196 research outputs found

    Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Get PDF
    Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by photochemical isomerization of the retinal ligand – despite the extensive differences in sequences between mGluRs and rhodopsin

    Allosteric Modulation of G Protein Coupled Receptors.

    Get PDF
    Structural coupling between the cytoplasmic (CP), transmembrane (TM) and extracellular (EC) domains of G protein coupled receptors (GPCRs) is crucial for their functioning in signal transfer from the extracellular to the intracellular side of the membrane. The focus of this thesis was to test the hypothesis that ligands can bind in each of the three domains. Depending on the location of the endogenous ligand binding site, the other two sites would become allosteric ligand binding sites. To test this hypothesis, we investigated the binding of accessory ligands to each of the three domains, CP, TM and EC. The major contributions of this thesis are as follows:I. The anthocyanin Cyanidin-3-glucoside (C3G) and the chlorophyll-derivative chlorin e6 (Ce6), were shown to physically interact with rhodopsin. These studies demonstrated the presence of a novel CP allosteric ligand binding site in rhodopsin. Biophysical evidence indicated differential effects of binding of these ligands on rhodopsin function, structure and dynamics. II. The allosteric TM ligand binding pocket in metabotropic glutamate receptors (mGluRs) was shown to be analogous in structure and function to the orthosteric TM retinal ligand binding pocket in rhodopsin. Docking of known allosteric modulators to structural models of mGluRs based on rhodopsin conformations was used to predict allosteric modulatory effects. Structural comparison of the mGluR and rhodopsin binding pockets revealed high overlap and preliminary evidence was obtained showing that an mGluR ligand can bind to rhodopsin.III. Evidence for the existence of an EC ligand binding domain was presented. Rhodopsin was shown to bind the extracellular chemokine ligand, CXCL11, an event which interfered with both rhodopsin and chemokine functions. IV. As part of the above efforts, it became necessary to develop and improve NMR spectroscopic methodology to study ligand binding of membrane proteins such as GPCRs. Thus, 1H and 19F based NMR methods to screen for novel ligands that bind to GPCRs were developed and applied to rhodopsin. Collectively, the studies presented in this thesis enhance the understanding of allosteric modulation of GPCRs in general, and of the molecular mechanism of rhodopsin and mGluR activation in the presence of allosteric ligands in particular. The results could help in the identification of new ligands to allosterically modulate receptor structures and in turn their functions at different binding pockets, thus paving new ways to selectively target this pharmacologically important class of receptors

    Flexibility of the Cytoplasmic Domain of the Phototaxis Transducer II from Natronomonas pharaonis

    Get PDF
    Chemo- and phototaxis systems in bacteria and archaea serve as models for more complex signal transduction mechanisms in higher eukaryotes. Previous studies of the cytoplasmic fragment of the phototaxis transducer (pHtrII-cyt) from the halophilic archaeon Natronomonas pharaonis showed that it takes the shape of a monomeric or dimeric rod under low or high salt conditions, respectively. CD spectra revealed only approximately 24% helical structure, even in 4 M KCl, leaving it an open question how the rod-like shape is achieved. Here, we conducted CD, FTIR, and NMR spectroscopic studies under different conditions to address this question. We provide evidence that pHtrII-cyt is highly dynamic with strong helical propensity, which allows it to change from monomeric to dimeric helical coiled-coil states without undergoing dramatic shape changes. A statistical analysis of predicted disorder for homologous sequences suggests that structural flexibility is evolutionarily conserved within the methyl-accepting chemotaxis protein family

    Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    Get PDF
    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers of MWCNT exposures in humans

    Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice

    Get PDF
    With the rapid development of synthetic alternatives to mineral fibers, their possible effects on the environment and human health have become recognized as important issues worldwide. This study investigated effects of four fibrous materials, i.e. nanofibrillar/nanocrystalline celluloses (NCF and CNC), single-walled carbon nanotubes (CNTs), and crocidolite asbestos (ASB), on pulmonary inflammation and immune responses found in the lungs, as well as the effects on spleen and peripheral blood immune cell subsets. BALB/c mice were given NCF, CNC, CNT, and ASB on Day 1 by oropharyngeal aspiration. At 14 days post-exposure, the animals were evaluated. Total cell number, mononuclear phagocytes, polymorphonuclear leukocytes, lymphocytes, and LDH levels were significantly increased in ASB and CNT-exposed mice. Expression of cytokines and chemokines in bronchoalveolar lavage (BAL) was quite different in mice exposed to four particle types, as well as expression of antigen presentation-related surface proteins on BAL cells. The results revealed that pulmonary exposure to fibrous materials led to discrete local immune cell polarization patterns with a TH2-like response caused by ASB and TH1-like immune reaction to NCF, while CNT and CNC caused non-classical or non-uniform responses. These alterations in immune response following pulmonary exposure should be taken into account when testing the applicability of new nanosized materials with fibrous morphology

    Structural and Functional Consequences of the Weak Binding of Chlorin e6 to Bovine Rhodopsin.

    Get PDF
    The chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and 1 H NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with μm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. 19 F NMR experiments with samples where 19 F labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G-protein activation. Chemical shift changes in 1 H-15 N NMR spectroscopy of 15 N-Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin

    Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon nanotubes (CNT) and carbon nanofibers (CNF) are allotropes of carbon featuring fibrous morphology. The dimensions and high aspect ratio of CNT and CNF have prompted the comparison with naturally occurring asbestos fibers which are known to be extremely pathogenic. While the toxicity and hazardous outcomes elicited by airborne exposure to single-walled CNT or asbestos have been widely reported, very limited data are currently available describing adverse effects of respirable CNF.</p> <p>Results</p> <p>Here, we assessed pulmonary inflammation, fibrosis, oxidative stress markers and systemic immune responses to respirable CNF in comparison to single-walled CNT (SWCNT) and asbestos. Pulmonary inflammatory and fibrogenic responses to CNF, SWCNT and asbestos varied depending upon the agglomeration state of the particles/fibers. Foci of granulomatous lesions and collagen deposition were associated with dense particle-like SWCNT agglomerates, while no granuloma formation was found following exposure to fiber-like CNF or asbestos. The average thickness of the alveolar connective tissue - a marker of interstitial fibrosis - was increased 28 days post SWCNT, CNF or asbestos exposure. Exposure to SWCNT, CNF or asbestos resulted in oxidative stress evidenced by accumulations of 4-HNE and carbonylated proteins in the lung tissues. Additionally, local inflammatory and fibrogenic responses were accompanied by modified systemic immunity, as documented by decreased proliferation of splenic T cells <it>ex vivo </it>on day 28 post exposure. The accuracies of assessments of effective surface area for asbestos, SWCNT and CNF (based on geometrical analysis of their agglomeration) versus estimates of mass dose and number of particles were compared as predictors of toxicological outcomes.</p> <p>Conclusions</p> <p>We provide evidence that effective surface area along with mass dose rather than specific surface area or particle number are significantly correlated with toxicological responses to carbonaceous fibrous nanoparticles. Therefore, they could be useful dose metrics for risk assessment and management.</p

    Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an ‘MPM interactome’ with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities
    corecore