140,923 research outputs found

    Simultaneous Feature Learning and Hash Coding with Deep Neural Networks

    Full text link
    Similarity-preserving hashing is a widely-used method for nearest neighbour search in large-scale image retrieval tasks. For most existing hashing methods, an image is first encoded as a vector of hand-engineering visual features, followed by another separate projection or quantization step that generates binary codes. However, such visual feature vectors may not be optimally compatible with the coding process, thus producing sub-optimal hashing codes. In this paper, we propose a deep architecture for supervised hashing, in which images are mapped into binary codes via carefully designed deep neural networks. The pipeline of the proposed deep architecture consists of three building blocks: 1) a sub-network with a stack of convolution layers to produce the effective intermediate image features; 2) a divide-and-encode module to divide the intermediate image features into multiple branches, each encoded into one hash bit; and 3) a triplet ranking loss designed to characterize that one image is more similar to the second image than to the third one. Extensive evaluations on several benchmark image datasets show that the proposed simultaneous feature learning and hash coding pipeline brings substantial improvements over other state-of-the-art supervised or unsupervised hashing methods.Comment: This paper has been accepted to IEEE International Conference on Pattern Recognition and Computer Vision (CVPR), 201

    Anomalous transport model with axial magnetic fields

    Full text link
    The transport properties of massless fermions in spacetime dimension have been in the focus of recent theoretical and experimental research. New transport properties appear as consequences of chiral anomalies. The most prominent is the generation of a current in a magnetic field, the so-called chiral magnetic effect leading to an enhancement of the electric conductivity (negative magnetoresistivity). We study the analogous effect for axial magnetic fields that couple with opposite signs to fermions of different chirality. We emphasize local charge conservation and study the induced magneto-conductivities proportional to an electric field and a gradient in temperature. We find that the magnetoconductivity is enhanced whereas the magneto-thermoelectric conductivity is diminished. As a side result we interpret an anomalous contribution to the entropy current as a generalized thermal Hall effectThe research of K.L. has been supported by FPA2015-65480-P and by the Centro de Excelencia Severo Ochoa Programme under grant SEV-2012-0249 and SEV-2016-0597. The research of Y.L. has been supported by the Thousand Young Talents Program of China and grants ZG216S17A5 and KG12003301 from Beihang Universit

    Modelling the driving forces of Sydney's urban development (1971-96) in a cellular environment

    Get PDF
    [Abstract]: This paper demonstrates a flexible implementation of rules to control the simulation of urban development of Sydney from 1971 to 1996 using a cellular automata model. Five key factors, including the self propensity for development and neighbourhood support, slope constraint, transportation support, terrain and coastal proximity attractions and urban planning support are introduced into the model in a spatially explicit format, which generated a realistic estimation of the extent and timing of Sydney's urban development. With the flexibility of rule implementation within the model, more rules can be added as new 'If-Then' statements to fine-tune the model, provided that a good understanding of the rule is maintained and accurate data are collected
    corecore