144 research outputs found

    New control strategy against temperature sudden-drop in the initial stage of pad cooling process in poultry houses

    Get PDF
    Preliminary field measurements have shown substantial temperature sudden-drop (ΔTsd) at bird level in the initial stage of pad cooling process in arid regions of China. Such sudden temperature fluctuation can cause thermal stress to laying hens and this problem is attracting increasing concerns. The purpose of this study was to develop a new control strategy (NCS) to avoid or minimize ΔTsd while simplify the operational process. Theoretical calculation and field test were conducted in this study. The key ambient thermal factor affecting ΔTsd was analysed by calculating temperature drop of cooled air existing the cooling pad (ΔTd). A countermeasure was applied by controlling the wetted pad area at each startup of the water supply pump. Field test was carried out to demonstrate application of the NCS in a poultry house. The theoretical arithmetic results showed that ambient relative humidity (RHo) was the main factor affecting ΔTd, and ΔTsd occurred when RHo ≤ 60%. Temperature fluctuation at the bird level (Tdb,b) could be controlled within 4°C when the wetted pad area increased by 25%. The NCS operated based on RHo that was divided into three regions. For RHo \u3e 80%, the pump would not be turned on because of poor cooling effect. For 60% \u3c RHo \u3c 80%, no ΔTsd would occur and the pump would be controlled by “on-off” regulation. For RHo ≤ 60%, ΔTsd occurred and the pump was turned on intermittently. Then, 4-stage cooling would be applied. Results of the field test were generally consistent with the theoretical simulation with regards to alleviation of ΔTsd that was controlled within 3.5°C. Further field verification of the NCS on the flock health and production performance is warranted

    The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner

    Get PDF
    SummaryReprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming

    A Short Introduction to Numerical Linked-Cluster Expansions

    Full text link
    We provide a pedagogical introduction to numerical linked-cluster expansions (NLCEs). We sketch the algorithm for generic Hamiltonians that only connect nearest-neighbor sites in a finite cluster with open boundary conditions. We then compare results for a specific model, the Heisenberg model, in each order of the NLCE with the ones for the finite cluster calculated directly by means of full exact diagonalization. We discuss how to reduce the computational cost of the NLCE calculations by taking into account symmetries and topologies of the linked clusters. Finally, we generalize the algorithm to the thermodynamic limit, and discuss several numerical resummation techniques that can be used to accelerate the convergence of the series.Comment: 11 pages, 6 figures, 2 table
    • …
    corecore