26 research outputs found

    AVN-211, Novel and Highly Selective 5‑HT<sub>6</sub> Receptor Small Molecule Antagonist, for the Treatment of Alzheimer’s Disease

    No full text
    Within the past decade several novel targets have been indicated as key players in Alzheimer-type dementia and associated conditions, including a “frightening” memory loss as well as severe cognitive impairments. These proteins are deeply implicated in crucial cell processes, e.g., autophagy, growth and progression, apoptosis, and metabolic equilibrium. Since recently, 5-HT<sub>6</sub>R has been considered as one of the most prominent biological targets in AD drug therapy. Therefore, we investigated the potential procognitive and neuroprotective effects of our novel selective 5-HT<sub>6</sub>R antagonist, AVN-211. During an extensive preclinical evaluation the lead compound demonstrated a relatively high therapeutic potential and improved selectivity toward 5-HT<sub>6</sub>R as compared to reference drug candidates. It was thoroughly examined in different <i>in vivo</i> behavioral models directly related to AD and showed evident improvements in cognition and learning. In many cases, the observed effect was considerably greater than that determined for the reported drugs and drug candidates, including memantine, SB-742457, and Lu AE58054, evaluated under the same conditions. In addition, AVN-211 showed a similar or better anxiolytic efficacy than fenobam, rufinamide, lorazepam, and buspirone in an elevated plus-maze model, elevated platform, and open field tests. The compound demonstrated low toxicity and no side effects <i>in vivo</i>, an appropriate pharmacokinetic profile, and stability. In conclusion, AVN-211 significantly delayed or partially halted the progressive decline in memory function associated with AD, which makes it an interesting drug candidate for the treatment of neurodegenerative and psychiatric disorders. Advanced clinical trials are currently under active discussion and in high priority

    Small-molecule inhibitors of hepatitis C virus (HCV) non-structural protein 5A (NS5A): a patent review (2010-2015)

    No full text
    <p><b>Introduction</b>: Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor).</p> <p><b>Areas covered</b>: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors.</p> <p><b>Expert opinion</b>: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.</p

    The Efficacy of Aprotinin Combinations with Selected Antiviral Drugs in Mouse Models of Influenza Pneumonia and Coronavirus Infection Caused by SARS-CoV-2

    No full text
    The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment

    QUANTITATIVE STRUCTURE-METABOLISM RELATIONSHIP MODELING OF METABOLIC N-DEALKYLATION REACTION RATES

    No full text
    It is widely recognized that preclinical drug discovery can be improved via the parallel assessment of bioactivity, absorption, distribution, metabolism, excretion, and toxicity properties of molecules. High-throughput computational methods may enable such assessment at the earliest, least expensive discovery stages, such as during screening compound libraries and the hit-to-lead process. As an attempt to predict drug metabolism and toxicity, we have developed an approach for evaluation of the rate of N-dealkylation mediated by two of the most important human cytochrome P450s (P450), namely CYP3A4 and CYP2D6. We have taken a novel approach by using descriptors generated for the whole molecule, the reaction centroid, and the leaving group, and then applying neural network computations and sensitivity analysis to Quantitative structure-metabolism relationship (QSMR) models allow the estimation of complex metabolism-related phenomena from relatively simple calculated molecular properties or descriptors. Such models can be used for the design of structural analogs of bioactive compounds with improved pharmacokinetic properties (Bouska et al.

    Synthesis and Biological Evaluation of Novel <i>Dispiro</i>-Indolinones with Anticancer Activity

    No full text
    Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(−/−). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2–3.5 µM) and a reasonable selectivity index (SI = 3–10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index—estimated as LD50/ED50—for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action
    corecore