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In studying Majorana fermions (MFs) in a spin ladder model, we numerically show that their qubit state
can be read out by measuring fusion excitations in quenched inhomogeneous spin ladders. We construct an
exactly solvable T -junction spin ladder model that can be used to implement MF braid operations. With braiding
simulated numerically as nonequilibrium quench processes, we verify that the MFs in our spin ladder model obey
non-Abelian braiding statistics. Our scheme provides a promising platform to study exotic properties of MFs and
a broad range of applications in topological quantum computation.
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Majorana fermions (MFs) are self-conjugate quasiparticles
(γ † = γ ),1 and non-Abelian anyons obeying exotic braiding
statistics.2,3 Recent years have seen much excitement over
MFs, not only because of their peculiar properties, but also
due to the possible applications for topological quantum
computation.4 Creating, manipulating, and detecting MFs
experimentally remains a great challenge, although many
schemes for doing that have been proposed.5–21 As far
as their realization is concerned, encouraging progress has
been made for one-dimensional (1D) systems, especially
for semiconducting wires,22 where a zero-bias conductance
peak (ZBCP)23 and a fractional Josephson effect24 have
been recently measured. However, controversy remains about
whether those experimental signatures indicate the realization
of MFs.25,26 Moreover, to our knowledge, so far there exists
no unambiguous and straightforward evidence to demonstrate
the braiding statistics of MFs.

Although the superconducting (SC) system is a natural
choice to create MFs, spin systems have received considerable
attention since the pioneering work of Kitaev.27 Creating MFs
in 1D spin systems is quite different from their creation in
electronic systems. For instance, superconductivity cannot
emerge spontaneously in a semiconductor wire; instead it is
induced by proximity to a superconductor. This fact imposes
extra difficulty in creating and controlling MFs in such
systems. In contrast, one only needs to engineer the desired
spin-spin interaction in the spin system. Since spin systems
are produced in highly controllable quantum simulations,28–33

the latter could provide promising platforms for creating and
controlling MFs in actual experiments.

Despite recent extensive theoretical studies of MFs in 1D
spin systems,34–37 the applicability of non-Abelian braiding
statistics to MFs in such systems remains unclear, as is a
clear method to implement the braid operations. In this Rapid
Communication, we propose and numerically confirm that one
can read out the MF’s qubit state by measuring the resulting
fusion excitation in a spin ladder system, while suppressing
undesired excitations by inhomogeneity. Moreover, we design
an exactly solvable T -junction spin ladder model which can
be used to implement the braid operation. By numerically

simulating this operation as a nonequilibrium process, we
verify that the MFs obey non-Abelian braiding statistics,
thus providing a platform for the experimental realization of
topological quantum computation.

The Hamiltonian and its features. The Hamiltonian of a
single spin ladder36,37 can be written as

H = −
∑
〈i,j〉

J
βij

ij σ
βij

i σ
βij

j , βij = x,y,z, (1)

where σx(y,z) are the Pauli operators. We have decomposed the
links of the spin ladders into three classes, as exemplified in
Fig. 1; each link class is associated with one component of the
interaction J τσ τ

i σ τ
j , τ = x,y,z.

To solve the Hamiltonian equation (1), we represent each
spin operator as the product of two MF operators:27,37

σx
n = ibx

ncn, σ y
n = iby

ncn, σ z
n = ibz

ncn, (2)

where all the MF operators b
x,y,z
n and cn satisfy self-adjoint

and anticommutation relations. Using the MF representation,
the Hamiltonian takes the form

H =
∑
〈i,j〉

J
βij

ij

(
ib

βij

i b
βij

j

)
(icicj ). (3)

Note that the relation σxσyσz = i imposes a constraint on the
product of all MF operators Di = bx

i b
y

i b
z
i ci = 1. Therefore, af-

ter obtaining the eigenstate |ψ〉 of the fermionic Hamiltonian,
Eq. (3), one projects it into physical Hilbert space:

|ψ〉phy = P̂ |ψ〉 =
(∏ 1 + Di

2

)
|ψ〉. (4)

In the spin ladder, each site has three links with different
interaction terms. Therefore, uij = ib

βij

i b
βij

j commutes with
Eq. (3), taking the value ±1 and, as a result, we obtain
an exactly solvable quadratic Hamiltonian. Introducing for
convenience the fermionic operator fn = (c2n−1 + ic2n)/2, the
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FIG. 1. (Color online) Spin ladders with three link classes.

Hamiltonian is expressible as

H =
N−1∑
n=1

[(ωnf
†
n fn+1 + �nfnfn+1+H.c.) + μn(2f †

n fn − 1)],

(5)

where ωn = J x
n u2n−1,2n+2 − J

y
n u2n,2n+1, �n =

J x
n u2n−1,2n+2 + J

y
n u2n,2n+1, μn = J z

nu2n−1,2n. This fermionic
Hamiltonian equation (5) describes Kitaev’s SC wire for
the p wave.11 For simplicity, we assume that the intrachain
coupling J x

n ,J
y
n is positive and homogeneous. Then, one can

verify that if |J z
n | < |J x − J y | the ground state corresponds

to all uij = 1 (i < j );37 such chains are in a topological phase
with two MFs located at the ends of the chain.

Detecting MFs qubit states. Two MFs can fuse into either a
vacuum |0〉 or one fermion state |1〉, which can be treated
as a qubit state.4 Measuring the qubit state of the two
MFs is important in processes executing topological quantum
computations as well as in experimental realizations of MFs.
Because MFs are zero energy modes in the topological phase,
both qubit states |0〉 and |1〉 are ground states of the system
that are hard to distinguish. In electronic systems, an anyon
interference device like a Fabry-Perot interferometer has been
designed to detect MF qubit states.7,8 As far as our system
is concerned, a similar interference device has not yet been
developed.

Here, we propose a straightforward scheme to realize a MF
qubit readout, where one directly fuses the MFs adiabatically
and measures the emergent excitation. The so-called fusing
of MFs, simply drives the system across the quantum critical
point (QCP), from a topological phase to a nontopological
phase. These two MFs in the qubit state |1〉 will then fuse
into an excitation, making it easier to detect. In particular,
in the spin system, the MF fusion excitation behaves like a
spin flip that can be easily detected in highly controllable
quantum simulations. However, the likelihood is that the
described process might not be adiabatic due to the vanishing
energy gap and divergent relaxation time at the QCP. These
factors inevitably lead to the creation of many excitations,
whose number is determined by the Kibble-Zurek mechanism
(KZM).38,39 The KZM excitations obscure detection of the
MFs fusion excitations and therefore the suppression of
these KZM excitations is necessary. In the following, we
introduce inhomogeneity to realize this suppression of the
KZM excitations.40 This physical result can be understood
qualitatively as follows: When an inhomogeneous system
undergoes quenching, the critical point will be crossed locally
and the whole energy spectrum always has a finite gap
during quenching. Moreover, MFs can be located at the
natural topological trivial and nontrivial interface resulting
from an inhomogeneous potential, and move together at the
critical point during quenching, thereby providing a means to
manipulate the MFs.
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FIG. 2. (Color online) Diagrams for the two quench processes I
(a) and II (b). Topological phase regions are marked in light cyan.
MFs with the same color, (γ1,γ2) and (γ3,γ4), are paired MFs, which
will fuse into the vacuum state |0〉. The number of excitations after the
quench processes I (c) and II (d). Here we choose J x = 1.1, J y = 0.1.

Numerical simulations. To confirm that one can measure
the MF qubit state by detecting the emergent excitations after
a quench, we consider two simple processes, both of which
have MFs created and fused. During a ramp, the interchain
coupling J z is inhomogeneous and varies with time:

Process I: J z
n (t) = α2n2 + J0 + t/tQ,

(6)
Process II: J z

n (t) = α2(n − N/2 − 1/2)2 + J0 + t/tQ,

where α denotes the coefficient of a parabolic inhomogeneity.
In the following, we choose the system size N = 100. With
an increase of α, the minimum gap during the entire adiabatic
quenching also increases, making it easier to suppress the
KZM excitations. The term t/tQ in Eq. (6) represents the
quench with quench time tQ, which determines the rate of
change in the coupling strength. During the two quenches, the
coupling strength will be ramped from J z

n < −|J x − J y | to
J z

n > |J x − J y |.
These two processes are shown schematically in Figs. 2(a)

and 2(b). In quench process I, we create two paired MFs from
the vacuum [Fig. 2(a), i and ii]. Without the participation of
other MFs, these two MFs are always in the state |0〉. Thus,
as one fuses the two MFs [Fig. 2(a), iv and v] to read out the
qubit state, no excitations emerge. Quench process II has four
MFs (γ1,γ2) and (γ3,γ4) drawn from the vacuum [Fig. 2(b),
i and ii] for which the qubit state can be written as |0,0〉
in the basis fA = γ1 + iγ2 and fB = γ3 + iγ4. Interestingly,
the two unpaired MFs, γ2 and γ3, will fuse at potential
center, as depicted in Fig. 2(b), iii and iv. Therefore, this
process actually measures the MF qubit state in the basis
f ′

A = γ2 + iγ3, f ′
B = γ1 + iγ4. Written in the f ′

A,f ′
B basis,

|0,0〉 is (|0′0′〉 − i|1′1′〉)/√2, which implies the emergence of
one excitation. Clearly, this readout scheme is insensitive to
the relative phase factor between |0′0′〉 and |1′1′〉. However,
this relative phase can be read out by fusing the MFs in
other pairs, such as (γ1,γ2) and (γ3,γ4). Generally speaking,
if one measures a state (|0′0′〉 + ieiθ |1′1′〉)/√2, in the basis
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fA = γ1 + iγ2, fB = γ3 + iγ4, the fusion excitation with
number n = 1 + cos θ emerges.

To verify the above scenario, we performed numerical sim-
ulations of the dynamics for the two quench processes. Using
the Bogoliubov transformation a

†
m = ∑

n(unmf
†
n + vnmfn),

we can diagonalize the Hamiltonian at any given time, and find
that for both quench processes there is always an energy gap.41

We consider an initial BCS ground state of the ladder |ψ〉 =
P̂

∏
a
†
i |0〉/N0, and a final state is |ψf 〉 = P̂

∏
a
†
i (tf )|0〉/N0

with

â†
m(tf ) = Uâ†

mU †, U = T

{
exp

[
−i

∫ tf

t0

H (t)dt

]}
, (7)

where N0 is a normalization constant, U (t) is a time evolution
operator, and T is a time ordering operator. We also diagonal-
ize the final Hamiltonian H (tf ) = ∑

m(Emg
†
mgm − Emgmg

†
m),

with Em < 0. The number of excitations then is

nex =
∑
m

〈ψf |gmg†
m|ψf 〉. (8)

Figures 2(c)–2(d) illustrate the number of excitations for
the two quench processes. Clearly, the KZM excitations will
be more effectively suppressed for longer quench times tQ.
In particular, process I gives rise to no excitations, whereas
process II yields excitations with universal number 1 agreeing
with our previous analysis.

More generally, excitations in the spin model can exhibit
complex spin configurations, which can be difficult to detect
exactly in experiments. To exhibit the excitations in the spin
ladder unambiguously, one can drive the system into the Ising
limit (J z

n � J x,J y). In this limit, the ground state exhibits a
parallel alignment of each pair of rung spins from two chains
(〈σ z

2n−1σ
z
2n〉 = 1), whereas the lowest excitation corresponds

to an antiparallel alignment of a single pair of rung spins
(〈σ z

2n−1σ
z
2n〉 = −1). This excitation can in practice be mea-

sured in experiments. Therefore, a MF qubit state clearly can
be experimentally read out through measurement of the exci-
tations emerging in the quenched inhomogeneous spin ladder.

Non-Abelian braiding statistics. First, we design a spin
ladder model with T -junction structure to implement the
braiding operation of MFs. Our model is composed of three
ladders joining to form a hexagon, as depicted in Fig. 3(a).

A similar T -junction design for braiding MFs in spin
ladders has been proposed earlier.37 However, their T -junction
model cannot be solved exactly, which obscures the fate
of the non-Abelian braiding statistics in their MF model.
In contrast, one notes that with our special design of three
ladders and a hexagon-junction structure, each site always
has three different links. Therefore, this model can be solved
exactly using the Majorana fermionization technique with
all the uij commuting with the Hamiltonian. Following the
same procedures as before, we obtain a fermionic Hamiltonian
H = ∑

α=a,b,c Hα + Ht , with

Hα =
N−1∑
n=1

[(ωα,nf
†
α,nfα,n+1 + �α,nfα,nfα,n+1 + H.c.)

+μα,n(2f †
α,nfα,n − 1)] (9)

Jz
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a
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Jy
t

Jx
b

Jz
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t
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t
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c
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c
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FIG. 3. (Color online) (a) Trijunction spin ladders. Three spin
ladders (a,b,c) joining to form a hexagon (t). (b) The effective T

junction of Kitaev’s SC wire. Compared with the model in Ref. 3,
the central site at the T junction (white dotted site) is missing in our
model.

and

Ht =
∑

Aαβ(f †
α,1fβ,1 + fα,1fβ,1 + H.c.), (10)

where μa(b,c),n = 2J
z(x,y)
a(b,c),nu

a(b,c)
2n+1,2n+2, Aab(bc,ca) =

J
y(z,x)
t uab(bc,ca), and �a(b,c),n(ωa(b,c),n) = J

x(y,z)
a(b,c),nu

a(b,c)
2n+1,2n+4 ±

J
y(z,x)
a(b,c),nu

a(b,c)
2n+2,2n+3. Similarly to the previous case, with J

x(y,z)
a(b,c),n,

J
y(z,x)
a(b,c),n, and J

y(z,x)
t positive, the ground state corresponds to

all uij = 1.
The T -junction spin ladder has been mapped into the p

wave of Kitaev’s SC wire with a T -junction structure, as
shown in Fig. 3(b). This effective T -junction Kitaev wire
differs slightly from the model in Ref. 3. In particular, the
phase of the pairing term in our spin model cannot take
complex values; its phase can only be 0 or π , the change being
achieved by adjusting the relative value of intrachain coupling
J

x(y,z)
a(b,c) ,J

y(z,x)
a(b,c) . To realize braiding for MFs, it is important that

no additional MFs appear at the T junction. Therefore, the
phase of the pairing term should be different for the wire pairs
(a,c) and (b,c).3 We can choose the pairing phase of wire a
and b is chosen to be 0, whereas that of wire c is chosen to be
π . To achieve this, we can simply put J x

a > J
y
a , J

y

b > J z
b , and

J z
c < J x

c .
To verify unambiguously the braiding statistics, we per-

formed numerical simulations on the nonequilibrium pro-
cesses that have the MFs braiding counterclockwise, as
illustrated in Fig. 4(a), I–III. After braiding a finite (1–4) times,
we performed the qubit readout procedure by driving the whole
system nontopologically and then measuring the emergent
fusion excitations, as shown in Fig. 4(a), IV. We begin with
four MFs (γ1,γ2) and (γ3,γ4), whose state can be written as
|00〉 in the basis of fA = γ1 + iγ2 and fB = γ3 + iγ4; our
measurement scheme reads off the qubit state in this basis.
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+

FIG. 4. (Color online) (a) Steps for braiding and reading off the
MFs qubit states. Schematic representation for the quantum state in
the large interchain coupling limit; here we omit the ladder c for
simplicity. (b) Ground state of the system: spins on the ladder a (b)
align parallel along the z (x) direction. (c) Output state by braiding
MFs twice: excited state with two excitations located at the left and
right ends. (d) Output state by braiding MFs one (three) times: equally
weighted superposition of two states (b) and (c).

The braiding of MFs γ2 and γ3 can be described by the unitary
operator U = exp(πγ2γ3/4). If MFs braid one or three times,
the qubit state is (|00〉 ± |11〉)/√2; if MFs braid twice, the
qubit state is |11〉. Furthermore, the qubit state changes back
into the initial state |00〉 if the MFs braid four times. Our
numerical calculations confirm those results.41 In particular,
we have found the emergence of one or two excitations after
the process with MFs braiding one (three) or two times, with
each half of the excitations emerging at the left (right) end of
the a (b) ladder. Finally, braiding MFs four times produces no
excitations.

The general scheme to illustrate the non-Abelian braiding
statistics can be visualized as follows. First we prepare a
nontopological state, schematically shown in Fig. 4(b). To
create and manipulate the MFs, one needs simply to change the
interchain coupling strengths of three ladders. After braiding
the MFs one or three times and driving the system back into
a nontopological phase, one obtains a quantum state as shown
in Fig. 4(d). After braiding the MFs twice, one obtains two
excitations localized at the ends of spin ladders a and b, as
shown in Fig. 4(c). Finally, if one performs the braiding of the
MFs four times, the system returns to its ground state.

Summary. We have proposed and numerically shown that,
in a quenched inhomogeneous spin ladder model, one can read
out the MF qubit state by measuring the MF fusion excitations.
An exactly solvable T -junction spin ladder model is shown to
implement MF braiding operations. With numerical simulation
of nonequilibrium braiding, we show that the MF in our model
obeys non-Abelian braiding statistics. Our proposal could be
realized and tested in future experimental systems of ultracold
atoms or SC circuits.
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