1,563 research outputs found

    MECHANISTIC STUDY OF A RUTHENIUM HYDRIDE COMPLEX OF TYPE [RuH(CO)(N-N)(PR3)2]+ AS CATALYST PRECURSOR FOR THE HYDROFORMYLATION REACTION OF 1-HEXENE

    Get PDF
    Indexación: Web of Science; Scopus; Scielo.The catalytic activity of systems of type [RuH(CO)(N-N)(PR3)(2)](+) was evaluated in the hydroformylation reaction of 1-hexene. The observed activity is explained through a reaction mechanism on the basis of the quantum theory. The mechanism included total energy calculations for each of the intermediaries of the elemental steps considered in the catalytic cycle. The deactivation of the catalyst precursors takes place via dissociation of the polypyridine ligand and the subsequent formation of thermodynamically stable species, such as RuH(CO)(3)(PPh3)(2) and RuH3(CO)(PPh3)(2), which interrupt the catalytic cycle. In addition, the theoretical study allows to explain the observed regioselectivity which is defined in two steps: (a) the hydride migration reaction with an anti-Markovnikov orientation to produce the alkyl-linear-complex (3.1a), which is more stable by 19.4 kJ/mol than the Markovnikov orientation (alkyl-branched-complex) (3.1b); (b) the carbon monoxide insertion step generates the carbonyl alkyl-linear specie (4.1a) which is more stable by 9.5 kJ/mol than the alternative species (4.1b), determining the preferred formation of heptanal in the hydroformylation of 1-hexene. Palabras clavehttp://ref.scielo.org/db4yc

    Constructions of the soluble potentials for the non-relativistic quantum system by means of the Heun functions

    Full text link
    The Schr\"{o}dinger equation ψ"(x)+κ2ψ(x)=0\psi"(x)+\kappa^2 \psi(x)=0 where κ2=k2V(x)\kappa^2=k^2-V(x) is rewritten as a more popular form of a second order differential equation through taking a similarity transformation ψ(z)=ϕ(z)u(z)\psi(z)=\phi(z)u(z) with z=z(x)z=z(x). The Schr\"{o}dinger invariant IS(x)I_{S}(x) can be calculated directly by the Schwarzian derivative {z,x}\{z, x\} and the invariant I(z)I(z) of the differential equation uzz+f(z)uz+g(z)u=0u_{zz}+f(z)u_{z}+g(z)u=0. We find an important relation for moving particle as 2=IS(x)\nabla^2=-I_{S}(x) and thus explain the reason why the Schr\"{o}dinger invariant IS(x)I_{S}(x) keeps constant. As an illustration, we take the typical Heun differential equation as an object to construct a class of soluble potentials and generalize the previous results through choosing different ρ=z(x)\rho=z'(x) as before. We get a more general solution z(x)z(x) through integrating (z)2=α1z2+β1z+γ1(z')^2=\alpha_{1}z^2+\beta_{1}z+\gamma_{1} directly and it includes all possibilities for those parameters. Some particular cases are discussed in detail.Comment: 11 page

    Purification of a factor from human peritoneal fluid that is able to immobilize spermatozoa

    Get PDF
    Human peritoneal fluid has been claimed to influence sperm motility. This report gives evidence for the presence in mid-cycle peritoneal fluid of a protein-bound, lipidic (hydrophobic) component able to immobilize spermatozoa as a function of time. This component was extracted from molecular weight-sieving and ion-exchange/high pressure liquid chromatography (HPLC)-purified peritoneal fluid fractions by either chloroform/methanol or charcoal treatments; resuspension of the chloroform/methanol extract with BWW-buffer and subsequent testing on spermatozoa resulted in sperm immobilization. Sequential or step-down chromatographic procedures (molecular weight-sieving→cation-exchange→anion-exchange HPLC separations of native peritoneal fluid) and extensive dialysis against double distilled water allowed the purification of the sperm immobilizing factor, as evidenced by the shorter incubation times necessary for sperm immobilization. Furthermore, the active fraction was found to immobilize spermatozoa without affecting its viability. Separation of the chloroform/methanol extracted immobilizing fraction on thin layer chromatography under conditions for phospholipid detection allowed the identification of a characteristic band which, after re-extraction, was found to be the sperm immobilizing substance. This factor does not contain choline, ethanolamine or serine. These results suggest that some lipidic peritoneal fluid components may influence sperm motilit

    Correlation Effects in Side-Coupled Quantum Dots

    Full text link
    Using Wilson's numerical renormalization group (NRG) technique we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures.Comment: 13 pages, 10 figure

    Prostaglandin E2 enhances alveolar bone formation in the rat mandible

    Get PDF
    Prostaglandin E-2 (PGE(2)) induces bone formation in stress-bearing bones. The mandible, a stress-bearing bone, is loaded daily during mastication. The aim of this study was to determine if PGE(2) delivered locally to the mandible over 20 days enhances alveolar bone deposition. In 18 Lewis rats, controlled-release pellets containing PGE2 were implanted on the buccal aspect on the left-hand side of the mandible, mesial to the root of the first molar. Controlled-release pellets locally delivered 0.1, 0.05, or 0.025 mg/day of PGE2. The right side of the mandible was used as a matched control for each animal. Six sham-treated animals were implanted with a placebo pellet. On days 7 and 19, animals were injected with the bone markers tetracycline and calcein, respectively. On day 21, animals were sacrificed and undecalcified tissues obtained for morphometrical analysis. Morphometrical measurements were analyzed by paired t test to determine differences between the matched samples and one-way ANOVA to compare the different treatment groups. A significant increase in alveolar bone area was observed in mandibles treated with 0.1 and 0.05 mg/day when compared with matched controls and the placebo group. This was accompanied by a significant increase in alveolar bone height and width. The proportions of double-labeled surface (dLS), the mineral apposition rate (MAR), and bone formation rate (BFR) were significantly increased in mandibles treated with the two higher doses of PGE(2). The proportion of resorptive surface (RS) was significantly reduced in these two groups. It is concluded that PGE2 induces alveolar bone formation in the mandible when locally delivered at a dose of 0.1 or 0.05 mg/day for 20 days. (C) 2004 Elsevier Inc. All rights reserved

    Relevance of quantum fluctuations in the Anderson-Kondo model

    Full text link
    We study a localized spin coupled to an Anderson impurity to model the situation found in higher transition metal or rare earth compounds like e.g.\ LaMnO3_3 or Gd monopnictides. We find that, even for large quantum numbers of the localized spin, quantum fluctuations play an essential role for the case of ferromagnetic coupling between the spin and the impurity levels. For antiferromagnetic coupling, a description in terms of a classical spin is appropriate

    Lowering IceCube's energy threshold for point source searches in the Southern Sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische Universität München; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. Université Libre de Bruxelles; BélgicaFil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadáFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadáFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapónFil: Zoll, M.. Stockholms Universitet; Sueci
    corecore