40 research outputs found

    Long-chain polyunsaturated fatty acid metabolism in carnivorous marine teleosts: insight into the profile of endogenous biosynthesis in golden pompano Trachinotus ovatus

    Get PDF
    Golden pompano Trachinotus ovatus is an important farmed carnivorous marine teleost. Although some enzymes for long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis have been identified, the ability of T. ovatus for endogenous biosynthesis is unknown. Here, we evaluated in vivo LC-PUFA synthesis in a 56-day culture experiment using six diets (D1-D6) formulated with linseed and soybean oils to produce dietary linolenic/linoleic acid (ALA/LA) ratios ranging from 0.14 to 2.20. The control diet (D0) used fish oil as lipid source. The results showed that, compared with the corresponding indeces of fish fed D0, the weight gain rate and specific growth rate, as well as the contents of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in tissues (liver, muscle, brain and eye) of D1-D6 groups were significantly lower (P < 0.05). These data suggested that T. ovatus could not synthesize LC-PUFA from C18 PUFA or such ability was very low. However, tissue levels of 20:4n-3 in fish fed diets D1-D6 were higher than that of D0 fish (P < 0.05), and positively correlated with dietary ALA/LA ratio, while levels of EPA showed no difference among the D1-D6 groups. These results indicated that Δ5 desaturation, required for the conversion of 20:4n-3 to EPA, may be lacking or very low, suggesting incomplete LC-PUFA biosynthesis ability in T. ovatus

    Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome

    Get PDF
    The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S.aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. Results: We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both “Gilo” and “Shum” groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. Conclusions: The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family

    The draft genomes of five agriculturally important African orphan crops

    Get PDF
    Background: Continuous growth of the world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries current face a serious burden of malnutrition, especially in Africa and South and South-East Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize and rice provide the majority of calories. Therefore, to diversify and stabilize global food supply, enhance agricultural productivity and tackle malnutrition, greater use of neglected or underutilized local plants (so-called 'orphan crops‘, but also including a few plants of special significance to agriculture, agroforestry and nutrition) could be a partial solution.Results: Here, we present draft genome information from five agriculturally, biologically, medicinally and economically important underutilized plants native to Africa; Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea and M. oleifera we have predicted 31707, 20946, 28979, 18937, 18451 protein-coding genes, respectively. By further analysing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors and starch biosynthesis-related genes in these genomes.Conclusions: These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused and predictable crop improvement programs

    Flexible Work Arrangements and Employees’ Knowledge Sharing in Post-Pandemic Era: The Roles of Workplace Loneliness and Task Interdependence

    No full text
    Flexible work arrangements (FWAs) have become prevalent working norms in the post-pandemic era, but are they beneficial to employees’ work? From the theoretical perspective of social exchange, previous studies have viewed FWAs as supportive practices that facilitate employees’ functional intrapersonal outcomes. However, little is known about the interpersonal effects of FWAs. Based on the affective events theory, this study aims to elucidate why and when FWAs are associated with employees’ knowledge sharing. A web-based survey of 314 respondents (Study 1) and a three-wave field research study of 343 employees (Study 2) provided valid questionnaires to examine the hypothesized theoretical relationships. Our findings reveal that employees who frequently adopt FWAs would produce a persistently negative affective experience—workplace loneliness—further discouraging their intentions to share knowledge with coworkers. The specific work-characteristic conditions in this relationship–task interdependence would mitigate the dysfunctional effect of FWAs on employees’ knowledge sharing via workplace loneliness. Our study advances the understanding of FWAs’ dysfunctional impacts on employees’ knowledge sharing from the theoretical perspective of affective reactions. Our findings remind managers to avoid the interpersonal pitfalls of FWAs by increasing task interdependence among employees

    Relationship of motility activation to lipid composition, protein profile, and swelling rate of burbot Lota lota spermatozoon following change of temperature and osmolality

    Get PDF
    Despite available information on the roles of osmotic pressure, potassium (K+), and calcium (Ca2+) in activation of Eurasian burbot spermatozoon motility, the changes in milt biochemical composition and mechanisms underlying their activation at temperatures above optimal spawning temperature is still unclear. We explored spermatozoon swelling, lipid composition and proteome in relation to osmolality and temperature of swimming medium. The result revealed that temperature increment from 4 to 30°C increases burbot spermatozoa vulnerability to osmotic pressure, decreasing motility in extremely hypotonic media, and the presence of Ca2+ decreases swelling of spermatozoa. No spermatozoon swelling was observed in non-ionic isotonic media at all studied temperatures. A role of swelling in activation of spermatozoa motility at 30°C was rejected. No differences were found in protein profile and lipid composition with respect to activation of burbot spermatozoa at 30°C. Burbot spermatozoon activation occurs at 30°C without modification of the spermatozoon membrane. Elucidation of the intrinsic signaling pathway of burbot spermatozoon spontaneous activation requires further study

    Preoperative respiratory muscle training combined with aerobic exercise improves respiratory vital capacity and daily life activity following surgical treatment for myasthenia gravis

    No full text
    Abstract Objective The effects of preoperative respiratory muscle training (RMT) on postoperative complications in patients surgically treated for myasthenia gravis (MG) remain unclear. The present study therefore evaluated the effects of preoperative moderate-to-intense RMT and aerobic exercise, when added to respiratory physiotherapy, on respiratory vital capacity, exercise capacity, and duration of hospital stay in patients with MG. Methods Eighty patients with MG scheduled for extended thymectomy were randomly divided into two groups. The 40 subjects in the study group (SG) received preoperative moderate-to-intense RMT and aerobic exercise in addition to respiratory physiotherapy, whereas the 40 subjects in the control group (CG) received only chest physiotherapy. Respiratory vital capacity (as determined by VC, FVC, FEV1, FEV1/FVC, and PEF) and exercise capacity (as determined by the 6-min walk test [6 MWT]) were measured pre- and postoperatively and before discharge. The duration of hospital stay and activity of daily living (ADL) were also determined. Results Demographic and surgical characteristics, along with preoperative vital capacity and exercise capacity, were similar in the two groups. In the CG, VC (p = 0.001), FVC (p = 0.001), FEV1 (p = 0.002), PEF (p = 0.004), and 6MWT (p = 0.041) were significantly lower postoperatively than preoperatively, whereas the FEV1/FVC ratio did not differ significantly. Postoperative VC (p = 0.012), FVC (p = 0.030), FEV1 (p = 0.014), and PEF (p = 0.035) were significantly higher in the SG than in the CG, although 6MWT results did not differ. ADL on postoperative day 5 was significantly higher in the SG than in the CG (p = 0.001). Conclusion RMT and aerobic exercise can have positive effects on postoperative respiratory vital capacity and daily life activity, and would enhance recovery after surgery in MG patients

    Diffusion bonding of nickel-based powder metallurgy superalloy FGH98 with pure nickel interlayer

    No full text
    FGH98 powder metallurgy superalloy were successfully bonded via diffusion bonding technique with pure Ni interlayer. It was indicated that adding the Ni interlayer can significantly reduce joint defects, promote elements diffusion, and improve the bonding rate comparing with direct diffusion bonded joint. The typical joint is clearly divided into the IZ with larger volume dendritic γ′ phase and the DZ with narrow primary γ′ phase, petal secondary γ′ phase and granular tertiary γ′ phase. It was observed that the thinner the interlayer, the easier it is for the joint to achieve alloying, the more uneven the transition of the joint structure. Properly increasing the temperature or holding time can help with elements diffusion, but too high bonding parameters can cause grain seriously coarsening and reduce joint performance. The optimized process parameters of 1130 °C −60 min-10 μm Ni were obtained with reaching the highest shear strength of 656 MPa, which is the 201% of the direct diffusion bonded joint

    Classification of shale lithofacies from Ordovician Wufeng Formation to first section of first member of Silurian Longmaxi Formation, western Changning area, Sichuan Basin, and its significance

    No full text
    Shale gas exploration has been successfully carried out in the Upper Ordovician Wufeng Formation to the Lower Silurian Longmaxi Formation of the Changning area of Sichuan Basin. To clarify the lithofacies differences, vertical and horizontal distribution signatures, reservoir development characteristics and influencing factors in the western part of Changning area, based on core X-ray diffraction test, scanning electron microscopic observation and various analytical test data, the shale lithofacies of the Wufeng Formation (O3w) to the first section of the first member of Longmaxi Formation (S1l11) were studied in detail. Seven lithofacies in the study area were recognized including siliceous shale, mixed siliceous shale, carbonate-rich siliceous shale, clay-rich siliceous shale, mixed shale, argillaceous/siliceous mixed shale and calcareous/siliceous shale. The siliceous shale facies developed at the bottom of S1l11 is the best shale lithofacies in the study area since its TOC content, porosity and gas-bearing capacity are all higher than those of others. The mixed siliceous shale, carbonate-rich siliceous shale, calcareous/siliceous mixed shale and argillaceous/siliceous mixed shale in O3w and the upper S1l11 are slightly poorer than siliceous shale in terms of reservoir conditions, which are the sub-optimal lithofacies in the study area. Comprehensive analyses showed that the formation of dominant shale lithofacies reservoirs in O3w and S1l11 may be controlled by two factors. One is the sedimentary environment rich in oxygen in the upper layer and hypoxic and reducing in the lower layer, which provided a large amount of organic-rich siliceous minerals. Secondly, abundant organic-rich siliceous minerals provided excellent pore types for reservoirs during late diagenesis. The results will provide lithographic support for the studies of shale gas enrichment zones in the western Changning area, and are conducive to the further exploration of marine shale gas in O3w and S1l11 in the Sichuan Basin

    Characterization of the Genomic Landscape in Cervical Cancer by Next Generation Sequencing

    No full text
    Cervical cancer is the fourth leading cause of cancer-related deaths in women worldwide. Although many sequencing studies have been carried out, the genetic characteristics of cervical cancer remain to be fully elucidated, especially in the Asian population. Herein, we investigated the genetic landscape of Chinese cervical cancer patients using a validated multigene next generation sequencing (NGS) panel. We analyzed 64 samples, consisting of 32 tumors and 32 blood samples from 32 Chinese cervical cancer patients by performing multigene NGS with a panel targeting 571 cancer-related genes. A total of 810 somatic variants, 2730 germline mutations and 701 copy number variations (CNVs) were identified. FAT1, HLA-B, PIK3CA, MTOR, KMT2D and ZFHX3 were the most mutated genes. Further, PIK3CA, BRCA1, BRCA2, ATM and TP53 gene loci had a higher frequency of CNVs. Moreover, the role of PIK3CA in cervical cancer was further highlighted by comparing with the ONCOKB database, especially for E545K and E542K, which were reported to confer radioresistance to cervical cancer. Notably, analysis of potential therapeutic targets suggested that cervical cancer patients could benefit from PARP inhibitors. This multigene NGS analysis revealed several novel genetic alterations in Chinese patients with cervical cancer and highlighted the role of PIK3CA in cervical cancer. Overall, this study showed that genetic variations not only affect the genetic susceptibility of cervical cancer, but also influence the resistance of cervical cancer to radiotherapy, but further studies involving a larger patient population should be undertaken to validate these findings
    corecore