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ABSTRACT 

Background: Continuous growth of the world population is expected to double the worldwide 

demand for food by 2050. Eighty-eight percent of countries current face a serious burden of 

malnutrition, especially in Africa and South and South-East Asia. About 95% of the food 

energy needs of humans are fulfilled by just 30 species, of which wheat, maize and rice provide 

the majority of calories. Therefore, to diversify and stabilize global food supply, enhance 
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agricultural productivity and tackle malnutrition, greater use of neglected or underutilized local 

plants (so-called ‗orphan crops‘, but also including a few plants of special significance to 

agriculture, agroforestry and nutrition) could be a partial solution.  

Results: Here, we present draft genome information from five agriculturally, biologically, 

medicinally and economically important underutilized plants native to Africa; Vigna 

subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. 

Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. 

albida, S. birrea and M. oleifera we have predicted 31707, 20946, 28979, 18937, 18451 

protein-coding genes, respectively. By further analysing the expansion and contraction of 

selected gene families, we have characterized root nodule symbiosis genes, transcription 

factors and starch biosynthesis-related genes in these genomes.  

Conclusions: These genome data will be useful to identify and characterize agronomically 

important genes and understand their modes of action, enabling genomics-based, evolutionary 

studies, and breeding strategies to design faster, more focused and predictable crop 

improvement programs.  

 

Keywords: Orphan crops, food security, whole-genome sequencing, transcriptome, root nodule 

symbiosis, transcription factor. 

 

Background  
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The world‘s population is expected to reach 9.8 billion people by 2050. Ensuring a 

sustainable food supply to meet the energy and nutritional needs of the expanding population 

is one of the greatest global challenges [1]. Approximately 88% of countries currently face a 

serious burden of malnutrition [2]. To overcome this burgeoning food and nutritional 

challenge, the use of potential crop plants (both model and non-model) appears to be a better 

choice. Throughout history, humans have relied on an astonishing variety of plants for energy 

and nutrition: from 390,000 known plant species, around 5,000–7,000 plant species have been 

cultivated or collected for food [1, 2]. However, in the present century, fewer than 150 species 

are commercially cultivated for food purposes, and just 30 species provide 95% of human 

food energy needs. More than half of the protein and calories we obtain from plants are 

acquired from just three ‗megacrops‘: rice, wheat and maize [3]. This narrow range of dietary 

diversity is partly a result of decades of intensive research, focused on just a few species, 

which has successfully led to the production of high-yielding varieties of these major crops, 

usually cultivated under high-input agricultural systems. However, in some regions, we are 

now witnessing a drastic decrease in their yields and the question has been raised as to 

whether rice and wheat (in particular) are currently making enough breeding progress to meet 

the challenge. All three megacrops are high-energy carbohydrate sources, but are limited in 

protein content. Even if these crops can meet the energy requirement of the increasing world 

population, they cannot meet the nutritional requirement for active health by themselves [2].  

To diversify the global food supply, enhance agricultural productivity and tackle 

malnutrition, it is necessary to diversify and focus more on crop plants that are utilized in rural 
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societies as a local source of nutrition and sustenance, but have so far received little attention 

for crop improvement. These landraces tend to be locally adapted, and can often provide a rich 

source of nutrition, yet they have largely been ignored by modern interventions. The goal of the 

African Orphan Crops Consortium [4] (AOCC), an international public–private partnership, is 

to sequence, assemble and annotate the genomes of 101 plants that contribute to traditional 

African food supplies by 2020. These neglected or orphan plants have been seldom studied by 

scientists, but are of major importance in many African countries. They are usually grown by 

smallholder farmers, either for consumption or local sale, and are a major food source for 

600 million rural Africans [5, 6]. In this study, we sequenced and assembled draft genomes of 

five African orphan plant species (Figure 1), which are highly important to augment food and 

nutritional security in Africa.  

Vigna subterranea (Bambara groundnut; NCBI: txid115715) belonging to the Fabacaeae 

family, is a leguminoceous plant species that originated in West Africa, and is cultivated in 

sub-Saharan areas, particularly Nigeria [7, 8]. With good nitrogen-fixing ability and drought 

tolerance, on average the seeds contain 63% carbohydrate, 19% protein and 6.5% fat, thereby 

making bambara groundnut a complete food. Approximately 165,000 tons of this species is 

produced in Africa each year, but yields are low because efforts to improve Bambara have 

been neglected for many years [9]. The genomes of mung bean and adzuki bean, which also 

belong to the Vigna genus, have been published [10, 11]. 
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Moringa oleifera (Moringa; NCBI: txid3735) is a highly nutritious, fast growing and 

drought-tolerant tree, which is indigenous to northern India, Pakistan and Nepal [12]. 

Presently, this species is ubiquitously distributed throughout tropical and subtropical 

countries, and in particular covers the major agro-ecological region in Nigeria. The leaves are 

rich in protein, minerals, beta-carotene and antioxidant compounds, which are generally used 

as nutrition supplements and in traditional medicine. The seeds are used to extract oil, and 

seed powder can be used for water purification [13, 14]. There are varying reports of Moringa 

production: India is the largest producer of Moringa with an annual production of 1.1–

1.3 million tonnes of tender fruits from an area of 38,000 ha. In Limpompo province, 

Moringa is cultivated in relatively small areas (0.25–1 ha), with seed yields of 50–100 kg/ha
–1

 

[15]. Prior to this study, a draft genome of Moringa oleifera from Yunnan (China) was 

reported [16], which estimated a similar genome assembly size and gene numbers to our 

version. 

Lablab purpureus (Dolichos bean or hyacinth bean; NCBI: txid35936), a member of the 

Fabaceae family, is one of the most ancient (>3500 years) domesticated and multipurpose 

legume species, which is used as an intercrop in livestock systems. Although it has large 

agromorphological diversity in South Asia, its origin appears to be African [17]. It is rich in 

protein, has good nitrogen-fixing ability, and is highly adaptable to diverse environmental 

conditions [18]. Limited production data are available, suggesting that yields are low. 

In south-western parts of Bangladesh, Lablab is reported to have a total production 
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area of approximately 48,000 ha [17]. In other areas, it has a similarly relatively low 

production area; for example, Kenya, approx. 10,000 ha [19], and Karnataka, India, 

79,000 ha [20].  

Faidherbia albida (apple-ring acacia; NCBI: txid138055) is the only tree species in the 

Faidherbia genus (Fabaceae). Its distinctive key features, such as reverse phenology (leaves 

grow in the long dry season and shed during the rainy season) and nitrogen-fixing ability, 

mean that F. albida has been planted as a key agroforestry species in traditional African 

farming systems for hundreds of years [21]. It originated in the Sahara or eastern and southern 

Africa, then spread across semi-arid tropical Africa, and later to the Middle East and Arabia. 

Estimates suggest that, during the last decade, the tree was cultivated over an area of 

300,000 ha [22]. Average pod production ranges from 6–135 kg per tree per year in the 

Sudanian zone. In Mana Pools, Zimbabwe, two trees averaged 161 kg per tree in one year 

[23]. This yield per unit area is about 2,000–3,000kg/ha, assuming a density of ~20 mature 

trees per hectare [24].  

Sclerocarya birrea (Marula; NCBI: txid289766) belongs to the Anacardiaceae family, 

and is a traditional fruit tree found in southern Africa – mostly south of the Zambezi river 

[25]. Fruits are eaten fresh, or are used to produce juices and wine, which has substantial 

socioeconomic and commercialization importance. The seeds of the fruits are rich in nutrition 

and oil content (56%), and are often consumed raw. It is estimated that the total value of the 

commercial marula trade is worth USD $160,000 per year to rural communities [26], with 
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values per tree ranging from 315 kg (17,500 fruits) to 1,643 kg (91,300 fruits) [26, 27]. A 

survey in north-central Namibia showed that, on average, there are 5.33 farms per household, 

with a total of 13,278 fruiting trees.  

Considering the limited systematic efforts to improve the breeding of these understudied 

tropical crops so far, making their genomic data available will provide much-needed impetus 

to conduct basic and applied translational research to improve and develop them as important, 

sustainably cultivated food crops. These efforts will be vital for directly or indirectly 

improving nutrition for the increasing urban populations in the regions where these crops are 

grown. 
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Data description 

Sample collection, library construction, and sequencing 

Genomic DNA was extracted either from a tree (F. albida, M. oleifera) or from 

nursery plantlets (V. subtarranea, L. purpureus, S. birrea) grown at the World 

AgroForestry Center campus in Kenya using a modified CTAB method [28].  

Extracted DNA was used to construct paired-end libraries (insert size ranging 

from 170–800 bp) and mate-pair libraries (insert size >2 kb) following Illumina (San 

Diego, USA) protocols. Subsequently, sequencing was performed on a HiSeq 2000 

platform (Illumina, San Diego, CA, USA) using a shotgun sequencing strategy to 

generate more than 100 Gb raw data for each species (see Additional file 1: Table S1). 

Data were filtered using SOAPfilter (v2.2) [29] as follows: (1) small insert size reads 

were discarded; (2) PCR duplicates and adapter contamination were discarded; (3) 

reads with ≥30% low quality bases (quality score ≤15) were removed; (4) bases with 

low quality were trimmed from each end of the reads; (5) reads with ≥10% uncalled 

(―N‖) bases were removed. At the end, more than 100× high-quality reads were 

obtained for each species, according to their estimated genome size (see Additional 

file 1: Table S1). 

RNA for transcriptome sequencing was extracted from different tissues of V. 

subterranea, L. purpureus, F. albida, and M. oleifera. The RNA was extracted using the 

PureLink RNA Mini Kit (Thermo Fisher Scientific, Carlsbad, CA, USA) according to the 
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manufacturer‘s instructions. For each sample, RNA libraries were constructed by following 

the TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) manual, and were 

then sequenced on the Illumina HiSeq 2500 platform (paired-end, 100-bp reads), generating 

~36 Gb of sequence data for each species. Data were then filtered using a similar method to 

that used in DNA filtration, with a slight modification: (1) reads with ≥10% low quality bases 

(quality score ≤15) were removed; and (2) reads with ≥5% uncalled (―N‖) bases were 

removed (see Additional file 1: Table S2). All the transcriptome data from different tissues 

were compiled, and the combined version was used to check the completeness of the whole 

genome sequence assembly. 

 

Evaluation of genome size 

Clean reads of the paired-end libraries were used to estimate genome sizes (insert size 

250 bp and 500 bp). k-mer frequency distribution analysis was performed using the 

following formula:  

Gen = Num*(Len − 17 + 1) / K_Dep 

Where: Num represents the read number of reads used. Len represents the read 

length, K represents the k-mer length, and K_Dep refers to where the main peak is 

located in the distribution curve [30].  

k-mer distributions of F. albida, S. birrea, and M. oleifera showed two distinct 

peaks (see Additional file 1: Figure S1), where the second peak was confirmed as the 
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main one for each of the species. The genome sizes of V. subterranea, L. purpureus, F. 

albida, S. birrea and M. oleifera were predicted as 550, 423, 661, 356 and 278 Mb, 

respectively (see Additional file 1: Table S3).  

 

De novo genome assembly 

For de novo genome assembly, SOAPdenovo2 (SOAPdenovo2, RRID:SCR_014986) 

[29] was used for constructing contigs, followed by scaffolding, and finally gap filling. 

To build contigs, libraries ranging from 170–800 bp were used to construct de Bruijn 

graphs with the parameters ―pregraph –d 2 –K 55‖, and contigs were subsequently 

formed with the parameters ―contig –g –D 1‖ to delete links with low coverage. In the 

scaffolding step, paired-end and mate-pair information was used to order the contigs 

with parameters ―scaff –g –F‖ and ―map –g –k 55‖. Finally, to fill the gaps within 

scaffolds, GapCloser version 1.12 (GapCloser, RRID:SCR_015026) [29] was used 

with the parameters ―–l 150 –t 32‖ using the pair-end libraries. Finally, total 

assembled lengths of 535.05, 395.47, 653.73, 330.98, and 216.76 Mb were obtained 

for V. subterranea, L. purpureus, F. albida, S. birrea and M. oleifera genomes, 

respectively (Table 1). This accounted for approximately 97.3%, 93.5%, 98.9%, 92.9% 

and 77.9% of their respective estimated genome sizes. 

 

Genome evaluation 
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Genome assembly completeness was assessed with BUSCO (Benchmarking Universal 

Single-Copy Orthologs) version 3.0.1, (BUSCO, RRID:SCR_015008) [31]. From the 1,440 

core embryophyta genes, 1,326 (92.1%), 1,341 (93.2%), 1,315 (91.3%), 1,384 (96.1%) and 

1,297 (90.1%) were identified in the V. subterranea, L. purpureus, F. albida, S. birrea and M. 

oleifera assemblies, respectively, with 1,244 (86.4%), 1,258 (87.4%), 1,231 (85.5%), 1,352 

(93.9%) and 1.278 (88.8%) genes, respectively, being complete (Table 2). 

To evaluate the completeness of genes in the assemblies, unigenes were generated from 

the transcript data of each species using Bridger software with the parameters ―–kmer_length 

25 –min_kmer_coverage 2‖ [32], and then aligned to the corresponding assembly using 

BLAT (BLAT, RRID:SCR_011919) [33]. The results indicated that each of the assemblies 

covered about 90% of the expressed unigenes, suggesting that the assembled genomes 

contained a high percentage of expressed genes (Table 3). 

To confirm the accuracy of the assemblies, some of the paired-end libraries were 

mapped to the genome assemblies, and the sequencing coverage was calculated using 

SOAPaligner, version 2.21 (SOAPaligner/soap2 , RRID:SCR_005503) [34]. 

Sequencing coverage showed that >99% of the bases had a sequencing depth of more 

than 10×, and confirmed the accuracy at the base level (see Additional file 1: Figure 

S2). GC content and average depth were also calculated with 10 kb non-overlapping 

windows. The distribution of GC content indicated a relatively pure single genome 

without contamination or GC bias (see Additional file 1: Figure S3). The GC content 
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of each sequenced genome was also compared with that of a related species. As 

expected, close peak positions showed that the related species were similar in GC 

content (see Additional file 1: Figure S4). 
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Repeat annotation 

Repetitive sequences were identified using RepeatMasker (version 4-0-5) [35], with a 

combined Repbase and a custom library obtained through careful self-training. The 

custom library comprised three parts: MITEs (miniature inverted repeat transposable 

elements), LTRs (long terminal repeats), and an extensive library that was constructed 

as follows. First, the annotated MITE library was created using MITE-hunter [36] 

with default parameters. Then, a library of LTR elements with lengths of 1.5–25 kb, 

and two libraries of terminal repeats ranging from 100–6000 bp with ≥85% similarity 

were constructed using LTRharvest [37] integrated in Genometools (version 1.5.8) 

[38] with parameters ―–minlenltr 100, –maxlenltr 6000, –mindistltr 1500, –maxdistltr 

25000, –mintsd 5, –maxtsd 5, –similar 90, –vic 10‖. Subsequently, we used several 

strategies to filter the candidates, i.e. 1) presence of intact poly purine tracts or primer 

binding sites [39] using the eukaryotic tRNA library [40]; 2) removal of 

contamination from local gene clusters and tandem local repeats by inspecting 50 

bases of the upstream and downstream LTR flanks using MUSCLE (MUSCLE, 

RRID:SCR_011812) [41] for a minimum of 60% identity; and 3) removal of nested 

LTR candidates from other types of the elements. Exemplars for the LTR library were 

extracted from the filtered candidates using a cutoff of 80% identity in 90% of the 

sequence. Regions of the genome annotated as LTRs and MITEs were masked, and 

then put into RepeatModeler (version 1-0-8; RepeatModeler, RRID:SCR_015027) to 
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predict other repetitive sequences for the extensive library. Finally, the MITE, LTR 

and extensive libraries were integrated into the custom library, which was combined 

with the Repbase library and taken as an input for RepeatMasker to identify and 

classify genome-wide repetitive elements. The pipeline identified 205,189,285 (38.35% 

of the genome length), 147,050,327 (37.18%), 358,653,534 (54.86%), 149,551,125 

(45.18%), and 87,944,150 (40.57%) bases of non-redundant repetitive sequences in V. 

subterranea, L. purpureus, F. albida, S. birrea and M. oleifera, respectively. LTR 

elements were predominant, taking up 19.8%, 23.8%, 44.6%, 38.8%, 22.7% of each 

genome, respectively (Table 4). 

 

Gene prediction 

Repetitive regions of the genome were masked before gene prediction. Structures of 

protein-coding genes were predicted using the MAKER-P pipeline (version 2.31) [42] based 

on RNA, homologous and de novo prediction evidence. For RNA evidence, the clean 

transcriptome reads were assembled into inchworms using Trinity (version 2.0.6) [43], and 

then provided to MAKER-P as expressed sequence tag evidence. For homologous 

comparison, protein sequences from the model plant Arabidopsis thaliana, and related species 

of each sequenced species, were downloaded and provided as protein evidence. Related 

species used for homologous evidence were Arachis duranensis, A. ipaensis, Glycine max, 

Lotus japonicus, Medicago truncatula, and Vigna angularis for V. subterranea; A. 
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duranensis, Cajanus cajan, G. max, M. truncatula, Phaseolus vulgaris, and V. angularis for 

L. purpureus; C. cajan, V. angularis, L. japonicus, P. vulgaris, M. truncatula, and G. max for 

F. albida; Actinidia chinensis, and Musa acuminate for S. birrea; and G. max, Oryza sativa, 

Populus trichocarpa, and Sorghum bicolor for M. oleifera.  

For de novo prediction evidence, a series of training sets was made to optimize different 

ab initio gene predictors. Initially, a set of transcripts was generated by a genome-guided 

approach using Trinity with the parameters ―--full_cleanup, --jaccard_clip, 

--genome_guided_max_intron 10000, --min_contig_length 200‖. The transcripts were then 

mapped back to the genome using PASA (version 2.0.2) [44] and a set of gene models with 

real gene characteristics (e.g., size and number of exons/introns per gene, features of splicing 

sites) was generated. Complete gene models were picked for training Augustus [45]. 

Genemark-ES (version 4.21) [46] was self-trained with default parameters. The first round of 

MAKER-P was run based on the evidence as above, with default parameters except 

―est2genome‖ and ―protein2genome‖ being set to ―1‖, yielding only RNA and 

protein-supported gene models. SNAP [47] was then trained with these gene models. Default 

parameters were used to run the second and final rounds of MAKER-P, producing the final 

gene models.  

The number of protein-coding genes identified in each species was 31,707 in V. 

subterranea, 20,946 in L. purpureus, 28,979 in F. albida, 18,937 in S. birrea, and 18,451 in 

M. oleifera. Compared to the other sequenced species in the same genus [10, 11], V. 
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subterranea has a more genes than mung bean (22,427) but less than adzuki bean (34,183). 

Various gene structure parameters were compared to the related species of each sequenced 

genome, as summarized in Table 5 and Additional file 1: Figure S5. BUSCO evaluation 

showed that at least 85% of 1,440 core genes could be identified across all the species, 

suggesting an acceptable quality of gene annotation for the five sequenced genomes (see 

Additional file 1: Table S4). 

Non-coding RNA genes in the sequenced genomes were also annotated. Using 

BLAST, ribosomal RNA (rRNA) genes were searched against the A. thaliana rRNA 

database, or by searching for microRNAs (miRNA) and small nuclear RNA (snRNA) 

against the Rfam database (Rfam, RRID:SCR_004276; release 12.0) [48]. 

tRNAscan-SE (tRNAscan-SE, RRID:SCR_010835) was also used to scan for tRNAs 

[49]. The results are summarized in Table 6. 

 

Functional annotation of protein-coding genes 

Functional annotation of protein-coding genes was based on sequence similarity and 

domain conservation by aligning predicted amino acid sequences to public databases. 

Protein-coding genes were first searched against protein sequence databases for best 

matches, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG, 

RRID:SCR_012773) [50], the National Center for Biotechnology Information (NCBI) 

non-redundant (NR) and COG databases [51], SwissProt and TrEMBL [52] using 
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BLASTP with an E-value cut-off of 1e-5. Then, InterProScan 55.0 (InterProScan, 

RRID:SCR_005829) [53] was used to identify domains and motifs based on Pfam 

(Pfam, RRID:SCR_004726) [54], SMART (SMART, RRID:SCR_005026) [55], 

PANTHER (PANTHER, RRID:SCR_004869) [56], PRINTS (PRINTS, 

RRID:SCR_003412) [57], and ProDom (ProDom, RRID:SCR_006969) [58]. In total, 

98.0%, 98.2%, 93.6%, 98.1% and 98.8% of genes in V. subterranea, L. purpureus, F. 

albida, S.birrea, and M. oleifera, respectively, were functionally annotated. Of the 

unannotated genes, 400, 305, 1,514, 293 and 172 were specific to V. subterranea, L. 

purpureus, F. albida, S. birrea, and M. oleifera, respectively (Table 7). 

 

Gene family construction 

Protein and nucleotide sequences from the five sequenced species and nine other species (A. 

thaliana, Carica papaya, Citrus sinensis, G. max, M. truncatula, O. sativa, P. vulgaris, S. 

bicolor, and Theobroma cacao) were retrieved to construct gene families using OrthoMCL 

software [59] based on an all-versus-all BLASTP alignments with an E-value cutoff of 1e-5. 

A total of 609, 104, 499, 205 and 150 gene families were found specific to V. subterranea, L. 

purpureus, F. albida, S. birrea, and M. oleifera, respectively (see Additional file 1: Table S5).  

Furthermore, the 10,103 gene families of V. subterranea, L. purpureus, F. albida, M. 

truncatula, and G. max were clustered (Figure 2A). There were 1,105 orthologous families 

shared by the four Papilionoideae species, while 808 gene families containing 1,966 genes 
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were specific to F. albida, 281 gene families containing 538 genes were specific to L. 

purpureus, and 789 gene families containing 3,118 genes were specific to V. subterranea. 

Moreover, 8,184 gene families of S. birrea, M. oleifera, C. papaya, C. sinensis 

and T. cacao were clustered (Figure 2B), of which 365 gene families containing 798 

genes were specific to M. oleifera, and 362 gene families containing 796 genes were 

specific to S. birrea. KEGG pathway enrichment analysis of paralog genes was also 

conducted (Additional file 1: Table S6, S7). Functional annotation revealed that, in V. 

subterranea, these paralogs corresponded mainly with carbon fixation, zeatin 

biosynthesis, and glyoxylate and dicarboxylate metabolism. However, for L. 

purpureus, the fatty acid elongation pathway was enriched, while in F. albida, 

pathways corresponding to plant–pathogen interactions and cyanoamino acid 

metabolism were enriched. In S. birrea, enrichment occurred in plant–pathogen 

interaction, starch and sucrose metabolism, and fatty acid biosynthesis pathways. In M. 

oleifera, pathways related to fatty acid and diterpenoid biosynthesis, and cyanoamino 

acid metabolism were enriched. Using Gene Ontology (GO) analysis, paralog genes 

in V. subterranea, L. purpureus, F. albida, M. oleifera, and S. birrea were enriched in 

ion binding, metabolic processes, disease resistance, cell components, and biological 

processes, respectively. 

 

Phylogenetic analysis and estimation of divergence time  
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We identified 141 single-copy genes in the 14 species used for the above analysis, and 

subsequently used them to build a phylogenetic tree. Coding DNA sequence 

alignments of each single-copy family were generated following protein sequence 

alignment with MUSCLE (MUSCLE, RRID:SCR_011812) [41]. The aligned coding 

DNA sequences of each species were then concatenated to a supergene sequence. The 

phylogenetic tree was constructed with PhyML-3.0 (PhyML, RRID:SCR_014629) 

[60], with the HKY85+gamma substitution model on extracted four-fold degenerate 

sites. Divergence time was calculated using the Bayesian relaxed molecular clock 

method with MCMCTREE in PAML (PAML, RRID:SCR_014932) [61], based on 

published calibration times (39–59 Mya between M. truncatula and the main branch 

of legumes, 15–30 Mya between G. max and P. vulgaris, and 83–90 Mya between T. 

cacao and A. thaliana) [11, 62].  

Based on the tree constructed using single-copy-family genes, the divergence 

time between F. albida and Papilionoideae was predicted to be 79.1 (70.0–87.0) Mya. 

This is a little different from a previous prediction of the origin of legumes based on 

two gene markers (matk and rbcL) [63]. The divergence time between M. oleifera and 

C. papaya was predicted to be 65.4 (59.2–71.1) Mya, and 67.9 (53.6–77.3) Mya 

between S. birrea and C. sinensis (Figure 1).  

Subsequently, to evaluate gene gain and loss, CAFE (CAFE, RRID:SCR_005983) 

[64] was employed to estimate the universal gene birth and death rate, λ, under a 

random birth and death model using the maximum likelihood method. Results for 
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each branch of the phylogenetic tree were estimated and represented in Figure 1.  

GO enrichment analysis was also conducted on gene pathways in expanded 

families in the lineage of each sequenced species (Additional file 1: Table S8, S9). 

Terms related to energy and nutrient metabolism were commonly distributed in the 

enrichment output of V. subterranea, L. purpureus, M. oleifera and S. birrea; for 

example, proton-transporting two-sector ATPase complex, cyclase activity, nutrient 

reservoir activity and carbohydrate derivative binding.  

In F. albida, expanded gene families were related to signal transfer or regulation; 

e.g., signaling receptor activity, phosphatase regulator activity, and regulation of 

response to stimulus. Furthermore, the regulatory factors GLABRA3, ENHANCER OF 

GLABRA 3, AUX1, LAX2, and LAX3 [65–67], which are related to the formation of 

root hairs and lateral roots, were identified in these families. As a traditional 

agroforestry tree in Africa, F. albida was previously reported to have a root system 

architecture that displays wide variation under different environmental factors (soil 

depth, nutrient amount, or water reservoirs) [68]. This suggests its adaptability to the 

complex environment, which requires signal transferring and regulation. The results 

obtained from the GO enrichment analysis were consistent with the biological 

characteristics of F. albida. 

 

Mining of transcription factors 
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Transcription factors (TFs) in the sequenced species were identified using protein 

sequences of plant TFs from the plant transcription factor database [69] by BLASTP 

search with an e-value cutoff of 10E−10, a minimum identity of 40% and a minimum 

query coverage of 50%. About 59 TF families were revealed across the genes in M. 

truncatula, G. max, P. vulgaris, C. papaya, C. sinensis, and the five sequenced species 

(see Additional file 2: Table S14). Among these TFs, bHLH, NAC, ERF, MYB-related, 

C2H2, MYB, WRKY, bZIP, FAR1, C3H, B3, G2-like, Trihelix, LBD, GRAS, M-type 

MADS, HD-ZIP, MIKC_MADS, HSF, GATA were found in abundance (Figure 4). 

 

Identification of protein, starch, and fatty acid biosynthesis-related genes 

Using the amino acid, starch and fatty acid synthesis genes in soybean [11, 70] as bait, 

we performed an ortholog search in V. subterranea, L. purpureus, F. albida, S. birrea, 

M. oleifera, G. max, Triticum aestivum, Zea mays, and O. sativa (Additional file 1: 

Tables S10–13). V. subterranea is a good source of resistant starch (RS) [71], which 

has the potential to protect against diabetes and reduce the incidence of diarrhea and 

other inflammatory bowel diseases [72]. High amylose levels can contribute to RS. 

Previously, studies have shown that deficiency in SSIIIa (soluble starch synthase gene) 

decreases amylopectin biosynthesis and increases amylose biosynthesis by a 

granule-bound starch synthase (GBSSI) encoded by the Wx gene in O. sativa indica 

[73]. Down-regulation of the soluble starch synthase SSII, and of SBE, leads to higher 
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levels of RS in barley [74]. Interestingly, in V. subterranea, two out of four GBSSs 

underwent expansion, suggesting their vital role in controlling starch synthesis 

(Figure 5) at the transcriptional and post-transcriptional level. No expansion in GBSS 

was observed in the genomes of L. purpureus, F. albida, S. birrea or M. oleifera, and 

in V. subterranea, soluble starch synthase was not expanded. Therefore, we speculate 

that the expansion of GBSS might be why V. subterranea is rich in RS.  

Similarly, differences in the copy numbers of choline kinase, a key factor in fatty 

acid synthesis and storage, were found between the four legumes (V. subterranea, 7; F. 

albida, 4; L. purpureus, 2; and G. max, 5) and between two orphan species (S. birrea, 

1, and M. oleifera, 3). Choline kinase is the first enzyme in the cytidine diphosphate–

choline pathway, which is involved in lecithin biosynthesis [75, 76]. Based on these 

observations, we inferred that all the factors required to synthesize lecithin are present 

in V. subterranea. However, gene expression data remains lacking in terms of the 

GBSS and choline kinase genes in these the five species. More transcriptomic 

analysis and chemical tests are required to uncover the mechanisms of their nutrition 

metabolism. 

 

Identification of the root nodule symbiosis pathway 

Legumes (Fabaceae) are well known for their ability to fix nitrogen; an important trait to 

replenish nitrogen supplies in soil and agricultural systems. Being part of the human food 
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production chain, legumes have a major impact on the global nitrogen cycle. Nitrogen-fixing 

plants can fix nitrogen through root nodule symbiosis (RNS) using symbiotic nitrogen-fixing 

bacteria. In a previous report, RNS was revealed to be restricted to Fabales, Fagales, 

Cucurbitales, and Rosales, which together form the monophyletic nitrogen-fixing clade. This 

suggests a predispositional event in their common ancestor, which enabled their subsequent 

evolution [77]. Despite this genetic predisposition, many leguminous members of the 

nitrogen-fixing clade are non-fixers [78]. This has raised the question as to whether the 

nodulation trait evolved independently in a convergent manner, or originated from a single 

evolutionary event followed by multiple losses. The answer to this question cannot be 

explained with current genomic approaches, because available genomic information of 

nodulating species is, at present, limited to a single subfamily, the Papilionoideae, in the 

Fabaceae. Although the Mimosoideae subfamily within the Fabaceae also contains 

nitrogen-fixing species, none of its members have been genome-sequenced.  

In this analysis, we identified 16 root nodulation symbiosis signal (Sym) pathway genes 

in three legumes (V. subterranea, L. purpureus, and F. albida) and two non-legumes (S. 

birrea and M. oleifera). First, we collected the protein sequences of previously reported genes 

in the Sym pathways of L. japonicus and M. truncatula [79] (Figure 3). Using these 

sequences as bait, we predicted the Sym genes in V. subterranea, L. purpureus, F. albida, S. 

birrea, and M. oleifera through reciprocal best hits generated by a BLASTP search with an 

E-value of 1e-5 (Table 8). To verify this prediction with syntenic analysis, ‗all versus all‘ 

BLASTP results were subjected to MCSCANX [80] with default parameters to generate 
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syntenic blocks. The result showed that, among the legumes, all of the components in the 

pathway were conserved except for MtNFP/LjNFR5, LjCASTOR, CCaMK, MtCRE1/LjLHK1, 

and NF-YA2, while many components were missing in the non-legumes. Among the three 

legumes, the orthologous genes MtNFP/LjNFR5, LjCASTOR and MtIPD3/LjCYCLOPS were 

absent in F. albida. As previously reported, the expression of NIN is lower in the ipd3-mutant 

line [81]; analysis of the M. truncatula mutant C31 showed that the Nod Factor Perception 

gene is essential in Nod factor perception at early stages of the symbiotic interaction [82]. 

Meanwhile, the function of IPD3 was proved to be partly redundant, which means it is likely 

that other proteins phosphorylated by CCaMK can partially fulfill this role when IPD3 is 

absent [81]. Differences in the components of the RNS pathway (Table 8), together with the 

relatively weak nitrogen-fixing ability [83] of F. albida, is thus a good reference for RNS 

diversification research. 

 

Conclusion 

This comprehensive study reports the sequencing, assembly, and annotation of five 

genomes of underutilized plants in Africa, along with details of their key evolutionary 

features. The draft genomes of these species will serve as an important 

complementary resource for non-model food crops, especially the leguminous plants, 

and will be valuable for both agroforestry and evolutionary research. Improving these 

underutilized plants using genomics-assisted tools and methods could help to bring 
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food security to millions of people. 
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Figure 1: Phylogenetic and evolutionary analysis. Scale bar = 10 million years. Values at branch points indicate estimates of divergence time (million years 

ago, Mya); blue numbers show divergence time (Mya); red nodes indicate previously published calibration times. V. sub shows seeds of Vigna subterranean; 

L. pur, flowers of Lablab purpureus; F. alb, seed pods of Faidherbia albida; S. bir, fruit of Sclerocarya birrea; M. ole, flowers of Moringa oleifera. 
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Figure 2: The groups of orthologs shared by the orphan crops. (A) Groups of orthologs shared between Lablab purpureus (L. pur), Faidherbia albida (F. 

alb), Glycine max (G. max), Medicago truncatula (M. tru) and Vigna subterranea (V.sub). (B) Groups of orthologs shared between Sclerocarya birrea (S. 

bir), Moringa oleifera (M. ole), Carica papaya (C. pap), Citrus sinensis (C. sin) and Theobroma cacao (T. cac). Venn diagram generated using [85]. 
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Figure 3: The common symbiosis signaling pathway among the orphan crops. Sixteen root nodulation symbiosis signal (Sym) pathway genes were 

identified in three legumes (Vigna subterranea, Lablab purpureus and Faidherbia albida) and two non-legumes (Sclerocarya birrea and Moringa oleifera). 

Lj, Lotus japonicas; Mt, Medicago truncatula; LCOs, Lipochitooligosaccharides. 
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Figure 4: Percentages of transcription factors in five orphan species. Blastp was used to search against 58 plant transcription factor families obtained 

from PlantTFDB [69] (see Additional file 2: Table S14). In this figure, MADS includes M-type_MADS and MIKC_MADS. MYB includes MYB and 

MYB_related. NF-YA/B/C includes NF-YA, NF-YB and NT-YC. ―Others‖ comprises 31 types of transcription factors (E2F/DP, Nin-like, TALE, YABBY, 

GeBP, BES1, DBB, CO-like, CPP, SBP, STAT, WOX, BBR-BPC, CAMTA, AP2, ZF-HD, S1Fa-like, ARR-B, SRS, GRF, LSD, NF-X1, EIL, RAV, 

HRT-like, HB-PHD, VOZ, Whirly, SAP, LFY and NZZ/SPL) whose percentage was less than 1%. 
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Figure 5: Identification of genes involved in the starch biosynthesis pathway. Genes identified as being involved in starch synthesis are shown in red. 

Numbers of homolog genes are presented in Additional file 2: Table S11. AGP, ADP-glucose pyrophosphorylase; AGPL, AGP large subunit; AGPS, AGP 

small subunit; PHOH, starch phosphorylase H (cytosolic type); GBSS, granule-bound starch synthase; SS, soluble starch synthase; BE, starch branching 

enzyme; ISA, isoamylase; DPE, starch debranching enzyme. 
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Table 1: Statistical analysis of the final de novo genome assembly of Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea and 

Moringa oleifera 

Parameters 

V. subterranea L. purpureus F. albida S. birrea M. oleifera 

Contig Scaffold Contig Scaffold Contig Scaffold Contig Scaffold Contig Scaffold 

Length 

(bp) 

N90 3,804 75,271 785 860 8,254 95,167 3,661 21,833 6,676 57,837 

N80 7,872 197,296 8,009 61,348 16,321 251,730 7,649 82,385 16,503 241,828 

N70 11,464 325,826 16,144 205,392 24,165 380,587 11,885 155,416 25,754 441,152 

N60 15,122 474,616 24,010 359,168 32,440 534,880 16,393 243,236 35,081 644,014 
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N50 19,154 640,666 32,223 621,373 42,029 692,039 21,349 335,449 45,268 957,246 

N40 23,828 865,081 42,690 950,808 53,479 881,230 26,914 485,585 58,406 1,446,587 

N30 29,382 1,133,817 54,401 1,489,002 69,167 1,197,388 33,914 705,409 74,710 1,878,891 

N20 36,928 1,503,436 70,790 1,971,744 92,147 1,501,241 43,984 1,098,843 96,626 2,565,629 

N10 49,695 2,049,645 95,643 2,606,483 139,388 1,925,526 62,875 2,089,533 136,952 3,296,678 

Number 

N90 29,245 1,087 26,272 9,409 16,834 1,132 17,585 1,537 5,524 366 

N80 20,188 664 9,869 715 11,420 727 11,678 787 3,574 191 

N70 14,829 453 6,576 366 8,198 514 8,313 499 2,542 125 

N60 10,943 315 4,630 222 5,898 370 6,001 332 1,833 84 
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N50 7,932 220 3,244 138 4,151 263 4,277 214 1,295 56 

N40 5,532 147 2,204 86 2,791 179 2,929 131 876 37 

N30 3,590 93 1,403 52 1,728 114 1,857 74 553 24 

N20 2,024 52 776 29 912 64 1,012 36 300 13 

N10 806 22 306 12 326 26 387 12 112 6 

Maximum length 148,612 3,684,321 240,194 5,699,750 529,842 4,746,824 227,874 5,850,796 449,426 4,637,711 

Total length 512,516,846 535,052,523 385,303,786 395,472,305 644,456,383 653,726,905 322,977,033 330,983,508 213,739,255 216,759,177 

Total number ≥ 

100 bp 

104,575 65,586 135,039 118,976 75,572 51,470 64,158 40,280 29,972 22,329 
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Total number ≥ 

2000 bp 

35,465 2,920 15,984 4,265 26,459 5,758 22,172 4,852 8,300 2,166 

N content (%) 4.21 2.57 1.42 2.42 1.39 
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Table 2: Completeness evaluation of genome assembly using BUSCO database in five 

species 

BUSCOs 

Vigna 

subterranea 

Lablab 

purpureus 

Faidherbia 

albida 

Sclerocarya 

birrea 

Moringa 

oleifera 

N % N % N % N % N % 

Complete single copy 1,244 86.39 1,258 87.40 1,231 85.50 1352 93.90 1,278 88.80 

Complete duplicated 82 5.69 83 5.80 84 5.80 32 2.20 19 1.30 

Fragmented 28 1.94 20 1.40 34 2.40 21 1.50 23 1.60 

Missing 86 5.97 79 5.40 91 6.30 35 2.40 120 8.30 

Total 1440 / 1440 / 1440 / 1440 / 1440 / 

Abbreviation: BUSCO, Benchmarking universal single-copy orthologs; N, number 
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Table 3: Gene coverage of candidate species based on transcriptome data 

Species Dataset Number 

Total 

length (bp) 

Base 

coverage by 

assembly 

(%) 

Sequence 

coverage by 

assembly (%) 

Vigna 

subterranea 

All 116,223 161,077,155 89.61 98.21 

>200 bp 116,223 161,077,155 89.61 98.21 

>500 bp 72,139 147,068,299 89.03 98.00 

>1000 bp 47,952 129,884,929 88.33 97.52 

Lablab 

purpureus 

All 86,867 80,837,182 93.59 99.25 

>200 bp 86,867 80,837,182 93.59 99.25 

>500 bp 41,252 66,764,786 92.94 99.18 

>1000 bp 24,627 55,074,989 92.32 99.02 

Faidherbia 

albida 

All 50,294 46,650,067 93.62 98.85 

>200 bp 50,294 46,650,067 93.62 98.85 

>500 bp 26,352 39,282,694 93.32 99.05 
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>1000 bp 15,569 31,560,858 92.78 98.95 

Moringa 

oleifera 

All 60,964 57,114,636 88.98 92.16 

>200 bp 60,964 57,114,636 88.98 92.16 

>500 bp 29,581 47,523,018 88.85 92.69 

>1000 bp 18,322 39,528,310 88.70 92.99 
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Table 4: Proportion of different classes of repeats (%) in five species 

Repeat type 

Vigna subterranea Lablab purpureus Faidherbia albida Sclerocarya birrea Moringa oleifera 

% in 

genome 

Length 

(bp) 

% in 

genome 

Length 

(bp) 

% in 

genome 

Length 

(bp) 

% in 

genome 

Length (bp) 

%in 

genome 

Length 

(bp) 

SINE 0 313 0.005 19,444 < 0.01 1,966 0.02 69,836 0.11 248,569 

LINE 0.25 1,387,567 0.45 1,784,785 0.91 6,003,271 0.19 647,579 1.83 3,970,802 

LTR 19.77 105,828,735 23.78 94,062,428 44.65 291,901,514 38.78 128,362,381 22.69 49,200,625 

DNA 7.15 38,294,871 4.76 18,851,402 4 26,164,519 1.76 5,829,982 5.81 12,599,607 

Satellite 0.01 71,679 0.02 107,451 0.01 110,749 0 18,597 0.74 1,623,399 
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Simple repeat 0.35 1,922,719 0.2 821,773 0.04 308,481 0.04 153,135 0.29 630,662 

Others 11.94 63,926,350 8.95 35,400,400 6.48 42,426,306 5.11 16,918,179 10.35 22,439,026 

Total 38.35 205,189,285 37.18 147,050,327 54.86 358,653,534 45.18 149,551,125 40.57 87,944,150 

Abbreviations: bp, base pairs; DNA, deoxyribonucleic acid; LINE, long interspersed nuclear element; LTR, long terminal repeats; SINE, short interspersed nuclear element.  
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Table 5: Gene structure parameters of Vigna subterranea, Lablab purpureus, Faidhervia 

albida, Medicago truncatula, Glycine max, Sclerocarya birrea, Moringa oleifera, Carica 

papaya, Theobroma cacao and Citrus sinensis 

Species 
Protein-coding 

gene number 

Mean gene 

length (bp) 

Mean coding 

sequence 

length (bp) 

Mean 

exons per 

gene 

Mean exon 

length (bp) 

Mean 

intron 

length (bp) 

V. subterranea 31,707 3,287 1,163 5 222 501 

L. purpureus 20,946 3,696 1,276 5 239 557 

F. albida 28,979 3,396 1,207 5 226 504 

M. truncatula 50,358 2,334 986 4 243 440 

G. max 55,137 3,144 1,169 5 232 488 

S. birrea 18,937 3,561 1,343 6 239 479 

M. oleifera 18,451 3,308 1,238 5 232 478 

C. papaya 24,107 2,531 962 4 223 473 

T. cacao 41,951 3,684 1,323 6 223 479 

C. sinensis 35,182 3,797 1,424 6 237 475 
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Table 6: Annotation of non-coding RNA genes in the genomes of Vigna subterranea, Lablab 

purpureus, Faidherbia albida, Sclerocarya birrea and Moringa oleifera 

Species Type Copy Average length (bp) Total length (bp) % of genome 

V. subterranea 

 

miRNA 102 122 12,466 0.002330 

 

tRNA 756 75 56,639 0.010586 

rRNA rRNA 1,080 124 134,185 0.025079 

18S 55 560 30,798 0.005756 

28S 62 126 7,793 0.001456 

5.8S 17 124 2,110 0.000394 

5S 946 99 93,484 0.017472 

snRNA snRNA 523 117 61,006 0.011402 

CD-box 327 100 32,643 0.006101 

HACA-box 47 133 6,236 0.001165 

splicing 149 149 22,127 0.004135 

L. purpureus 

 

miRNA 109 123 13,398 0.003388 

 

tRNA 611 75 45,748 0.011568 

rRNA rRNA 633 227 143,466 0.036277 

18S 213 446 95,074 0.024041 
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28S 283 121 34,186 0.008644 

5.8S 53 135 7,177 0.001815 

5S 84 84 7,029 0.001777 

snRNA snRNA 457 118 54,029 0.013662 

CD-box 278 97 26,915 0.006806 

HACA-box 48 133 6,371 0.001611 

splicing 131 158 20,743 0.005245 

F. albida 

 

miRNA 126 122 15,364 0.002350 

 

tRNA 458 75 34,388 0.005260 

rRNA rRNA 1,008 107 107,518 0.016447 

18S 25 321 8,034 0.001229 

28S 26 118 3,063 0.000469 

5.8S 6 118 710 0.000109 

5S 951 101 95,711 0.014641 

snRNA snRNA 1,996 108 216,482 0.033115 

CD-box 1,836 106 194,676 0.029779 

HACA-box 42 132 5,548 0.000849 

splicing 118 138 16,258 0.002487 
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S. birrea 

 

miRNA 106 122 12,899 0.003897 

 

tRNA 564 75 42,181 0.012744 

rRNA rRNA 313 142 44,378 0.013408 

18S 80 240 19,239 0.005813 

28S 57 113 6,460 0.001952 

5.8S 16 103 1,644 0.000497 

5S 160 106 17,035 0.005147 

snRNA snRNA 841 115 96,517 0.029161 

CD-box 638 105 67,216 0.020308 

HACA-box 34 124 4,217 0.001274 

splicing 169 148 25,084 0.007579 

M. oleifera 

 

miRNA 111 119 13,161 0.006072 

 

tRNA 1,241 75 93,620 0.043191 

rRNA rRNA 8,406 309 2,598,079 1.198602 

18S 3,256 608 1,979,080 0.913032 

28S 3,808 113 430,280 0.198506 

5.8S 1,182 150 177,612 0.08194 

5S 160 69 11,107 0.005124 
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snRNA snRNA 229 119 27,158 0.012529 

CD-box 119 97 11,578 0.005341 

HACA-box 38 132 4,999 0.002306 

splicing 72 147 10,581 0.004881 
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Table 7: Statistical analysis of the functional annotations of protein-coding genes in the 

genomes of Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea 

and Moringa oleifera 

Database 

V. subterranea L. purpureus F. albida S. birrea M. oleifera 

N % N % N % N % N % 

Nr 31,013 97.81 20,540 98.06 27,021 93.24 18,547 97.94 18,203 98.65 

Swissprot 22,496 70.95 15,905 75.93 21,247 73.32 15,513 81.92 15,109 81.88 

KEGG 22,141 69.83 14,699 70.18 20,184 69.65 14,623 77.22 14,044 76.11 

COG 10,814 34.11 7,854 37.50  10,526 36.32 7,715 40.74 7,662 41.52 

TrEMBL 30,964 97.66 20,489 97.82 26,828 92.58 18,477 97.57 18,193 98.60  

Interpro 22,744 71.73 18,911 90.28 25,401 87.65 15,537 82.05 15,134 82.02 

GO 18,894 59.59 13,811 65.94 15,182 52.39 11,505 60.75 11,877 64.37 

Overall 31,074 98.00  20,574 98.22 27,118 93.58 18,573 98.08 18,236 98.83 

Unannotated 633 2.00  372 1.78  1,861 6.86 364 1.92  216 1.17  
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Table 8: Orthologs of nitrogen fixation genes in Vigna subterranea, Lablab purpureus, 

Faidherbia albida, Moringa oleifera and Sclerocarya birrea 

Gene V. subterranea L. purpureus F. albida M. oleifera S. birrea 

MtLYK3/LjNFR1 
Vigsu176S22567_VIGSU Labpu216S12485_LABPU Faial2789S13350_FAIAL 

—— —— 

MtNFP/LjNFR5 
Vigsu1898S04417_VIGSU Labpu54S03611_LABPU 

    —— 
—— Sclbi409S02347_SCLBI 

MtDMI2/LjSYMRK Vigsu107959S16599_VIGSU     Labpu4785S15752_LABPU Faial1833S08172_FAIAL     Morol36160S02362_MOROL Sclbi59955S15146_SCLBI 

LjCASTOR Vigsu108012S17109_VIGSU Labpu27S13484_LABPU —— —— ——— 

MtHMGR1 
—— —— 

—— 
    —— ——— 

MtDMI1/LjPOLLU

X Vigsu108496S19983_VIGSU Labpu4332S15101_LABPU Faial363S16033_FAIAL Morol36085S07630_MOROL ——— 

NSP1     Vigsu2922S08781_VIGSU Labpu723S04373_LABPU Faial1104S01086_FAIAL Morol36102S01150_MOROL Sclbi5005S02593_SCLBI 

NSP2 Vigsu107793S01507_VIGSU Labpu887S08157_LABPU Faial757S23006_FAIAL Morol36224S03158_MOROL Sclbi2944S01716_SCLBI 

CCaMK Vigsu91S05737_VIGSU —— Faial752S22546_FAIAL —— ——— 

MtIPD3/LjCYCLOP

S Vigsu104856S09608_VIGSU     Labpu701S17462_LABPU —— —— Sclbi2578S10386_SCLBI 

NIN Vigsu273S23676_VIGSU Labpu165S10337_LABPU Faial788S23538_FAIAL Morol36195S02810_MOROL Sclbi2838S04948_SCLBI 

MtCRE1/LjLHK1 —— 
Labpu2293S02028_LABPU Faial1226S02883_FAIAL —— 

—— 

NF-YA1 Vigsu107799S13964_VIGSU Labpu193775S11413_LABPU     Faial246S12019_FAIAL Morol36154S02289_MOROL Sclbi406S12278_SCLBI 

NF-YA2 
—— 

—— 
Faial858S26716_FAIAL —— ——— 

MtERN1 Vigsu107612S00570_VIGSU Labpu210S01798_LABPU Faial719S21851_FAIAL Morol36040S00658_MOROL Sclbi1920S01196_SCLBI 
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MtERN2 Vigsu108137S07511_VIGSU Labpu448S03276_LABPU Faial4604S17896_FAIAL —— ——— 
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