19 research outputs found

    Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine

    No full text
    Environmental pollution caused by marine engines fueled with fossil fuels is a matter of growing significance. The search for renewable and clean energy sources and improvements in the way fossil fuels are burnt aims to reduce the environmental impact of these engines. For this purpose, fatty acid methyl esters were produced from pure canola oil using KOH-assisted methanol-based transesterification with a maximum yield of 90.68 ± 1.6%. The marine engine’s model was created with CONVERGE software, followed by experimental verification. This paper examines the blended fuel characteristics of a diesel engine with biodiesel blends (0%, 5%, 10%, and 15%) at different loads of engines (50%, 75%, and 100%). It also explores the variation in these characteristics of B10 (10% biodiesel–diesel blends) at three different load conditions and four different EGR rates (0%, 5%, 10%, and 15%). The results indicate that the addition of biodiesel to diesel fuel reduces CO, HC, and soot emissions, while increasing NOx emissions. Additionally, the EGR rate decreases NOx emissions but results in higher levels of soot, CO, and HC emissions. Finally, response surface methodology was used to elicit the engine’s characteristics. It was determined that the optimum experimental operating conditions were 100% engine load, 6.9% biodiesel addition, and 7.7% EGR. The corresponding BTE, BSFC, NOx, and HC emissions were 38.15%, 282.62 g/(kW-h), 274.38 ppm, and 410.37 ppm, respectively

    A Siamese Network Combining Multiscale Joint Supervision and Improved Consistency Regularization for Weakly Supervised Building Change Detection

    No full text
    Building change detection (BCD) from remote sensing images is essential in various practical applications. Recently, inspired by the achievement of deep learning in semantic segmentation (SS), methods that treat the BCD problem as a binary SS task using deep siamese networks have attracted increasing attention. However, similar to their counterparts, these approaches still face the challenge of collecting massive pixel-level annotations. To address this issue, this article presents a novel weakly supervised method for BCD from remote sensing images using image-level labels. The proposed method elaborately designs a siamese network to integrate a multiscale joint supervision (MJS) module and an improved consistency regularization (ICR) module into a unified framework to improve the so-called class activation maps (CAMs), which is vital for producing high-quality pseudomasks using image-level annotations to support pixel-level BCD. To be specific, the MSJ is used for generating refined multiscale CAMs to well capture changes at different scales corresponding to various buildings of varying sizes. The ICR contributes to improving the consistency of CAMs to highlight the boundaries of changed buildings. Extensive experiments on two public BCD datasets have demonstrated that the proposed method outperforms the current state-of-the-art approaches. Furthermore, the visual detection maps also indicate that the proposed method can achieve scale-adaptive change detection results and preserve object boundaries more effectively

    Design and Test of Discrete Element-Based Separation Roller Potato–Soil Separation Device

    No full text
    To address the problems of low bright rates and high rates of potato injuries, a left and right-hand rotation combination of potato–soil separation devices was developed. Its overall structure and working principle were introduced. A Texture Analyzer and pressure sensor were used to measure the force threshold of different varieties of potatoes. A discrete element model of separation rollers and potatoes was established. The collision characteristics of potatoes were analyzed using the device inclination angle, rotational speed, and the center distance of the separation rollers as test factors. A field trial was carried out to optimize the best combination of factors by taking the rate of injured potatoes, bright potatoes, and skin-breaking rate as the test indexes. The force threshold for skin-breaking injury in potatoes was found to be 190–195 N. When the inclination angle of the device was 6°, the rotation speed of the separation roller was 100 r/min, and the distance between the centers of the separation rollers was 79 mm. The rate of injury was 1.25%, the rate of bright potatoes was 99.01%, and the rate of skin-breaking was 1.58%. When the inclination angle of the device was 8°, the rotational speed of the separating roller was 80 r/min, and the center distance of the separating roller was 79 mm, the rate of injured potato was 1.43%, the rate of bright potato was 98.64%, and the rate of broken skin was 1.77%. This paper offers an optimized reference for the effectual removal of sticky soil

    Green synthesis of Ag nanoparticles using elm pod polysaccharide for catalysis and bacteriostasis

    No full text
    The green synthesis of silver nanoparticles (Ag NPs) for catalysis and biological applications has gained great interest. Natural elm pods are a type of food that possesses anti-inflammatory and pain-relieving effects. In this study, elm pod polysaccharide (EPP) was extracted from elm pods using hot water extraction for the first time. Biocompatible EPP-stabilized silver nanoparticles (EPP-Agn NPs) were prepared by using a green synthesis method. The EPP-Ag25 NPs had a hydrodynamic size of 40.9 nm and a highly negative surface charge of −27.4 mV. Furthermore, EPP-Ag25 NPs exhibited high catalytic activity for the reduction of 4-nitrophenol, and the catalytic reaction followed a pseudo-first order kinetic equation. More importantly, the inhibition rate of EPP-Ag25 NPs on Escherichia coli was 71 % when samples were treated with an 808 nm laser. Besides, EPP-Agn NPs effectively inhibited the proliferation of tumor cells irradiated by an 808 nm laser. The improved performance of EPP-Agn NPs was due to the good stability of EPP. Taken together, EPP-Agn NPs had good stability, catalytic activity, antibacterial and antitumor ability under laser irradiation. EPP is a good stabilizer for many nanoparticles which have broad applications in the field of catalysis and biomedicine in the future.</p

    Pt single-atom loaded on nonmetallic elements (C, N, P, S) doped ZrO2 in photocatalytic hydrogen evolution: First principles

    No full text
    It is of great significance to regulate the coordination environment of ZrO2 to enhance its photocatalytic hydrogen evolution activity. In this paper, non-metallic elements (A = C, N, P, S) doped ZrO2 photocatalysts are designed based on first-principles, and further loaded with single-atom Pt. The relationship between the composition and performance of photocatalysts during doping and loading of single-atom is explained through electronic properties, and their photocatalytic hydrogen evolution performance is explored. Loading and doping have a synergistic effect on the modification of ZrO2, and doping effectively improves its catalytic performance. Among them, P doping greatly reduces the Gibbs free energy of the reaction. After the introduction of Pt single atoms, Pt@ZrO2(111)-P still has the best structure for photocatalytic hydrogen evolution, and the good surface electronic activity significantly improves the hydrogen evolution reaction(HER) activity (free energy of −0.01 eV). This design provides a new catalytic model for the photocatalytic hydrogen evolution system and also provides some ideas for understanding the synergistic effects of loading and doping

    Reviving the rock-salt phases in Ni-rich layered cathodes by mechano-electrochemistry in all-solid-state batteries

    No full text
    The rock-salt phase (RSP) formed on the surface of Ni-rich layered cathodes in liquid-electrolyte lithium-ion batteries is conceived to be electrochemically "dead". Here we show massive RSP forms in the interior of LiNixMnyCo(1−x-y)O2 (NMC) crystals in sulfide based all solid state batteries (ASSBs), but the RSP remains electrochemically active even after long cycles. The RSP and the layered structure constitute a two-phase mixture, a material architecture that is distinctly different from the RSP in liquid electrolytes. The tensioned layered phase affords an effective percolation channel into which lithium is squeezed out of the RSPs by compressive stress, rendering the RSPs electrochemically active. Consequently, the ASSBs with predominant RSP in the NMC cathode deliver remarkable long cycle life of 4000 cycles at high areal capacity of 4.3 mAh/cm2. Our study unveils distinct mechano-electrochemistry of RSPs in ASSBs that can be harnessed to enable high energy density and durable ASSBs.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.RST/Storage of Electrochemical Energ

    Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles during Electrochemical Reaction with Lithium

    No full text
    The very high ionic conductivity of Li10GeP2S12 (LGPS) solid electrolyte (SE) makes it a promising candidate SE for solid-state batteries in electrical vehicles. However, chemo-mechanical failure, whose mechanism remains unclear, has plagued its widespread applications. Here, we report in situ imaging lithiation-induced failure of LGPS SE. We revealed a strong size effect in the chemomechanical failure of LGPS particles: namely, when the particle size is greater than 3 mu m, fracture/pulverization occurred; when the particle size is between 1 and 3 mu m, microcracks emerged; when the particle size is less than 1 mu m, no chemomechanical failure was observed. This strong size effect is interpreted by the interplay between elastic energy storage and dissipation. Our finding has important implications for the design of high-performance LGPS SE, for example, by reducing the particle size to less than 1 mu m the chemomechanical failure of LGPS SE can be mitigated

    Lithium Deposition-Induced Fracture of Carbon Nanotubes and Its Implication to Solid-State Batteries

    No full text
    The increasing demand for safe and dense energy storage has shifted research focus from liquid electrolyte-based Li-ion batteries toward solid-state batteries (SSBs). However, the application of SSBs is impeded by uncontrollable Li dendrite growth and short circuiting, the mechanism of which remains elusive. Herein, we conceptualize a scheme to visualize Li deposition in the confined space inside carbon nanotubes (CNTs) to mimic Li deposition dynamics inside solid electrolyte (SE) cracks, where the high-strength CNT walls mimic the mechanically strong SEs. We observed that the deposited Li propagates as a creeping solid in the CNTs, presenting an effective pathway for stress relaxation. When the stress-relaxation pathway is blocked, the Li deposition-induced stress reaches the gigapascal level and causes CNT fracture. Mechanics analysis suggests that interfacial lithiophilicity critically governs Li deposition dynamics and stress relaxation. Our study offers critical strategies for suppressing Li dendritic growth and constructing high-energy-density, electrochemically and mechanically robust SSBs
    corecore