12 research outputs found

    SoccerNet 2023 Challenges Results

    Full text link
    peer reviewedThe SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet

    Dielectronic recombination rate coefficients of initially rubidium-like tungsten

    No full text
    Ab initio calculations of dielectronic recombination (DR) rate coefficients of initially rubidium-like W37+ ions have been performed for the electron temperatures from 1 eV to 5 × 104 eV, by using the Flexible Atomic Code based on the relativistic configuration-interaction method. Special attention has been paid to the partial contributions to total DR rate coefficients as associated with the excitation of individual subshells. A detailed comparison of the calculations shows that the excitation from 4p subshell dominates total DR rate coefficients followed by the excitations from 4s and 4d subshells, while the contribution of excitations from 3l(l = s,p,d) subshells becomes important only at high temperatures. Besides, it is found that the electron excitations associated with △ n = 0,1 dominate at low-temperature plasmas, however, the excitations associated with △ n ≥ 2 become non-negligible at high-temperature ones

    Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    No full text
    Electron impact excitation (EIE) and dielectronic recombination (DR) of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER) tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE) and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER

    Constant IP Lookup With FIB Explosion

    No full text

    Predicting recurrence in osteosarcoma via a quantitative histological image classifier derived from tumour nuclear morphological features

    No full text
    Abstract Recurrence is the key factor affecting the prognosis of osteosarcoma. Currently, there is a lack of clinically useful tools to predict osteosarcoma recurrence. The application of pathological images for artificial intelligence‐assisted accurate prediction of tumour outcomes is increasing. Thus, the present study constructed a quantitative histological image classifier with tumour nuclear features to predict osteosarcoma outcomes using haematoxylin and eosin (H&E)‐stained whole‐slide images (WSIs) from 150 osteosarcoma patients. We first segmented eight distinct tissues in osteosarcoma H&E‐stained WSIs, with an average accuracy of 90.63% on the testing set. The tumour areas were automatically and accurately acquired, facilitating the tumour cell nuclear feature extraction process. Based on six selected tumour nuclear features, we developed an osteosarcoma histological image classifier (OSHIC) to predict the recurrence and survival of osteosarcoma following standard treatment. The quantitative OSHIC derived from tumour nuclear features independently predicted the recurrence and survival of osteosarcoma patients, thereby contributing to precision oncology. Moreover, we developed a fully automated workflow to extract quantitative image features, evaluate the diagnostic values of feature sets and build classifiers to predict osteosarcoma outcomes. Thus, the present study provides a novel tool for predicting osteosarcoma outcomes, which has a broad application prospect in clinical practice
    corecore