniques and their application to gas insulated substations. Recent advances in the technique, covering its application to power transformers, are then discussed and illustrated by means of four site trials. Mounting and installation of the UHF sensors is described and measurements of electrical discharges inside transformers are presented in a range of formats, demonstrating the potential of the UHF method. A procedure for locating sources of electrical discharge is described and demonstrated by means of a practical example where a source of sparking on a tap changer lead was located to within 15 cm. Progress with the development of a prototype on-line monitoring and diagnostic system is reviewed and possible approaches to its utilization are discussed. New concepts for enhancing the capabilities of the UHF technique are presented, including the possibility of monitoring the internal mechanical integrity of plant. The research presented provides sufficient evidence to justify the installation of robust UHF sensors on transformer tanks to facilitate their monitoring if and when required during the service lifetime

    Modification of wetting property of Inconel 718 surface by nanosecond laser texturing

    Get PDF
    Topographic and wetting properties of Inconel 718 (IN718) surfaces were modified via nanosecond laser treatment. In order to investigate surface wetting behavior without additional post treatment, three kinds of microstructures were created on IN718 surfaces, including line pattern, grid pattern and spot pattern. From the viewpoint of surface morphology, the results show that laser ablated grooves and debris significantly altered the surface topography as well as surface roughness compared with the non-treated surfaces. The effect of laser parameters (such as laser scanning speed and laser average power) on surface features was also discussed. We have observed the treated surface of IN718 showed very high hydrophilicity just after laser treatment under ambient air condistion.And this hydrophicility property has changed rapidly to the other extreme; very high hydrophobicity over just about 20 days. Further experiments and analyses have been carried out in order to investigate this phenomena. Based on the XPS analysis, the results indicate that the change of wetting property from hydrophilic to hydrophobic over time is due to the surface chemistry modifications, especially carbon content. After the contact angles reached steady state, the maximum water contact angle (WCA) for line-patterned and grid-patterned surfaces increased to 152.3 1.2° and 156.8 1.1° with the corresponding rolling angle (RA) of 8.8 1.1° and 6.5 0.8°, respectively. These treated IN718 surfaces exhibited superhydrophobic property. However, the maximum WCA for the spot-patterned surfaces just increased to 140.8 2.8° with RA above 10°. Therefore, it is deduced that laser-inscribed modification of surface wettability has high sensitivity to surface morphology and surface chemical compositions. This work can be utilized to optimize the laser processing parameters so as to fabricate desired IN718 surfaces with hydrophobic or even superhydrophobic property and thus extend the applications of IN718 material in various fields

    Mean-field dynamics of the spin-magnetization coupling in ferromagnetic materials: Application to current-driven domain wall motions

    Get PDF
    In this paper, we present a mean-field model of the spin-magnetization coupling in ferromagnetic materials. The model includes non-isotropic diffusion for spin dynamics, which is crucial in capturing strong spin-magnetization coupling. The derivation is based on a moment closure of the quantum spinor dynamics coupled to magnetization dynamics via the Landau-Lifchitz-Gilbert equation and the spin-transfer torque. The method is general and systematic, and can be used to study spin-orbit coupling as well. The form of the non-isotropic diffusion is generic, i.e., independent of the closure assumptions. Fully 3-D numerical simulation is implemented and applied to predict current-driven domain wall motions. It shows a non-linear dependence of the wall speed on the current density, which agrees with the experiments

    A Mean-field model for spin dynamics in multilayered ferromagnetic media

    Get PDF
    In this paper, we develop a mean-field model for describing the dynamics of spintransfer torque in multilayered ferromagnetic media. Specifically, we use the techniques of Wigner transform and moment closure to connect the underlying physics at different scales and reach a macroscopic model for the dynamics of spin coupled with the magnetization within the material. This provides a further understanding of the linear response model proposed by Zhang, Levy, and Fert [Phys. Rev. Lett., 88 (2002), 236601], and in particular we get an extra relaxation term which helps to stabilize the system. We develop efficient numerical methods to overcome the stiffness appearing in this new mean-field model and present several examples to analyze and show its validity

    Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution

    Get PDF
    Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions.ISSN:0962-8452ISSN:1471-295

    Cost-effective condition monitoring for wind turbines

    Get PDF
    Cost-effective wind turbine (WT) condition monitoring assumes more importance as turbine sizes increase and they are placed in more remote locations, for example, offshore. Conventional condition monitoring techniques, such as vibration, lubrication oil, and generator current signal analysis, require the deployment of a variety of sensors and computationally intensive analysis techniques. This paper describes a WT condition monitoring technique that uses the generator output power and rotational speed to derive a fault detection signal. The detection algorithm uses a continuous-wavelet-transform-based adaptive filter to track the energy in the prescribed time-varying fault-related frequency bands in the power signal. The central frequency of the filter is controlled by the generator speed, and the filter bandwidth is adapted to the speed fluctuation. Using this technique, fault features can be extracted, with low calculation times, from direct- or indirect-drive fixed- or variable-speed WTs. The proposed technique has been validated experimentally on a WT drive train test rig. A synchronous or induction generator was successively installed on the test rig, and both mechanical and electrical fault like perturbations were successfully detected when applied to the test rig

    Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions

    Full text link
    The role of neutron transfers is investigated in the fusion process below the Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A full coupled-channel calculation of the fusion excitation functions has been performed for both systems by using multi-neutron transfer coupling for the more neutron-rich reaction. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint Malo, France, 2-6 mai 201

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm−1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    A smart cushion for real-time heart rate monitoring

    Get PDF
    10.1109/BioCAS.2012.64185122012 IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment, BioCAS 2012 - Conference Publications53-5

    Density Matrix Renormalisation Group Approach to the Massive Schwinger Model

    Get PDF
    The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of `half-asymptotic' particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR
    • 

    corecore