370 research outputs found
Method for locating phase to ground faults in DC distribution systems
A method for locating phase to ground faults in DC distribution systems. The method includes utilizing wavelet analysis using Multi-Resolution Analysis (MRA) as a signal processing tool for recognition of characteristic features in the voltage signal. The voltage signal contains characteristic information in the high frequency range above the switching frequencies of the PE converters which allows for localization of the fault
Investigation of a hydraulic impact: a technology in rock breaking
The finite element method and dimensional analysis have been applied in the
present paper to study a hydraulic impact, which is utilized in a non-explosive
rock breaking technology in mining industry. The impact process of a high speed
piston on liquid water, previously introduced in a borehole drilled in rock, is
numerically simulated. The research is focused on the influences of all the
parameters involved in the technology on the largest principal stress in the
rock, which is considered as one of the key factors to break the rock. Our
detailed parametric investigation reveals that the variation of the isotropic
rock material properties, especially its density, has no significant influence
on the largest principal stress. The influences of the depth of the hole and
the depth of the water column are also very small. On the other hand,
increasing the initial kinetic energy of the piston can dramatically increase
the largest principal stress and the best way to increase the initial kinetic
energy of the piston is to increase its initial velocity. Results from the
current dimensional analysis can be applied to optimize this non-explosive rock
breaking technology
Metal Surface Energy: Persistent Cancellation of Short-Range Correlation Effects beyond the Random-Phase Approximation
The role that non-local short-range correlation plays at metal surfaces is
investigated by analyzing the correlation surface energy into contributions
from dynamical density fluctuations of various two-dimensional wave vectors.
Although short-range correlation is known to yield considerable correction to
the ground-state energy of both uniform and non-uniform systems, short-range
correlation effects on intermediate and short-wavelength contributions to the
surface formation energy are found to compensate one another. As a result, our
calculated surface energies, which are based on a non-local
exchange-correlation kernel that provides accurate total energies of a uniform
electron gas, are found to be very close to those obtained in the random-phase
approximation and support the conclusion that the error introduced by the
local-density approximation is small.Comment: 5 pages, 1 figure, to appear in Phys. Rev.
Analysis of community structure of a microbial consortium capable of degrading benzo(a)pyrene by DGGE
A microbial consortium was obtained by enrichment culture of sea water samples collected from Botan oil port in Xiamen, China, using the persistent high concentration of a mixture of polycyclic aromatic hydrocarbons enrichment strategy. Denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial composition and community dynamic changes based on PCR amplification of 16S rRNA genes during batch culture enrichment. Using the spray-plate method, three bacteria, designated as BL01, BL02 and BL03, which corresponded to the dominant bands in the DGGE profiles, were isolated from the consortium. Sequence analysis showed that BL01, BL02 and BL03 were phylogenetically close to Ochrobactrum sp., Stenotrophomonas maltophilia and Pseudomonas fluorescens, respectively. The degradation of benzo(a)pyrene (BaP), a model high-molecular-weight polycyclic aromatic hydrocarbon (HMW PAH) compound was investigated using individual isolates, a mixture of the three isolates, and the microbial consortium (BL) originally isolated from the oil port sea water. Results showed that the order of degradative ability was BL > the mixture of the three isolates > individual isolates. BL degraded 44.07% of the 10 ppm BaP after 14 days incubation, which showed the highest capability for HMW PAH compound degradation. Our results revealed that this high selective pressure strategy was feasible and effective in enriching the HMW PAH-degraders from the original sea water samples. (C) 2009 Elsevier Ltd. All rights reserved
New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies
Improved terrestrial experiment to test the equivalence principle for
rotating extended bodies is presented, and a new upper limit for the violation
of the equivalence principle is obtained at the level of 1.6, which is limited by the friction of the rotating gyroscope. It
means the spin-gravity interaction between the extended bodies has not been
observed at this level.Comment: 4 page
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Positron and positronium interactions with Cu
The configuration-interaction (CI) method is used to investigate the interactions of positrons and positronium with copper at low energies. The calculations were performed within the framework of the fixed-core approximation with semiempirical polarization potentials used to model dynamical interactions between the active particles and the (1s-3d) core. Initially, calculations upon the e(+)Li system were used to refine the numerical procedures and highlighted the extreme difficulties of using an orthodox CI calculation to describe the e(+)Li system. The positron binding energy of e(+) Cu derived from a CI calculation which included electron and positron orbitals with l less than or equal to 18 was. 0.005 12 hartree while the spin-averaged annihilation rate was 0.507 x 10(9) s(-1). The configuration basis used for the bound-state calculation was also used as a part of the trial wave function for a Kohn variational calculation of positron-copper scattering. The positron-copper system has a scattering length of about 13.1a(0) and the annihilation parameter Z(eff) at threshold was 72.9. The dipole polarizability of the neutral copper ground state was computed and found to be 41.6a(0)(3). The structure of CuPs was also studied with the CI method and it was found to have a binding energy of 0.0143 hartree and an annihilation rate of similar to2 x 10(9) s(-1)
The ATLAS trigger system for LHC Run 3 and trigger performance in 2022
The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
Question prompt lists and caregiver question asking in pediatric specialty appointments: A randomized controlled trial
Objective: Question prompt lists (QPLs) have been effective at increasing patient involvement and question asking in medical appointments, which is critical for shared decision making. We investigated whether pre-visit preparation (PVP), including a QPL, would increase question asking among caregivers of pediatric patients with undiagnosed, suspected genetic conditions. Methods: Caregivers were randomized to receive the PVP before their appointment (n = 59) or not (control, n = 53). Appointments were audio-recorded. Transcripts were analyzed to determine questions asked. Results: Caregivers in the PVP group asked more questions (MeanPVP = 4.36, SDPVP = 4.66 vs. Meancontrol = 2.83, SDcontrol = 3.03, p = 0.045), including QPL questions (MeanPVP = 1.05, SDPVP = 1.39 vs. Meancontrol = 0.36, SDcontrol = 0.81, p = 0.002). Caregivers whose child had insurance other than Medicaid in the PVP group asked more total and QPL questions than their counterparts in the control group (ps = 0.005 and 0.002); there was no intervention effect among caregivers of children with Medicaid or no insurance (ps = 0.775 and 0.166). Conclusion: The PVP increased question asking but worked less effectively among traditionally underserved groups. Additional interventions, including provider-focused efforts, may be needed to promote engagement of underserved patients. Practice implications: Patient/family-focused interventions may not be beneficial for all populations. Providers should be aware of potential implicit and explicit biases and encourage question asking to promote patient/family engagement
The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3
The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of â„’ = 2 Ă— 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of â„’ = 2 Ă— 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector
- …