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1. Introduction

In this paper we consider the Cauchy problem of the following two-component Degasperis–Procesi
system:

⎧⎪⎨⎪⎩
mt + 3mux + mxu + k3ρρx = 0, t > 0, x ∈ R,

ρt + k2uρx + (k1 + k2)uxρ = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

(1.1)

where m = u − uxx , while (k1,k2,k3) = (1,1, c) or (c,1,0) and c takes an arbitrary value.
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Using the Green function p(x) � 1
2 e−|x| , x ∈ R and the identity (1 − ∂2

x )−1 f = p ∗ f for all f ∈
L2(R), we can rewrite System (1.1) as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut + uux = P (D)

(
3

2
u2 + k3

2
ρ2

)
, t > 0, x ∈ R,

ρt + k2uρx = −(k1 + k2)uxρ, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

(1.2)

where the operator P (D) � −∂x(1 − ∂2
x )−1.

System (1.1) as the Hamiltonian extension of the Degasperis–Procesi equation was firstly proposed
in [43]. In particular, for (k1,k2,k3) = (c,1,0), System (1.1) is no more coupled and the equation on ρ
becomes linear. Therefore, we only consider the case (k1,k2,k3) = (1,1, c) in the present paper. That
is ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut + uux = P (D)

(
3

2
u2 + c

2
ρ2

)
, t > 0, x ∈ R,

ρt + uρx = −2uxρ, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R.

(1.3)

For ρ ≡ 0, System (1.1) becomes the Degasperis–Procesi equation [22]. It was proved formally
integrable by constructing a Lax pair [21] and the direct and inverse scattering approach to pursue
it can be seen in [12]. Moreover, they also presented [21] that the DP equation has a bi-Hamiltonian
structure and an infinite number of conservation laws, and admits exact peakon solutions which are
analogous to the Camassa–Holm peakons [1,16,17]. It is worth pointing out that solutions of this
type are not mere abstractizations: the peakons replicate a feature that is characteristic for the waves
of great height—waves of largest amplitude that are exact solutions of the governing equations for
irrotational water waves cf. the papers [6,9,44]. The DP equation is a model for nonlinear shallow
water dynamics cf. the discussion in [14]. The numerical stability of solitons and peakons, the multi-
soliton solutions and their peakon limits, together with an inverse scattering method to compute
n-peakon solutions to DP equation have been investigated respectively in [34,40,41]. Furthermore, the
traveling wave solutions and the classification of all weak traveling wave solutions to DP equation
were presented in [37,45]. After the DP equation appeared, it has been studied in many works [13,27,
33,37,39,41,47,50]. For example, the author established the local well-posedness to DP equation with
initial data u0 ∈ Hs(R), s > 3

2 on the line [50] and on the circle [47], and derived the precise blow-up
scenario and a blow-up result. The global existence of strong solutions and global weak solutions to
DP equation were shown in [51,52]. Similar to the Camassa–Holm equation [5,7,8,15,48,49], the DP
equation has not only global strong solutions [38,51] but also blow-up solutions [25,26,38,51]. Apart
from these, it has global entropy weak solutions in L1(R) ∩ B V (R) and L2(R) ∩ L4(R), cf. [4].

Although the DP equation is very similar to the Camassa–Holm equation in many aspects, espe-
cially in the structure of equation, there are some essential differences between the two equations.
One of the famous features of DP equation is that it has not only peakon solutions uc(t, x) = ce−|x−ct|
with c > 0 [21] and periodic peakon solutions [52], but also shock peakons [39] and the periodic
shock waves [26]. Besides, the Camassa–Holm equation is a re-expression of geodesic flow on the dif-
feomorphism group [13] or on the Bott–Virasoro group [42], while the DP equation can be regarded
as a non-metric Euler equation [23].

Recently, a large amount of literature was devoted to the two-component Camassa–Holm sys-
tem [3,11,24,28–32,35,46]. It is noted that the authors in [46] studied the analytic solutions of the
Cauchy problem for two-component Camassa–Holm shallow water systems, which were proved in
both variables, globally in space and locally in time. The used approach in [46] depends strongly on
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the structure of the given system, so we can obtain the same analyticity results of System (1.3) as
those in two-component Camassa–Holm system. It is worth pointing out that analytic regularity re-
sults hold also for the governing equations cf. the recent paper [10]. This is a further indication that
in finding these approximations, structural properties are preserved. However, the Cauchy problem of
System (1.3) in Besov spaces has not been discussed yet. The goal of this paper is to establish the lo-
cal well-posedness of System (1.3) in the nonhomogeneous Besov spaces, derive the precise blow-up
scenario of strong solutions to the system, and give the new blow-up criterions with respect to the
initial data and the exact blow-up rate of strong solutions to the system. Most of our results can be
carried out to the periodic case and to homogeneous Besov spaces.

To solve the problem, we mainly use the ideas of [18,31,32,38]. One of the difficulties is the treat-
ment of critical index in proving local well-posedness of System (1.3), which has been overcome by
the interpolation method in some sense. On the other hand, the H1 × L2-norm conserved quantity
plays a key role in studying the blow-up phenomenon of the two-component Camassa–Holm system
[31,32]. Unfortunately, one cannot find this similar conservation law of System (1.3). This difficulty
has been dealt with in some sense by obtaining a priori estimate L∞-norm of the first component of
the solutions to System (1.3) and making good use of the structure of the system itself.

We now conclude this introduction by outlining the rest of the paper. In Section 2, we will re-
call some facts on the Littlewood–Paley decomposition, the nonhomogeneous Besov spaces and their
some useful properties, and the transport equation theory. In Section 3, we establish the local well-
posedness of the system. In Section 4, we derive the precise blow-up scenario for strong solutions to
the system. Section 5 is devoted to some new blow-up results and the exact blow-up rate of strong
solutions to the system.

2. Preliminaries

In this section, we will recall some facts on the Littlewood–Paley decomposition, the nonhomoge-
neous Besov spaces and their some useful properties, and the transport equation theory, which will
be used in the sequel.

Proposition 2.1 (Littlewood–Paley decomposition). (See [20].) There exists a couple of smooth functions (χ,ϕ)

valued in [0,1], such that χ is supported in the ball B � {ξ ∈ R
n: |ξ | � 4

3 }, and ϕ is supported in the ring

C � {ξ ∈ R
n: 3

4 � |ξ | � 8
3 }. Moreover,

∀ξ ∈ R
n, χ(ξ) +

∑
q∈N

ϕ(2−qξ) = 1,

and

suppϕ
(
2−q·) ∩ suppϕ

(
2−q′ ·) = ∅, if

∣∣q − q′∣∣ � 2,

suppχ(·) ∩ suppϕ
(
2−q·) = ∅, if q � 1.

Then for all u ∈ S ′ , we can define the nonhomogeneous dyadic blocks as follows. Let

�qu � 0, if q � −2,

�−1u � χ(D)u = F −1χ F u,

�qu � ϕ
(
2−q D

)
u = F −1ϕ

(
2−qξ

)
F u, if q � 0.

Hence,

u =
∑
q∈Z

�qu in S ′(
R

n),
where the right-hand side is called the nonhomogeneous Littlewood–Paley decomposition of u.
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Remark 2.1.

(1) The low frequency cut-off Sq is defined by

Squ �
q−1∑

p=−1

�pu = χ
(
2−q D

)
u = F −1χ

(
2−qξ

)
F u, ∀q ∈ N.

(2) The Littlewood–Paley decomposition is quasi-orthogonal in L2 in the following sense:

�p�qu ≡ 0, if |p − q| � 2,

�q(S p−1u�p v) ≡ 0, if |p − q| � 5,

for all u, v ∈ S ′(Rn).
(3) Thanks to Young’s inequality, we get

‖�qu‖L p , ‖Squ‖L p � C‖u‖L p , ∀1 � p � ∞,

where C is a positive constant independent of q.

Definition 2.1 (Besov spaces). (See [20].) Let s ∈ R,1 � p, r � ∞. The nonhomogeneous Besov space
Bs

p,r(R
n) (Bs

p,r for short) is defined by

Bs
p,r

(
R

n) �
{

f ∈ S ′(
R

n): ‖ f ‖Bs
p,r

< ∞}
,

where

‖ f ‖Bs
p,r

�
∥∥2qs�q f

∥∥
lr(L p)

= ∥∥(
2qs‖�q f ‖L p

)
q�−1

∥∥
lr .

If s = ∞, B∞
p,r �

⋂
s∈R

Bs
p,r .

Definition 2.2. Let T > 0, s ∈ R and 1 � p � ∞. Set

Es
p,r(T ) � C

([0, T ]; Bs
p,r

) ∩ C1([0, T ]; Bs−1
p,r

)
, if r < ∞,

Es
p,∞(T ) � L∞([0, T ]; Bs

p,∞
) ∩ Lip

([0, T ]; Bs−1
p,∞

)
and

Es
p,r �

⋂
T >0

Es
p,r(T ).

Remark 2.2. By Definition 2.1 and Remark 2.1(3), we can deduce that

‖�qu‖Bs
p,r

,‖Squ‖Bs
p,r

� C‖u‖Bs
p,r

,

where C is a positive constant independent of q.

In the following proposition, we list some important properties of Besov spaces.
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Proposition 2.2. (See [2,20,32].) Suppose that s ∈ R,1 � p, r, pi, ri � ∞, i = 1,2. We have

(1) Topological properties: Bs
p,r is a Banach space which is continuously embedded in S ′ .

(2) Density: C∞
c is dense in Bs

p,r ⇔ 1 � p, r < ∞.

(3) Embedding: Bs
p1,r1

↪→ B
s−n( 1

p1
− 1

p2
)

p2,r2 , if p1 � p2 and r1 � r2 ,

Bs2
p,r2 ↪→ Bs1

p,r1 locally compact, if s1 < s2.

(4) Algebraic properties: ∀s > 0, Bs
p,r

⋂
L∞ is an algebra. Moreover, Bs

p,r is an algebra, provided that s > n
p

or s � n
p and r = 1.

(5) 1-D Morse-type estimates:
(i) For s > 0,

‖ f g‖Bs
p,r(R) � C

(‖ f ‖Bs
p,r(R)‖g‖L∞(R) + ‖g‖Bs

p,r(R)‖ f ‖L∞(R)

)
. (2.1)

(ii) ∀s1 � 1
p < s2 (s2 � 1

p if r = 1) and s1 + s2 > 0, we have

‖ f g‖B
s1
p,r(R)

� C‖ f ‖B
s1
p,r(R)

‖g‖B
s2
p,r(R)

. (2.2)

(iii) In Sobolev spaces Hs(R) = Bs
2,2(R), we have for s > 0,

‖ f ∂x g‖Hs(R) � C
(‖ f ‖Hs+1(R)‖g‖L∞(R) + ‖ f ‖L∞(R)‖∂x g‖Hs(R)

)
, (2.3)

where C is a positive constant independent of f and g.
(6) Complex interpolation:

‖ f ‖
B

θ s1+(1−θ)s2
p,r

� ‖ f ‖θ

B
s1
p,r

‖ f ‖1−θ

B
s2
p,r

, ∀u ∈ Bs1
p,r ∩ Bs1

p,r, ∀θ ∈ [0,1]. (2.4)

(7) Fatou lemma: if (un)n∈N is bounded in Bs
p,r and un → u in S ′ , then u ∈ Bs

p,r and

‖u‖Bs
p,r

� lim inf
n→∞ ‖un‖Bs

p,r
.

(8) Let m ∈ R and f be an Sm-multiplier (i.e., f : R
n → R is smooth and satisfies that ∀α ∈ N

n, ∃ a constant
Cα , s.t. |∂α f (ξ)| � Cα(1 + |ξ |)m−|α| for all ξ ∈ R

n). Then the operator f (D) is continuous from Bs
p,r to

Bs−m
p,r .

Now we state some useful results in the transport equation theory, which are crucial to the proofs
of our main theorems later.

Lemma 2.1 (A priori estimates in Besov spaces). (See [18,20].) Let 1 � p, r � ∞ and s > −min( 1
p ,1 − 1

p ).

Assume that f0 ∈ Bs
p,r , F ∈ L1(0, T ; Bs

p,r), and ∂x v belongs to L1(0, T ; Bs−1
p,r ) if s > 1+ 1

p or to L1(0, T ; B
1
p
p,r ∩

L∞) otherwise. If f ∈ L∞(0, T ; Bs
p,r)

⋂
C([0, T ]; S ′) solves the following 1-D linear transport equation:

(T )

{
∂t f + v ∂x f = F ,

f |t=0 = f0,

then there exists a constant C depending only on s, p and r, and such that the following statements hold:
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(1) If r = 1 or s �= 1 + 1
p ,

∥∥ f (t)
∥∥

Bs
p,r

� ‖ f0‖Bs
p,r

+
t∫

0

∥∥F (τ )
∥∥

Bs
p,r

dτ + C

t∫
0

V ′(τ )
∥∥ f (τ )

∥∥
Bs

p,r
dτ

or hence,

∥∥ f (t)
∥∥

Bs
p,r

� eC V (t)(‖ f0‖Bs
p,r

+
t∫

0

e−C V (τ )
∥∥F (τ )

∥∥
Bs

p,r
dτ

)

with V (t) = ∫ t
0 ‖∂x v(τ )‖

B
1
p

p,r∩L∞
dτ if s < 1 + 1

p and V (t) = ∫ t
0 ‖∂x v(τ )‖Bs−1

p,r
dτ else.

(2) If s � 1 + 1
p , and f ′

0 ∈ L∞ , ∂x f ∈ L∞((0, T ]) × R) and ∂x F ∈ L1(0, T ; L∞), then

∥∥ f (t)
∥∥

Bs
p,r

+ ∥∥∂x f (t)
∥∥

L∞

� eC V (t)(‖ f0‖Bs
p,r

+ ‖∂x f0‖L∞ +
t∫

0

e−C V (τ )
(∥∥F (τ )

∥∥
Bs

p,r
+ ∥∥∂x F (τ )

∥∥
L∞

)
dτ

)
,

with V (t) = ∫ t
0 ‖∂x v(τ )‖

B
1
p

p,r∩L∞
dτ .

(3) If f = v, then for all s > 0, (1) holds true with V (t) = ∫ t
0 ‖∂x v(τ )‖L∞ dτ .

(4) If r < ∞, then f ∈ C([0, T ]; Bs
p,r). If r = ∞, then f ∈ C([0, T ]; Bs′

p,1) for all s′ < s.

Lemma 2.2 (Existence and uniqueness). (See [20].) Let p, r, s, f0 and F be as in the statement of Lemma 2.1.
Assume that v ∈ Lρ(0, T ; B−M∞,∞) for some ρ > 1 and M > 0, and ∂x v ∈ L1(0, T ; Bs−1

p,r ) if s > 1 + 1
p or

s = 1 + 1
p and r = 1, and ∂x v ∈ L1(0, T ; B

1
p
p,∞ ∩ L∞) if s < 1 + 1

p . Then (T) has a unique solution f ∈
L∞(0, T ; Bs

p,r)
⋂

(
⋂

s′<s C([0, T ]; Bs′
p,1)) and the inequalities of Lemma 2.1 can hold true. Moreover, if r < ∞,

then f ∈ C([0, T ]; Bs
p,r).

Lemma 2.3 (A priori estimate in Sobolev spaces). (See [32].) Let 0 < σ < 1. Assume that f0 ∈ Hσ ,
F ∈ L1(0, T ; Hσ ), and v, ∂x v ∈ L1(0, T ; L∞). If f ∈ L∞(0, T ; Hσ )

⋂
C([0, T ]; S ′) solves (T ), then f ∈

C([0, T ]; Hσ ), and there exists a constant C depending only on σ such that the following statement holds:

∥∥ f (t)
∥∥

Hσ � ‖ f0‖Hσ + C

t∫
0

∥∥F (τ )
∥∥

Hσ dτ + C

t∫
0

V ′(τ )
∥∥ f (τ )

∥∥
Hσ dτ

or hence,

∥∥ f (t)
∥∥

Hσ � eC V (t)(‖ f0‖Hσ +
t∫

0

∥∥F (τ )
∥∥

Hσ dτ
)

with V (t) = ∫ t
0 (‖v(τ )‖L∞ + ‖∂x v(τ )‖L∞ )dτ .
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3. Local well-posedness

In this section, we will establish the local well-posedness of System (1.3) in the nonhomogeneous
Besov spaces.

For completeness, we firstly apply the classical Kato’s semigroup theory [36] to obtain the local
well-posedness of System (1.3) in Sobolev spaces. More precisely, we have

Theorem 3.1. Suppose that z0 �
( u0
ρ0

) ∈ Hs(R) × Hs−1(R), and s � 2. There exists a maximal existence time

T = T (‖z0‖Hs(R)×Hs−1(R)) > 0, and a unique solution z �
( u
ρ

)
to System (1.3) such that

z = z(·, z0) ∈ C
([0, T ); Hs(R) × Hs−1(R)

) ∩ C1([0, T ); Hs−1(R) × Hs−2(R)
)
.

Moreover, the solution depends continuously on the initial data, that is, the mapping z0 �→ z(·, z0):

Hs(R) × Hs−1(R) → C
([0, T ); Hs(R) × Hs−1(R)

) ∩ C1([0, T ); Hs−1(R) × Hs−2(R)
)

is continuous.

Proof. The proof is very similar to that in [24], so we omit it here. �
Now we pay attention to the case in the nonhomogeneous Besov spaces. Uniqueness and continu-

ity with respect to the initial data in some sense can be obtained by the following a priori estimates.

Lemma 3.1. Let 1 � p, r � ∞ and s > max(2 − 1
p ,1 + 1

p , 3
2 ). Suppose that we are given

( ui

ρ i

) ∈
L∞(0, T ; Bs

p,r) ∩ C([0, T ]; S ′) × L∞(0, T ; Bs−1
p,r ) ∩ C([0, T ]; S ′) (i = 1,2) two solutions of System (1.3) with

the initial data
( ui

0

ρ i
0

) ∈ Bs
p,r × Bs−1

p,r (i = 1,2) and let u12 � u2 −u1 and ρ12 � ρ2 −ρ1 . Then for all t ∈ [0, T ],
we have

(1) if s > max(2 − 1
p ,1 + 1

p , 3
2 ), but s �= 2 + 1

p ,3 + 1
p , then

∥∥u12(t)
∥∥

Bs−1
p,r

+ ∥∥ρ12(t)
∥∥

Bs−2
p,r

�
(∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r

)
e

C
∫ t

0 (‖u1(τ )‖Bs
p,r

+‖u2(τ )‖Bs
p,r

+‖ρ1(τ )‖
Bs−1

p,r
+‖ρ2(τ )‖

Bs−1
p,r

)dτ ; (3.1)

(2) if s = 2 + 1
p , then

∥∥u12(t)
∥∥

Bs−1
p,r

+ ∥∥ρ12(t)
∥∥

Bs−2
p,r

� C
(∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r

)θ × (∥∥u1(t)
∥∥

Bs
p,r

+ ∥∥u2(t)
∥∥

Bs
p,r

)1−θ

× e
θC

∫ t
0 (‖u1(τ )‖Bs

p,r
+‖u2(τ )‖Bs

p,r
+‖ρ1(τ )‖

Bs−1
p,r

+‖ρ2(τ )‖
Bs−1

p,r
)dτ + (∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r

)
× e

C
∫ t

0 (‖u1(τ )‖Bs
p,r

+‖u2(τ )‖Bs
p,r

+‖ρ1(τ )‖
Bs−1

p,r
+‖ρ2(τ )‖

Bs−1
p,r

)dτ ;
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(3) if s = 3 + 1
p , then

∥∥u12(t)
∥∥

Bs−1
p,r

+ ∥∥ρ12(t)
∥∥

Bs−2
p,r

� C
(∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r

)θ × (∥∥ρ1(t)
∥∥

Bs−1
p,r

+ ∥∥ρ2(t)
∥∥

Bs−1
p,r

)1−θ

× e
θC

∫ t
0 (‖u1(τ )‖Bs

p,r
+‖u2(τ )‖Bs

p,r
+‖ρ1(τ )‖

Bs−1
p,r

+‖ρ2(τ )‖
Bs−1

p,r
)dτ + (∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r

)
× e

C
∫ t

0 (‖u1(τ )‖Bs
p,r

+‖u2(τ )‖Bs
p,r

+‖ρ1(τ )‖
Bs−1

p,r
+‖ρ2(τ )‖

Bs−1
p,r

)dτ
,

where θ ∈ (0,1).

Proof. It is obvious that
( u12

ρ12

) ∈ L∞(0, T ; Bs
p,r) ∩ C([0, T ]; S ′) × L∞(0, T ; Bs−1

p,r ) ∩ C([0, T ]; S ′) solves

the following Cauchy problem of the transport equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t u12 + u1∂xu12 = F (t, x),

∂tρ
12 + u1∂xρ

12 = G(t, x),

u12|t=0 = u12
0 � u2

0 − u1
0,

ρ12|t=0 = ρ12
0 � ρ2

0 − ρ1
0 ,

(3.2)

where F (t, x) � −u12∂xu2 + P (D)( 3
2 u12(u1 + u2) + c

2 ρ12(ρ1 + ρ2)) and G(t, x) � −u12∂xρ
2 −

2(ρ12∂xu1 + ρ2∂xu12).

Claim. For all s > max(1 + 1
p , 3

2 ) and t ∈ [0, T ], we have

∥∥F (t)
∥∥

Bs−1
p,r

,
∥∥G(t)

∥∥
Bs−2

p,r
� C

(∥∥u12(t)
∥∥

Bs−1
p,r

+ ∥∥ρ12(t)
∥∥s−2

p,r

)
× (∥∥u1(t)

∥∥
Bs

p,r
+ ∥∥u2(t)

∥∥
Bs

p,r
+ ∥∥ρ1(t)

∥∥
Bs−1

p,r
+ ∥∥ρ2(t)

∥∥
Bs−1

p,r

)
,

where C = C(s, p, r, c) is a positive constant.

Indeed, for s > 1 + 1
p , Bs−1

p,r is an algebra, by Proposition 2.2(4), we have

∥∥u12∂xu2
∥∥

Bs−1
p,r

� C
∥∥u12

∥∥
Bs−1

p,r

∥∥∂xu2
∥∥

Bs−1
p,r

� C
∥∥u12

∥∥
Bs−1

p,r

∥∥u2
∥∥

Bs
p,r

.

Note that P (D) ∈ Op(S−1). According to Proposition 2.2(8) and (2.2), we obtain∥∥∥∥P (D)

(
3

2
u12(u1 + u2))∥∥∥∥

Bs−1
p,r

� C
∥∥u12

∥∥
Bs−1

p,r

(∥∥u1
∥∥

Bs−1
p,r

+ ∥∥u2
∥∥

Bs−1
p,r

)
and ∥∥∥∥P (D)

(
c

2
ρ12(ρ1 + ρ2))∥∥∥∥

Bs−1
p,r

� C
∥∥ρ12

∥∥
Bs−2

p,r

(∥∥ρ1
∥∥

Bs−1
p,r

+ ∥∥ρ2
∥∥

Bs−1
p,r

)
,

if max(1 + 1
p , 3

2 ) < s � 2 + 1
p .
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Otherwise, these inequalities can also hold true in view of the fact Bs−2
p,r is an algebra as s > 2 + 1

p .
Therefore, ∥∥F (t)

∥∥
Bs−1

p,r
� C

(∥∥u12(t)
∥∥

Bs−1
p,r

+ ∥∥ρ12(t)
∥∥s−2

p,r

)
× (∥∥u1(t)

∥∥
Bs

p,r
+ ∥∥u2(t)

∥∥
Bs

p,r
+ ∥∥ρ1(t)

∥∥
Bs−1

p,r
+ ∥∥ρ2(t)

∥∥
Bs−1

p,r

)
.

On the other hand, thanks to (2.2), we get∥∥u12∂xρ
2
∥∥

Bs−2
p,r

� C
∥∥u12

∥∥
Bs−1

p,r

∥∥∂xρ
2
∥∥

Bs−2
p,r

,∥∥ρ12∂xu1
∥∥

Bs−2
p,r

� C
∥∥ρ12

∥∥
Bs−2

p,r

∥∥∂xu1
∥∥

Bs−1
p,r

and ∥∥ρ2∂xu12
∥∥

Bs−2
p,r

� C
∥∥ρ2

∥∥
Bs−1

p,r

∥∥∂xu12
∥∥

Bs−2
p,r

,

if max(1 + 1
p , 3

2 ) < s � 2 + 1
p .

For s > 2 + 1
p , we can handle it in a similar way. Therefore,

∥∥G(t)
∥∥

Bs−2
p,r

� C
(∥∥u12(t)

∥∥
Bs−1

p,r
+ ∥∥ρ12(t)

∥∥s−2
p,r

)
× (∥∥u1(t)

∥∥
Bs

p,r
+ ∥∥u2(t)

∥∥
Bs

p,r
+ ∥∥ρ1(t)

∥∥
Bs−1

p,r
+ ∥∥ρ2(t)

∥∥
Bs−1

p,r

)
.

This proves our Claim.
Applying Lemma 2.1(1) and the fact that ‖∂x w(t)‖

B
1
p

p,r∩L∞
� C‖w(t)‖Bs

p,r
, ‖∂x w(t)‖Bs−3

p,r
�

C‖∂x w(t)‖Bs−2
p,r

� C‖w(t)‖Bs
p,r

, if w ∈ Bs
p,r with s > max(2 − 1

p ,1 + 1
p , 3

2 ), we can obtain, for case (1),

∥∥u12(t)
∥∥

Bs−1
p,r

�
∥∥u12

0

∥∥
Bs−1

p,r
+

t∫
0

∥∥F (τ )
∥∥

Bs−1
p,r

dτ + C

t∫
0

∥∥u1(τ )
∥∥

Bs
p,r

∥∥u12(τ )
∥∥

Bs−1
p,r

dτ

and

∥∥ρ12(t)
∥∥

Bs−2
p,r

�
∥∥ρ12

0

∥∥
Bs−2

p,r
+

t∫
0

∥∥G(τ )
∥∥

Bs−2
p,r

dτ + C

t∫
0

∥∥u1(τ )
∥∥

Bs
p,r

∥∥ρ12(τ )
∥∥

Bs−2
p,r

dτ ,

which together with the Claim yield∥∥u12(t)
∥∥

Bs−1
p,r

+ ∥∥ρ12(t)
∥∥

Bs−2
p,r

�
∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r
+ C

t∫
0

(∥∥u12(τ )
∥∥

Bs−1
p,r

+ ∥∥ρ12(τ )
∥∥s−2

p,r

)
× (∥∥u1(τ )

∥∥
Bs

p,r
+ ∥∥u2(τ )

∥∥
Bs

p,r
+ ∥∥ρ1(τ )

∥∥
Bs−1

p,r
+ ∥∥ρ2(τ )

∥∥
Bs−1

p,r

)
dτ .

Taking advantage of Gronwall’s inequality, we get (3.1).
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For the critical case (2) s = 2 + 1
p , we here use the interpolation method to deal with it. Indeed,

if we choose s1 ∈ (max(2 − 1
p ,1 + 1

p , 3
2 ) − 1, s − 1), s2 ∈ (s − 1, s) and θ = s2−(s−1)

s2−s1
∈ (0,1), then

s − 1 = θ s1 + (1 − θ)s2. According to Proposition 2.2(6) and the consequence of case (1), we have∥∥u12(t)
∥∥

Bs−1
p,r

�
∥∥u12(t)

∥∥θ

B
s1
p,r

∥∥u12(t)
∥∥1−θ

B
s2
p,r

�
(∥∥u1(t)

∥∥
B

s2
p,r

+ ∥∥u2(t)
∥∥

B
s2
p,r

)1−θ (∥∥u12
0

∥∥
B

s1
p,r

+ ∥∥ρ12
0

∥∥
B

s1−1
p,r

)θ

× e
θC

∫ t
0 (‖u1(τ )‖

B
s1+1
p,r

+‖u2(τ )‖
B

s1+1
p,r

+‖ρ1(τ )‖
B

s1
p,r

+‖ρ2(τ )‖
B

s1
p,r

)dτ

� C
(∥∥u12

0

∥∥
Bs−1

p,r
+ ∥∥ρ12

0

∥∥
Bs−2

p,r

)θ (∥∥u1(t)
∥∥

Bs
p,r

+ ∥∥u2(t)
∥∥

Bs
p,r

)1−θ

× e
θC

∫ t
0 (‖u1(τ )‖Bs

p,r
+‖u2(τ )‖Bs

p,r
+‖ρ1(τ )‖

Bs−1
p,r

+‖ρ2(τ )‖
Bs−1

p,r
)dτ

.

On the other hand, thanks to s − 2 = 1
p < 1 + 1

p , then the estimate for ‖v12(t)‖Bs−2
p,r

in case (1) can

also hold true. Hence, we can get the desired result.
For the critical case (3) s = 3 + 1

p , its proof is very similar to that of case (2). Therefore, we
complete our proof of Lemma 3.1. �

We next construct the approximation solutions to System (1.3) as follows.

Lemma 3.2. Let p and r be as in the statement of Lemma 3.1. Assume that s > max(2 − 1
p ,1 + 1

p , 3
2 ) and

s �= 2 + 1
p , z0 �

( u0
ρ0

) ∈ Bs
p,r × Bs−1

p,r and z0 �
( u0

ρ0

) = ( 0
0

)
. Then

(1) there exists a sequence of smooth functions (zn)n∈N �
( un

ρn

)
n∈N

belonging to (C(R+; B∞
p,r))

2 and solving

the following linear transport equations by induction:

(Tn)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t un+1 + un∂xun+1 = P (D)

(
3

2

(
un)2 + c

2
(ρn)2

)
,

∂tρ
n+1 + un∂xρ

n+1 = −2ρn∂xun,

un+1|t=0 � un+1
0 (x) = Sn+1u0,

ρn+1|t=0 � ρn+1
0 (x) = Sn+1ρ0,

(2) there exists T > 0 such that the solution (zn)n∈N is uniformly bounded in Es
p,r(T ) × Es−1

p,r (T ) and a

Cauchy sequence in C([0, T ]; Bs−1
p,r ) × C([0, T ]; Bs−2

p,r ), whence it converges to some limit z �
( u
ρ

) ∈
C([0, T ]; Bs−1

p,r ) × C([0, T ]; Bs−2
p,r ).

Proof. Since all the data Sn+1u0, Sn+1ρ0 ∈ B∞
p,r , it then follows from Lemma 2.2 and by induction

with respect to the index n that (1) holds.
To prove (2), applying Remark (2.2) and simulating the proof of Lemma 3.1(1), we obtain that for

s > max(2 − 1
p ,1 + 1

p , 3
2 ) and s �= 2 + 1

p ,

an+1(t) � CeC Un(t)

(
A +

t∫
0

e−C Un(τ )a2
n(τ )dτ

)
, (3.3)

where an(t) � ‖un(t)‖Bs
p,r

+ ‖ρn(t)‖Bs−1 , A � ‖u0‖Bs
p,r

+ ‖ρ0‖Bs−1 and Un(t) �
∫ t

0 ‖un(τ )‖Bs
p,r

dτ .

p,r p,r
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Choose 0 < T < 1
2C2 A

and suppose that

an(t) � C A

1 − 2C2 At
, ∀t ∈ [0, T ]. (3.4)

Noting that eC(Un(t)−Un(τ )) �
√

1−2C2 Aτ
1−2C2 At

and substituting (3.4) into (3.3) yields

an+1(t) � C A√
1 − 2C2 At

+ C√
1 − 2C2 At

t∫
0

C2 A2

(1 − 2C2 Aτ )
3
2

dτ

= C A√
1 − 2C2 At

+ C√
1 − 2C2 At

(
A√

1 − 2C2 At
− A

)
� C A

1 − 2C2 At
,

which implies that(
zn)

n∈N
is uniformly bounded in C

([0, T ]; Bs
p,r

) × C
([0, T ]; Bs−1

p,r

)
.

Using the equations (Tn) and the similar argument in the proof of Lemma 3.1(1), one can easily prove
that (

∂t un+1

∂tρ
n+1

)
n∈N

is uniformly bounded in C
([0, T ]; Bs−1

p,r

) × C
([0, T ]; Bs−2

p,r

)
.

Hence, (
zn)

n∈N
is uniformly bounded in Es

p,r(T ) × Es−1
p,r (T ).

Now it suffices to show that (zn)n∈N is a Cauchy sequence in C([0, T ]; Bs−1
p,r )× C([0, T ]; Bs−2

p,r ). Indeed,
for all m,n ∈ N, from (Tn), we have

∂t
(
un+m+1 − un+1) + un+m∂x

(
un+m+1 − un+1)

= P (D)

(
3

2

(
un+m − un)(un+m + un) + c

2

(
ρn+m − ρn)(ρn+m + ρn)) + (

un − un+m)
∂xun+1

and

∂t
(
ρn+m+1 − ρn+1) + un+m∂x

(
ρn+m+1 − ρn+1)

= −2
((

ρn+m − ρn)∂xun + ρn+m∂x
(
un+m − un)) + (

un − un+m)
∂xρ

n+1.

Similar to the proof of Lemma 3.1(1), for s > max(2 − 1
p ,1 + 1

p , 3
2 ) and s �= 2 + 1

p ,3 + 1
p , we can obtain

that

bm
n+1(t) � CeC Un+m(t)

(
bm

n+1(0) +
t∫

e−C Un+m(τ )bm
n (τ )dm

n (τ )dτ

)
,

0
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where bm
n (t) � ‖(un+m − un)(t)‖Bs−1

p,r
+ ‖(ρn+m − ρn)(t)‖Bs−2

p,r
, Un+m(t) �

∫ t
0 ‖un+m(τ )‖Bs

p,r
dτ , and

dm
n (t) � ‖un(t)‖Bs

p,r
+ ‖un+1(t)‖Bs

p,r
+ ‖un+m(t)‖Bs

p,r
+ ‖ρn(t)‖Bs−1

p,r
+ ‖ρn+1(t)‖Bs−1

p,r
+ ‖ρn+m(t)‖Bs−1

p,r
.

Thanks to Remark 2.1, we have

∥∥∥∥∥
n+m∑

q=n+1

�qu0

∥∥∥∥∥
Bs−1

p,r

=
( ∑

k�−1

2k(s−1)r

∥∥∥∥∥�k

(
n+m∑

q=n+1

�qu0

)∥∥∥∥∥
r

L p

) 1
r

� C

(
n+m+1∑

k=n

2−kr2ksr‖�ku0‖r
L p

) 1
r

� C2−n‖u0‖Bs
p,r

.

Similarly, ∥∥∥∥∥
n+m∑

q=n+1

�qρ0

∥∥∥∥∥
Bs−2

p,r

� C2−n‖ρ0‖Bs−1
p,r

.

Hence, we obtain

bm
n+1(0) � C2−n(‖u0‖Bs

p,r
+ ‖ρ0‖Bs−1

p,r

)
.

According to the fact that (zn)n∈N is uniformly bounded in Es
p,r(T ) × Es−1

p,r (T ), we can find a positive
constant CT independent of n,m such that

bm
n+1(t) � CT

(
2−n +

t∫
0

bm
n (τ )dτ

)
, ∀t ∈ [0, T ].

Arguing by induction with respect to the index n, we can obtain

bm
n+1(t) � CT

(
2−n

n∑
k=0

(2T CT )k

k! + Cn+1
T

t∫
0

(t − τ )n

n! dτ

)

�
(

CT

n∑
k=0

(2T CT )k

k!

)
2−n + CT

(T CT )n+1

(n + 1)! ,

which implies the desired result.
On the other hand, for the critical point 3 + 1

p , we can apply the interpolation method which
has been used in the proof of Lemma 3.1 to show that (zn)n∈N is also a Cauchy sequence in
C([0, T ]; Bs−1

p,r ) × C([0, T ]; Bs−2
p,r ) for this critical case. Therefore, we have completed the proof of

Lemma 3.2. �
Now we are in the position to prove the main theorem of this section.

Theorem 3.2. Assume that 1 � p, r � ∞ and s > max(2 − 1
p ,1 + 1

p , 3
2 ) with s �= 2 + 1

p . Let z0 �
( u0
ρ0

) ∈
Bs

p,r × Bs−1
p,r and z �

( u
ρ

)
be the obtained limit in Lemma 3.2. Then there exists a time T > 0 such that z ∈
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Es
p,r(T ) × Es−1

p,r (T ) is the unique solution to System (3.1), and the mapping z0 �→ z: is continuous from Bs
p,r ×

Bs−1
p,r into

C
([0, T ]; Bs′

p,r

) ∩ C1([0, T ]; Bs′−1
p,r

) × C
([0, T ]; Bs′−1

p,r

) ∩ C1([0, T ]; Bs′−2
p,r

)
for all s′ < s if r = ∞ and s′ = s otherwise.

Proof. We first claim that z ∈ Es
p,r(T ) × Es−1

p,r (T ) solves System (3.1).
In fact, according to Lemma 3.2(2) and Proposition 2.2(7), one can get

z ∈ L∞([0, T ]; Bs
p,r

) × L∞([0, T ]; Bs−1
p,r

)
.

For all s′ < s, Lemma 3.2(2) applied again, together with an interpolation argument yields

zn → z, as n → ∞, in C
([0, T ]; Bs′

p,r

) × C
([0, T ]; Bs′−1

p,r

)
.

Taking limit in (Tn), we can see that z solves System (3.1) in the sense of C([0, T ]; Bs′−1
p,r ) ×

C([0, T ]; Bs′−2
p,r ) for all s′ < s.

Making use of the equations in System (1.3) twice and the similar proof in the Claim of Lemma 3.1,
together with Lemma 2.1(4) and Lemma 2.2 yields z ∈ Es

p,r(T ) × Es−1
p,r (T ).

On the other hand, the continuity with respect to the initial data in

C
([0, T ]; Bs′

p,r

) ∩ C1([0, T ]; Bs′−1
p,r

) × C
([0, T ]; Bs′−1

p,r

) ∩ C1([0, T ]; Bs′−2
p,r

) (∀s′ < s
)

can be obtained by Lemma 3.1 and a simple interpolation argument. While the continuity in
C([0, T ]; Bs

p,r) ∩ C1([0, T ]; Bs−1
p,r ) × C([0, T ]; Bs−1

p,r ) ∩ C1([0, T ]; Bs−2
p,r ) when r < ∞ can be proved

through the use of a sequence of viscosity approximation solutions
( uε

ρε

)
ε>0 for System (1.3) which

converges uniformly in C([0, T ]; Bs
p,r)∩ C1([0, T ]; Bs−1

p,r )× C([0, T ]; Bs−1
p,r )∩ C1([0, T ]; Bs−2

p,r ). This com-
pletes the proof of Theorem 3.1. �
Remark 3.1.

(1) Note that for every s ∈ R, Bs
2,2 = Hs . Theorem 3.2 holds true in the corresponding Sobolev spaces

with 3
2 < s �= 5

2 , which almost improves the result of Theorem 3.1 proved by Kato’s theory, where
s � 2 is required. Therefore, Theorem 3.2 together with Theorem 3.1 implies that the conclusion
of Theorem 3.1 holds true for all s > 3

2 .
(2) As we know, uc(t, x) = ce−|x−ct| with c ∈ R is the solitary wave solution to DP equation [21], then

the index s = 3
2 is critical in Besov spaces Bs

2,r in the following sense [19]: System (1.3) is not

local well-posedness in B
3
2
2,∞ . More precisely, there exists a global solution u1 ∈ L∞(R+; B

3
2
2,∞)

and v ≡ 0 to System (1.3) such that for any T > 0 and ε > 0, there exists a solution u2 ∈
L∞(0, T ; B

3
2
2,∞) and v ≡ 0 to System (1.3) with

∥∥u1(0) − u2(0)
∥∥

B
3
2
2,∞

� ε but ‖u1 − u2‖
L∞(0,T ;B

3
2
2,∞)

� 1.
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4. The precise blow-up scenario

In this section, we will derive the precise blow-up scenario of strong solutions to System (1.3).
Firstly, let us consider the following differential equation:{

qt = u(t,q), t ∈ [0, T ),

q(0, x) = x, x ∈ R,
(4.1)

where u denotes the first component of the solution z to System (1.3).
The following lemmas are very crucial to study the blow-up phenomena of strong solutions to

System (1.3).

Lemma 4.1. (See [5].) Let u ∈ C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)), s � 2. Then Eq. (4.1) has a unique
solution q ∈ C1([0, T ) × R;R). Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

( t∫
0

ux
(
s,q(s, x)

)
ds

)
> 0, ∀(t, x) ∈ [0, T ) × R.

Lemma 4.2. Let z0 �
( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T > 0 be the maximal existence time of the

corresponding solution z �
( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). Then we have

ρ
(
t,q(t, x)

)
q2

x(t, x) = ρ0(x), ∀(t, x) ∈ [0, T ) × R. (4.2)

Moreover, if there exists an M > 0 such that ux(t, x) � −M for all (t, x) ∈ [0, T ) × R, then∥∥ρ(t, ·)∥∥L∞ ,
∥∥ρ(t, ·)∥∥L2 � e2Mt‖ρ0‖Hs−1 , ∀t ∈ [0, T ).

Proof. Differentiating the left-hand side of Eq. (4.2) with respect to t and making use of (4.1) and
System (1.3), we obtain

d

dt

(
ρ
(
t,q(t, x)

)
q2

x(t, x)
) = (

ρt(t,q) + ρx(t,q)qt(t, x)
)
q2

x(t, x) + 2ρ(t,q)qx(t, x)qxt(t, x)

= (
ρt(t,q) + ρx(t,q)u(t,q) + 2ρ(t,q)ux(t,q)

)
q2

x(t, x)

= 0.

This proves (4.2). By Lemma 4.1, in view of (4.2) and the assumption of the lemma, we obtain for all
t ∈ [0, T )

∥∥ρ(t, ·)∥∥L∞ = ∥∥ρ(
t,q(t, ·))∥∥L∞

= ∥∥e−2
∫ t

0 ux(s,·)dsρ0(·)
∥∥

L∞

� e2Mt
∥∥ρ0(·)

∥∥
L∞ .

By (4.2) and Lemma 4.1, we get
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∫
R

∣∣ρ(t, x)
∣∣2

dx =
∫
R

∣∣ρ(
t,q(t, x)

)∣∣2
qx(t, x)dx =

∫
R

∣∣ρ0(x)
∣∣2

q−3
x (t, x)dx

� e3Mt
∫
R

∣∣ρ0(x)
∣∣2

dx, ∀t ∈ [0, T ).

This completes the proof of the lemma. �
As mentioned in the Introduction, the H1-norm of the solutions to DP equation is not conserved.

However, what saves the game in some sense is to establish a priori estimate for the L∞-norm of the
first component u of the strong solutions to System (1.3).

Lemma 4.3. Let z0 = ( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T be the maximal existence time of the

solution z = ( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). Assume that there is an M > 0 such

that ‖ρ(t, ·)‖L∞ ,‖ρ(t, ·)‖L2 � e2Mt‖ρ0‖Hs−1 for all t ∈ [0, T ). Then for all t ∈ [0, T ), we have

∥∥u(t)
∥∥2

L2 � 2 e2|c|t(2‖u0‖2
L2 + |c|t(1 + 8Mt)

(
e2Mt‖ρ0‖Hs−1

)4)
(4.3)

and

∥∥u(t)
∥∥

L∞ � 3

2
te2|c|t

(
2‖u0‖2

L2 + |c|t(1 + 8Mt)
(
e2Mt‖ρ0‖Hs−1

)4 + |c|
4

(
e2Mt‖ρ0‖Hs−1

)2
)

+ ‖u0‖L∞

� J (t). (4.4)

Proof. By a standard density argument, here we may assume s � 3 to prove the lemma. Set w �
(4 − ∂2

x )−1u. By the first equation of System (1.1) and the fact that (m̂t , ŵ) = (m̂, ŵt) or
∫

R
mt w dx =∫

R
mwt dx, we have

1

2

d

dt

∫
R

mw dx = 1

2

∫
R

mt w dx + 1

2

∫
R

mwt dx =
∫
R

mt w dx

= −3
∫
R

wmux dx −
∫
R

wmxu dx − c

∫
R

wρρx dx

= −
∫
R

w(mu)x dx − 2
∫
R

wmux dx + c

2

∫
R

wxρ
2 dx.

While ∫
R

w(mu)x dx = −
∫
R

wxmu dx =
∫
R

wxu2 dx −
∫
R

wxu2
x dx,

and

2
∫
R

wmux dx = −
∫
R

wxu2 +
∫
R

wxu2
x dx.

Combining the above three equalities, we deduce that
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d

dt

∫
R

mw dx = c

∫
R

wxρ
2 dx.

Integrating from 0 to t on both sides of the above equality, we have

∫
R

mw dx =
∫
R

m0 w0 dx + c

t∫
0

∫
R

wxρ
2 dx ds,

which implies

∥∥u(t)
∥∥2

L2 = ∥∥û(t)
∥∥2

L2 � 4
∫
R

1 + ξ2

4 + ξ2

∣∣û(t, ξ)
∣∣2

dξ = 4
(
m̂(t), ŵ(t)

)

= 4
(
m(t), w(t)

) = 4(m0, w0) + 4c

t∫
0

∫
R

wxρ
2 dx ds

� 4‖u0‖2
L2 + 4c

t∫
0

∫
R

wxρ
2 dx ds.

Note that

∥∥wx(t)
∥∥2

L2 = ∥∥∂x
(
4 − ∂2

x

)−1
u(t)

∥∥2
L2

�
∥∥u(t)

∥∥2
L2 .

Besides, by the assumption of the lemma, we have

∥∥ρ(t, ·)∥∥4
L4 �

∥∥ρ(t, ·)∥∥2
L∞

∥∥ρ(t, ·)∥∥2
L2 �

(
e2Mt‖ρ0‖Hs−1

)4
, ∀t ∈ [0, T ).

Hence,

∥∥u(t)
∥∥2

L2 � 4‖u0‖2
L2 + 2c

t∫
0

(∥∥wx(s, ·)∥∥2
L2 + ∥∥ρ(s, ·)∥∥4

L4

)
ds

� 4‖u0‖2
L2 + 2|c|t(e2Mt‖ρ0‖Hs−1

)4 + 2|c|
t∫

0

∥∥u(s)
∥∥2

L2 ds.

By Gronwall’s inequality, we can reach (4.3).
Next we prove (4.4). Indeed, by the first equation in System (1.3), we have

ut + uux = −∂x p ∗
(

3

2
u2 + c

2
ρ2

)
.

Applying Young’s inequality and noting that ‖∂x p‖L∞ � 1
2 , we have
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∥∥∥∥−∂x p ∗
(

3

2
u2 + c

2
ρ2

)∥∥∥∥
L∞

� ‖∂x p‖L∞
∥∥∥∥3

2
u2 + c

2
ρ2

∥∥∥∥
L1

� 3

4
‖u‖2

L2 + |c|
4

‖ρ‖2
L2

� 3

4
‖u‖2

L2 + |c|
4

(
e2Mt‖ρ0‖Hs−1

)2
.

Besides, in view of (4.1), we have

du(t,q(t, x))

dt
= ut

(
t,q(t, x)

) + ux
(
t,q(t, x)

)
qt(t, x) = (ut + uux)

(
t,q(t, x)

)
.

Thanks to (4.3) and the facts above, we deduce

−P (t) � du(t,q(t, x))

dt
� P (t),

where

P (t) � 3

2
e2|c|t

(
2‖u0‖2

L2 + |c|t(1 + 8Mt)
(
e2Mt‖ρ0‖Hs−1

)4 + |c|
4

(
e2Mt‖ρ0‖Hs−1

)2
)

.

Integrating the above inequalities with respect to t < T on [0, t] yields

−t P (t) + u0(x) � u
(
t,q(t, x)

)
� t P (t) + u0(x).

Therefore, in view of Lemma 4.1, we get the desired result. This completes the proof of the lemma. �
Corollary 4.1. Let z0 = ( u0

ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T be the maximal existence time of the

solution z = ( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). If ∂xu ∈ L1(0, T ; L∞), then for all

t ∈ [0, T ), we have

∥∥u(t)
∥∥

L∞ � 3

2
te2|c|t

(
2‖u0‖2

L2 + |c|t
(

1 + 8

t∫
0

∥∥∂xu(τ )
∥∥

L∞ dτ

)(
e2

∫ t
0 ‖∂xu(τ )‖L∞ dτ ‖ρ0‖Hs−1

)4

+ |c|
4

(
e2

∫ t
0 ‖∂xu(τ )‖L∞ dτ ‖ρ0‖Hs−1

)2

)
+ ‖u0‖L∞

� L(t).

Proof. By the proof of Lemma 4.2, we also have

∥∥ρ(t, ·)∥∥L∞ ,
∥∥ρ(t, ·)∥∥L2 � e2

∫ t
0 ‖∂xu(τ )‖L∞ dτ ‖ρ0‖Hs−1 , ∀t ∈ [0, T ).

It is then easy to prove the corollary by a similar argument as in the proof of Lemma 4.3. �
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Theorem 4.1. Let z0 = ( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T be the maximal existence time of the

solution z = ( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). If T < ∞, then

T∫
0

∥∥∂xu(τ )
∥∥

L∞ dτ = ∞.

Proof. We will prove the theorem by induction with respect to the regular index s (s > 3
2 ) as follows.

Step 1. For s ∈ ( 3
2 ,2), by Lemma 2.3 and the second equation of System (1.3), we have

∥∥ρ(t)
∥∥

Hs−1 � ‖ρ0‖Hs−1 + C

t∫
0

∥∥∂xu(τ )ρ(τ )
∥∥

Hs−1 dτ

+ C

t∫
0

∥∥ρ(τ )
∥∥

Hs−1

(∥∥u(τ )
∥∥

L∞ + ∥∥∂xu(τ )
∥∥

L∞
)

dτ .

Applying (2.1), we get

‖∂xuρ‖Hs−1 � C
(‖∂xu‖Hs−1‖ρ‖L∞ + ‖∂xu‖L∞‖ρ‖Hs−1

)
. (4.5)

Thus,

∥∥ρ(t)
∥∥

Hs−1 � ‖ρ0‖Hs−1 + C

t∫
0

∥∥∂xu(τ )
∥∥

Hs−1

∥∥ρ(τ )
∥∥

L∞ dτ

+ C

t∫
0

∥∥ρ(τ )
∥∥

Hs−1

(∥∥u(τ )
∥∥

L∞ + ∥∥∂xu(τ )
∥∥

L∞
)

dτ . (4.6)

On the other hand, thanks to Lemma 2.1(3) and the first equation of System (1.3), we have (∀s > 1,
indeed)

∥∥u(t)
∥∥

Hs � ‖u0‖Hs + C

t∫
0

∥∥∥∥P (D)

(
3

2
u2 + c

2
ρ2

)
(τ )

∥∥∥∥
Hs

dτ

+ C

t∫
0

∥∥u(τ )
∥∥

Hs

∥∥∂xu(τ )
∥∥

L∞ dτ .

By Proposition 2.2(8) and (2.1), we have∥∥∥∥P (D)

(
3

2
u2 + c

2
ρ2

)∥∥∥∥
Hs

� C

∥∥∥∥3

2
u2 + c

2
ρ2

∥∥∥∥
Hs−1

� C
(‖u‖Hs−1‖u‖L∞ + ‖ρ‖Hs−1‖ρ‖L∞

)
.
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Hence,

∥∥u(t)
∥∥

Hs � ‖u0‖Hs + C

t∫
0

∥∥u(τ )
∥∥

Hs

(∥∥u(τ )
∥∥

L∞ + ∥∥∂xu(τ )
∥∥

L∞
)

dτ

+ C

t∫
0

∥∥ρ(τ )
∥∥

Hs−1

∥∥ρ(τ )
∥∥

L∞ dτ . (4.7)

Combining (4.6) and (4.7), we obtain

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1 � ‖u0‖Hs + ‖ρ0‖Hs−1 + C

t∫
0

(‖u‖Hs + ‖ρ‖Hs−1

)
× (‖u‖L∞ + ‖∂xu‖L∞ + ‖ρ‖L∞

)
dτ .

Thanks to Gronwall’s inequality, we have

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

�
(‖u0‖Hs + ‖ρ0‖Hs−1

)
eC

∫ t
0 (‖u(τ )‖L∞+‖∂xu(τ )‖L∞+‖ρ(τ )‖L∞ )dτ . (4.8)

Therefore, if T < ∞ satisfies
∫ T

0 ‖∂xu(τ )‖L∞ dτ < ∞, then we deduce from (4.8), Corollary 4.1 and the

fact ‖ρ(t, ·)‖L∞ � e2
∫ t

0 ‖∂xu(τ )‖L∞ dτ ‖ρ0‖Hs−1 that

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

�
(‖u0‖Hs + ‖ρ0‖Hs−1

)
eCt(e2

∫ t
0 ‖∂xu(τ )‖L∞ dτ ‖ρ0‖Hs−1 +L(t))+C

∫ t
0 ‖∂xu(τ )‖L∞ dτ . (4.9)

Hence,

lim sup
t→T

(∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

)
< ∞, (4.10)

which contradicts the assumption that T < ∞ is the maximal existence time. This completes the proof
of the theorem for s ∈ ( 3

2 ,2).

Step 2. For s ∈ [2, 5
2 ), Lemma 2.1(1) applied to the second equation of System (1.3), we get

∥∥ρ(t)
∥∥

Hs−1 � ‖ρ0‖Hs−1 + C

t∫
0

∥∥∂xu(τ )ρ(τ )
∥∥

Hs−1 dτ

+ C

t∫
0

∥∥ρ(τ )
∥∥

Hs−1

∥∥∂xu(τ )
∥∥

H
1
2 ∩L∞ dτ ,

together with (4.5) implies that
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∥∥ρ(t)
∥∥

Hs−1 � ‖ρ0‖Hs−1 + C

t∫
0

∥∥∂xu(τ )
∥∥

Hs−1

∥∥ρ(τ )
∥∥

L∞ dτ

+ C

t∫
0

∥∥ρ(τ )
∥∥

Hs−1

∥∥∂xu(τ )
∥∥

H
1
2 ∩L∞ dτ . (4.11)

By (4.7) and (4.11), we have

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1 � ‖u0‖Hs + ‖ρ0‖Hs−1 + C

t∫
0

(‖u‖Hs + ‖ρ‖Hs−1

)(‖u‖
H

3
2 +ε0

+ ‖ρ‖L∞
)

dτ ,

where ε0 ∈ (0, 1
2 ) and we used the fact that H

1
2 +ε0 ↪→ H

1
2 ∩ L∞ . Thanks to Gronwall’s inequality

again, we have

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

�
(‖u0‖Hs + ‖ρ0‖Hs−1

)
e

C
∫ t

0 (‖u(τ )‖
H

3
2 +ε0

+‖ρ(τ )‖L∞ )dτ
. (4.12)

Therefore if T < ∞ satisfies
∫ T

0 ‖∂xu(τ )‖L∞ dτ < ∞, then we deduce from (4.12), (4.10) with 3
2 + ε0 ∈

( 3
2 ,2) and the fact ‖ρ(t, ·)‖L∞ � e2

∫ t
0 ‖∂xu(τ )‖L∞ dτ ‖ρ0‖Hs−1 that

lim sup
t→T

(‖u(t)‖Hs + ∥∥ρ(t)
∥∥

Hs−1

)
< ∞, (4.13)

which contradicts the assumption that T < ∞ is the maximal existence time. This completes the proof
of the theorem for s ∈ [2, 5

2 ).

Step 3. For s ∈ (2,3), by differentiating the second equation of System (1.3) with respect to x, we have

∂tρx + u ∂xρx + 3uxρx + 2uxxρ = 0.

By Lemma 2.3, we get

∥∥∂xρ(t)
∥∥

Hs−2 � ‖∂xρ0‖Hs−2 + C

t∫
0

∥∥(3uxρx + 2ρuxx)(τ )
∥∥

Hs−2 dτ

+ C

t∫
0

∥∥∂xρ(τ )
∥∥

Hs−2

(∥∥u(τ )
∥∥

L∞ + ∥∥∂xu(τ )
∥∥

L∞
)

dτ .

Thanks to (2.3), we have

‖uxρx‖Hs−2 � C
(‖∂xu‖Hs−1‖ρ‖L∞ + ‖∂xu‖L∞‖∂xρ‖Hs−2

)
and
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‖ρuxx‖Hs−2 � C
(‖ρ‖Hs−1‖∂xu‖L∞ + ‖ρ‖L∞‖uxx‖Hs−2

)
.

Hence,

∥∥∂xρ(t)
∥∥

Hs−2 � ‖∂xρ0‖Hs−2 + C

t∫
0

(∥∥u(τ )
∥∥

Hs + ∥∥ρ(τ )
∥∥

Hs−1

)
× (∥∥u(τ )

∥∥
L∞ + ∥∥∂xu(τ )

∥∥
L∞ + ∥∥ρ(τ )

∥∥
L∞

)
dτ ,

which together with (4.7) and (4.6) with s − 2 instead of s − 1, yields that

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1 � ‖u0‖Hs + ‖ρ0‖Hs−1 + C

t∫
0

(‖u‖Hs + ‖ρ‖Hs−1

)
× (‖u‖L∞ + ‖∂xu‖L∞ + ‖ρ‖L∞

)
dτ .

Similar to Step 1, we can easily prove the theorem for s ∈ (2,3).

Step 4. For s = k ∈ N and k � 3, by differentiating the second equation of System (1.3) k − 2 times
with respect to x, we get

(∂t + u∂x)∂
k−2
x ρ +

∑
l1+l2=k−3,l1,l2�0

Cl1,l2∂
l1+1
x u ∂

l2+1
x ρ + 2ρ ∂k−1

x u = 0,

which together with Lemma 2.1(1), implies that

∥∥∂k−2
x ρ(t)

∥∥
H1 �

∥∥∂k−2
x ρ0

∥∥
H1 + C

t∫
0

∥∥∂k−2
x ρ(τ )

∥∥
H1

∥∥∂xu(τ )
∥∥

H
1
2 ∩L∞ dτ

+ C

t∫
0

∥∥∥∥ ∑
l1+l2=k−3, l1,l2�0

Cl1,l2∂
l1+1
x u ∂

l2+1
x ρ + 2ρ∂k−1

x u

∥∥∥∥
H1

dτ .

Since H1 is an algebra, it follows that∥∥ρ∂k−1
x u

∥∥
H1 � C‖ρ‖H1

∥∥∂k−1
x u

∥∥
H1 � C‖ρ‖H1‖u‖Hs

and ∥∥∥∥ ∑
l1+l2=k−3, l1,l2�0

Cl1,l2∂
l1+1
x u∂

l2+1
x ρ

∥∥∥∥
H1

� C‖u‖Hs−1‖ρ‖Hs−1 .

Then, we have

∥∥∂k−2
x ρ(t)

∥∥
H1 �

∥∥∂k−2
x ρ0

∥∥
H1 + C

t∫
0

(∥∥u(τ )
∥∥

Hs + ∥∥ρ(τ )
∥∥

Hs−1

)
× (∥∥u(τ )

∥∥
s−1 + ∥∥ρ(τ )

∥∥
1

)
dτ . (4.14)
H H
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By the classical Gagliardo–Nirenberg inequality, we have for σ ∈ (0,1),∥∥ρ(t)
∥∥

Hs−1 � C
(∥∥ρ(t)

∥∥
Hσ + ∥∥∂k−2

x ρ(t)
∥∥

H1

)
,

which together with (4.14), (4.7) and (4.6) with σ instead of s − 1, yields that

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1 � C
(‖u0‖Hs + ‖ρ0‖Hs−1

) + C

t∫
0

(‖u‖Hs + ‖ρ‖Hs−1

)
× (‖u‖Hs−1 + ‖ρ‖H1

)
dτ .

By Gronwall’s inequality, we obtain∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

� C
(‖u0‖Hs + ‖ρ0‖Hs−1

)
eC

∫ t
0 (‖u(τ )‖Hs−1 +‖ρ(τ )‖H1 )dτ . (4.15)

If T < ∞ satisfies
∫ T

0 ‖∂xu(τ )‖L∞ dτ < ∞, applying Step 3 and arguing by induction assumption, we
can obtain that ‖u(t)‖Hs−1 + ‖ρ(t)‖H1 is uniformly bounded. Thanks to (4.15), we get

lim sup
t→T

(∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

)
< ∞, (4.16)

which contradicts the assumption that T < ∞ is the maximal existence time. This completes the proof
of the theorem for s = k ∈ N and k � 3.

Step 5. For s ∈ (k,k + 1), k ∈ N and k � 3, by differentiating the second equation of System (1.3) k − 1
times with respect to x, we get

(∂t + u∂x)∂
k−1
x ρ +

∑
l1+l2=k−2, l1,l2�0

Cl1,l2∂
l1+1
x u ∂

l2+1
x ρ + 2ρ ∂k

x u = 0.

Applying Lemma 2.3 with s − k ∈ (0,1), we have

∥∥∂k−1
x ρ(t)

∥∥
Hs−k �

∥∥∂k−1
x ρ0

∥∥
Hs−k + C

t∫
0

∥∥∂k−1
x ρ(τ )

∥∥
Hs−k

(∥∥u(τ )
∥∥

L∞ + ∥∥∂xu(τ )
∥∥

L∞
)

dτ

+ C

t∫
0

∥∥∥∥ ∑
l1+l2=k−2, l1,l2�0

Cl1,l2∂
l1+1
x u(τ )∂

l2+1
x ρ(τ ) + 2ρ(τ ) ∂k

x u(τ )

∥∥∥∥
H1

dτ .

(4.17)

For each ε0 ∈ (0, 1
2 ), using (2.3) and the fact that H

1
2 +ε0 ↪→ L∞ , we have∥∥ρ∂k

x u
∥∥

Hs−k � C
(∥∥∂k

x u
∥∥

Hs−k‖ρ‖L∞ + ∥∥∂k−1
x u

∥∥
L∞‖ρ‖Hs−k+1

)
� C

(‖u‖Hs‖ρ‖L∞ + ‖u‖
Hk− 1

2 +ε0
‖ρ‖Hs−k+1

)
(4.18)

and
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∥∥∥∥ ∑
l1+l2=k−2, l1,l2�0

Cl1,l2∂
l1+1
x u∂

l2+1
x ρ

∥∥∥∥
Hs−k

� C
∑

l1+l2=k−2, l1,l2�0

Cl1,l2

(∥∥∂
l1+1
x u

∥∥
L∞

∥∥∂
l2+1
x ρ

∥∥
Hs−k + ∥∥∂

l1+1
x u

∥∥
Hs−k+1

∥∥∂
l2
x ρ

∥∥
L∞

)
� C

(‖u‖Hs‖ρ‖
Hk− 3

2 +ε0
+ ‖u‖

Hk− 1
2 +ε0

‖ρ‖Hs−1

)
. (4.19)

Combining (4.17), (4.18) and (4.19), we can get

∥∥∂k−1
x ρ(t)

∥∥
Hs−k �

∥∥∂k−1
x ρ0

∥∥
Hs−k + C

t∫
0

(∥∥u(τ )
∥∥

Hs + ∥∥ρ(τ )
∥∥

Hs−1

)
× (‖u‖

Hk− 1
2 +ε0

+ ‖ρ‖
Hk− 3

2 +ε0

)
dτ ,

which together with (4.7) and (4.6) with s − k ∈ (0,1) instead of s − 1, yields that

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1 � C
(‖u0‖Hs + ‖ρ0‖Hs−1

) + C

t∫
0

(‖u‖Hs + ‖ρ‖Hs−1

)
× (‖u‖

Hk− 1
2 +ε0

+ ‖ρ‖
Hk− 3

2 +ε0

)
dτ .

Thanks to Gronwall’s inequality again, we obtain

∥∥u(t)
∥∥

Hs + ∥∥ρ(t)
∥∥

Hs−1

� C
(‖u0‖Hs + ‖ρ0‖Hs−1

)
e

C
∫ t

0 (‖u‖
H

k− 1
2 +ε0

+‖ρ‖
H

k− 3
2 +ε0

)dτ
.

Noting that k − 1
2 +ε0 < k, k − 3

2 +ε0 < k −1 and k � 3, and applying Step 3 and the similar argument
by induction as in Step 4, we can easily get the desired result.

Consequently, we have completed the proof of the theorem from Step 1 to Step 5. �
The following main theorem of this section shows the precise blow-up scenario for sufficiently

regular solutions to System (1.3).

Theorem 4.2. Let z0 = ( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T > 0 be the maximal existence time of the

corresponding solution z = ( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). Then the corresponding

solution z blows up in finite time if and only if

lim inf
t→T

inf
x∈R

{
ux(t, x)

} = −∞.

Proof. As mentioned earlier, we only need to prove the theorem for s � 3. Assume that the solution
z blows up in finite time (T < ∞) and there exists an M > 0 such that

ux(t, x) � −M, ∀(t, x) ∈ [0, T ) × R. (4.20)
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By Lemma 4.2, we have∥∥ρ(t, ·)∥∥L∞ ,
∥∥ρ(t, ·)∥∥L2 � e2Mt‖ρ0‖Hs−1 , ∀t ∈ [0, T ).

Differentiating the first equation in System (1.3) with respect to x and noting that ∂2
x p ∗ f = p ∗ f − f ,

we have

utx = −u2
x − uuxx − p ∗

(
3

2
u2 + c

2
ρ2

)
+ 3

2
u2 + c

2
ρ2. (4.21)

Note that

dux(t,q(t, x))

dt
= uxt

(
t,q(t, x)

) + uxx
(
t,q(t, x)

)
qt(t, x)

= (utx + uuxx)
(
t,q(t, x)

)
. (4.22)

By (4.21) and (4.22), in view of u2
x � 0, p ∗ u2 � 0, ‖p ∗ ρ2‖L∞ � ‖p‖L1‖ρ‖2

L∞ � (e2Mt‖ρ0‖Hs−1 )2

and (4.4), we obtain

dux(t,q(t, x))

dt
= −u2

x

(
t,q(t, x)

) − p ∗
(

3

2
u2 + c

2
ρ2

)(
t,q(t, x)

) +
(

3

2
u2 + c

2
ρ2

)(
t,q(t, x)

)
� |c|(e2Mt‖ρ0‖Hs−1

)2 + 3

2
J 2(t).

Integrating the above inequality with respect to t < T on [0, t] yields that

ux
(
t,q(t, x)

)
� ux(0) + |c|t(e2Mt‖ρ0‖Hs−1

)2 + 3

2
t J 2(t), ∀t ∈ [0, T ).

Then for all t ∈ [0, T ), we have

sup
x∈R

ux(t, x) � ‖∂xu0‖L∞ + |c|t(e2Mt‖ρ0‖Hs−1

)2 + 3

2
t J 2(t)

� ‖u0‖Hs + |c|t(e2Mt‖ρ0‖Hs−1

)2 + 3

2
t J 2(t),

which together with (4.20) and T < ∞, implies that

T∫
0

∥∥∂xu(τ )
∥∥

L∞ dτ < ∞.

This contradicts Theorem 4.1.
On the other hand, by Sobolev’s imbedding theorem, we can see that if

lim inf
t→T

inf
x∈R

{
ux(t, x)

} = −∞,

then the solution z will blow up in finite time. This completes the proof of the theorem. �
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Remark 4.1. Theorem 4.2 implies that the blow-up phenomena of the solution z to System (1.3)
depends only on the slope of the first component u. That is, the first component u must blow up
before the second component ρ in finite time.

5. Blow-up

In this section, we will state two new blow-up criterions with respect to the initial data and the
exact blow-up rate of strong solutions to System (1.3).

Remark 4.1 and Lemma 4.2 imply that if we want to study the fine structure of finite time singu-
larities, one should assume in the following that there is an M > 0 such that ‖ρ(t, ·)‖L∞ ,‖ρ(t, ·)‖L2 �
e2Mt‖ρ0‖Hs−1 for all t ∈ [0, T ). Next we will apply Lemma 4.3 to establish our first blow-up result
with respect to the initial data.

Theorem 5.1. Let z0 = ( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T be the maximal existence time of the

solution z = ( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). Assume that there is an M > 0 such

that ‖ρ(t, ·)‖L∞ ,‖ρ(t, ·)‖L2 � e2Mt‖ρ0‖Hs−1 for all t ∈ [0, T ). Let ε > 0 and T � � ln(1+ 2
ε )√|c|+1(‖ρ0‖Hs−1 +1)

> 0. If

there is a point x0 ∈ R such that

u′
0(x0) < −(1 + ε)K

(
T �

)
,

where K (T �) � (
3(|c|+1)

4 (e2MT �
(‖ρ0‖Hs−1 + 1))2 + 3

2 J 2(T �))
1
2 > 0, then T < T � . In other words, the corre-

sponding solution to System (1.3) blows up in finite time.

Proof. As mentioned earlier, we may assume s = 3 here. By (4.21) and (4.22), in view of p ∗ ( 3
2 u2) � 0

and ‖p ∗ ρ2‖L∞ � ‖p‖L∞‖ρ‖2
L2 � 1

2 (e2Mt‖ρ0‖Hs−1 )2, we obtain

dux(t,q(t, x))

dt
� −u2

x

(
t,q(t, x)

) − p ∗
(

c

2
ρ2(t,q(t, x)

)) + 3

2
u2(t,q(t, x)

) + c

2
ρ2(t,q(t, x)

)
� −u2

x

(
t,q(t, x)

) + 3|c|
4

(
e2Mt‖ρ0‖Hs−1

)2 + 3

2

∥∥u(t)
∥∥2

L∞ . (5.1)

Set m(t) � ux(t,q(t, x0)) and fix ε > 0. From (5.1) and (4.4), we have

dm(t)

dt
� −m2(t) + K 2(T �

)
, ∀t ∈ [

0, T �
] ∩ [0, T ). (5.2)

Since m(0) < −(1 + ε)K (T �) < −K (T �), it then follows that

m(t) � −K
(
T �

)
, ∀t ∈ [

0, T �
] ∩ [0, T ).

By solving the inequality (5.2), we get

m(0) + K (T �)

m(0) − K (T �)
e2K (T �)t − 1 � 2K (T �)

m(t) − K (T �)
� 0. (5.3)

Noting that m(0) < −(1 + ε)K (T �) and 2K (T �)T � � ln(1 + 2
ε ), we deduce that

ln
m(0) − K (T �)

�
� 2K

(
T �

)
T �. (5.4)
m(0) + K (T )
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By (5.3), (5.4) and the fact 0 <
m(0)+K (T �)
m(0)−K (T �)

< 1, there exists

0 < T <
1

2K (T �)
ln

m(0) − K (T �)

m(0) + K (T �)
� T �,

such that limt→T m(t) = −∞. This completes the proof of the theorem. �
In order to establish the second blow-up result, we need the following useful lemma.

Lemma 5.1. (See [8].) Let T > 0 and u ∈ C1([0, T ); H2). Then for every t ∈ [0, T ), there exists at least one
point ξ(t) ∈ R with

m(t) � inf
x∈R

(
ux(t, x)

) = ux
(
t, ξ(t)

)
.

The function m(t) is absolutely continuous on (0, T ) with

dm

dt
= utx

(
t, ξ(t)

)
a.e. on (0, T ).

Theorem 5.2. Let z0 = ( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T be the maximal existence time of

the solution z = ( u
ρ

)
to System (1.3), which is guaranteed by Remark 3.1(1). Assume that c � 0 and the

initial data satisfies that u0 is odd, ρ0 is even, u′
0(0) < 0 and ρ0(0) = 0. Then T � − 1

u′
0(0)

� T0 and

limt→T0 ux(t,0) = −∞. Moreover, if there is some x0 ∈ R such that u′
0(x0) = infx∈R u′

0(x) and ρ ′
0(x0) �= 0,

then there exists a T1 ∈ (0,− 1
u′

0(0)
], such that lim supt→T1

(supx∈R ρx(t, x)) = +∞, if ρ ′
0(x0) > 0 and

lim inft→T1 (infx∈R ρx(t, x)) = −∞ otherwise.

Proof. We may assume s = 3 here. By the assumption u0 is odd, ρ0 is even, and the structure of
System (1.3), we have u(t, x) is odd and ρ(t, x) is even with respect to x for t ∈ (0, T ). Thus, u(t,0) = 0
and ρx(t,0) = 0.

Since ρ0(0) = 0 and the second equation of System (1.3), it follows that

ρ(t,0) = ρ0(0)e−2
∫ t

0 ux(s,0)ds = 0.

Set M(t) � ux(t,0). By (4.21), (4.22) and in view of c � 0, p ∗ u2 � 0 and p ∗ ρ2 � 0, we have

dM(t)

dt
= −M2(t) − p ∗

(
3

2
u2(t,0) + c

2
ρ2(t,0)

)
� −M2(t). (5.5)

Note that if M(0) = u′
0(0) < 0, then M(t) � M(0) < 0 for all t ∈ (0, T ]. From (5.5), we obtain T �

− 1
u′

0(0)
and

ux(t,0) = M(t) �
u′

0(0)

1 + tu′
0(0)

→ −∞, (5.6)

as t → − 1
u′

0(0)
.

On the other hand, applying Eq. (4.1) and differentiating the second equation in System (1.3) with
respect to x, we get
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dρx(t,q(t, x))

dt
= (−3uxρx − 2uxxρ)

(
t,q(t, x)

)
. (5.7)

By Lemma 5.1, there exists ξ(t) ∈ R such that

ux
(
t, ξ(t)

) = inf
x∈R

(
ux(t, x)

) ∀t ∈ [0, T ). (5.8)

Hence,

uxx
(
t, ξ(t)

) = 0 a.e. t ∈ [0, T ). (5.9)

By (5.7), (5.9) and Lemma 4.1, we have

dρx(t, ξ(t))

dt
= −3ux

(
t, ξ(t)

)
ρx

(
t, ξ(t)

)
,

together with the assumption u′
0(x0) = infx∈R u′

0(x) and (5.8) yields ξ(0) = x0,

ρx
(
t, ξ(t)

) = ρ ′
0(x0)e−3

∫ t
0 ux(s,ξ(s))ds = ρ ′

0(x0)e−3
∫ t

0 infx∈R ux(s,x)ds. (5.10)

Thanks to (5.6) again, we have for all t ∈ [0, T ),

e−3
∫ t

0 infx∈R ux(s,x)ds � e
−3

∫ t
0

u′
0(0)

1+su′
0(0)

ds = 1

(1 + u′
0(0)t)3

→ +∞,

as t → − 1
u′

0(0)
. This implies the desired result and we have completed the proof of the theorem. �

We conclude this section with the exact blow-up rate for blowing-up solutions to System (1.3).

Theorem 5.3. Let z0 �
( u0
ρ0

) ∈ Hs(R) × Hs−1(R) with s > 3
2 and T < ∞ be the blow-up time of the corre-

sponding solution z �
( u
ρ

)
to System (1.3). Assume that there is an M > 0 such that ‖ρ(t, ·)‖L∞ ,‖ρ(t, ·)‖L2 �

e2Mt‖ρ0‖Hs−1 for all t ∈ [0, T ). Then

lim
t→T

(
inf
x∈R

{
ux(t, x)

}
(T − t)

)
= −1. (5.11)

Proof. We may assume s = 3 here. By the assumptions of the theorem and (4.4), we can find an
M0 > 0, such that ∥∥ρ(t, ·)∥∥L∞ ,

∥∥u(t, ·)∥∥L∞ � M0, ∀t ∈ [0, T ).

Hence, ∥∥p ∗ ρ2
∥∥

L∞ � ‖p‖L1‖ρ‖2
L∞ � M0

2 and
∥∥p ∗ u2

∥∥
L∞ � ‖p‖L1‖u‖2

L∞ � M0
2,

which together with (4.21) and (4.22), implies that∣∣∣∣dm(t)

dt
+ m2(t)

∣∣∣∣ � K̃ , (5.12)

where K̃ = K̃ (|c|, M0) is a positive constant.
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For every ε ∈ (0, 1
2 ), using the fact m(t) � ux(t,0) and (5.6), we can find a t0 ∈ (0, T ) such that

m(t0) < −
√

K̃ + K̃

ε
< −

√
K̃ .

Thanks to (5.12) again, we have

m(t) � −
√

K̃ .

This implies that m(t) is decreasing on [t0, T ), hence,

m(t) < −
√

K̃ + K̃

ε
< −

√
K̃

ε
, ∀t ∈ [t0, T ).

Noting that −m2(t) − K̃ � dm(t)
dt � −m2(t) + K̃ a.e. t ∈ (t0, T ), we get

1 − ε � d

dt

(
1

m(t)

)
� 1 + ε a.e. t ∈ (t0, T ). (5.13)

Integrating (5.13) with respect to t ∈ [t0, T ) on (t, T ) and applying limt→T m(t) = −∞ again, we de-
duce that

(1 − ε)(T − t) � − 1

m(t)
� (1 + ε)(T − t). (5.14)

Since ε ∈ (0, 1
2 ) is arbitrary, it then follows from (5.14) that (5.11) holds. This completes the proof of

the theorem. �
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