26,641 research outputs found

    On the Cauchy problem for a two-component Degasperis-Procesi system

    Get PDF
    This paper is concerned with the Cauchy problem for a two-component Degasperis-Procesi system. Firstly, the local well-posedness for this system in the nonhomogeneous Besov spaces is established. Then the precise blow-up scenario for strong solutions to the system is derived. Finally, two new blow-up criterions and the exact blow-up rate of strong solutions to the system are presented

    Skyrmion dynamics in a chiral magnet driven by periodically varying spin currents

    Full text link
    In this work, we investigated the spin dynamics in a slab of chiral magnets induced by an alternating (ac) spin current. Periodic trajectories of the skyrmion in real space are discovered under the ac current as a result of the Magnus and viscous forces, which originate from the Gilbert damping, the spin transfer torque, and the β \beta -nonadiabatic torque effects. The results are obtained by numerically solving the Landau-Lifshitz-Gilbert equation and can be explained by the Thiele equation characterizing the skyrmion core motion

    Measuring Majorana fermions qubit state and non-Abelian braiding statistics in quenched inhomogeneous spin ladders

    Get PDF
    We study the Majorana fermions (MFs) in a spin ladder model. We propose and numerically show that the MFs qubit state can be read out by measuring the fusion excitation in the quenched inhomogeneous spin ladders. Moreover, we construct an exactly solvable T-junction spin ladder model, which can be used to implement braiding operations of MFs. With the braiding processes simulated numerically as non-equilibrium quench processes, we verify that the MFs in our spin ladder model obey the non-Abelian braiding statistics. Our scheme not only provides a promising platform to study the exotic properties of MFs, but also has broad range of applications in topological quantum computation.Comment: 5+3 pages, 6 figure

    Distinct Spin Liquids and their Transitions in Spin-1/2 XXZ Kagome Antiferromagnets

    Full text link
    By using the density matrix renormalization group, we study the spin-liquid phases of spin-1/21/2 XXZ kagome antiferromagnets. We find that the emergence of spin liquid phase does not depend on the anisotropy of the XXZ interaction. In particular, the two extreme limits---Ising (strong SzS^z interaction) and XY (zero SzS^z interaction)---host the same spin-liquid phases as the isotropic Heisenberg model. Both the time-reversal-invariant spin liquid and the chiral spin liquid with spontaneous time-reversal symmetry breaking are obtained. We show they evolve continuously into each other by tuning the second- and third-neighbor interactions. At last, we discuss the possible implication of our results on the nature of spin liquid in nearest neighbor XXZ kagome antiferromagnets, including the most studied nearest neighbor spin-1/21/2 kagome anti-ferromagnetic Heisenberg model

    Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond

    Full text link
    We propose a scheme to realize universal quantum gates between nitrogen-vacancy (NV) centers in an optically trapped nanodiamond, through uniform magnetic field induced coupling between the NV centers and the torsional mode of the levitated nanodiamond. The gates are tolerant to the thermal noise of the torsional mode. By combining the scheme with dynamical decoupling technology, it is found that the high fidelity quantum gates are possible for the present experimental conditions. The proposed scheme is useful for NV-center-based quantum network and distributed quantum computationComment: 7 pages, 6 figure
    • …
    corecore