17 research outputs found

    Numerical analysis of flow noises in the square cavity vortex based on computational fluid dynamics

    Get PDF
    In order to study turbulence conditions in an underwater square cavity, the large eddy simulation method was adopted to analyze flow field distributions in the cavity as well as its development and pressure pulsation characteristics at some key positions. MATLAB was also adopted to realize Fast Fourier Transform of signals in time domain and obtain pressure pulsation levels in frequency domain. Based on the analyzed results, pressure pulsation characteristics of key points in the cavity were further discussed. The results showed that pressure pulsation frequencies and characteristics were different with different positions in the square cavity and were closely related with relevant vortex motion states. It was found through comparisons with the experimental results, that pressure pulsation simulation had a good consistency with the experiment when the analyzed frequency was more than 31.5 Hz. As a result, feasibility and accuracy of numerical simulation and Fourier analysis methods were verified. Finally, a numerical model of square cavity in near sound field was built, and sound source intensity distributions at two frequency points were extracted. It could be found that the sound source intensity was large at the rear-edge step, which was consistent with the intensity distribution of vortices. Therefore, reliability of the numerical model in this paper was indirectly verified in the results

    CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: CD133 is known to be a cancer stem cell (CSC) marker. However, recent studies have revealed that CD133 is not restricted to CSC but to be expressed not only in human normal tissues but also in some cancers and could serve as a prognostic factor for the patients. Nevertheless, the expression of CD133 in human cholangiocarcinoma (CC) is rare and our study is to detect the expression and explore the potential functions of CD133 in human CC. METHODS: Fifty-nine cases, comprised of 5 normal liver tissues and 54 consecutive CC specimens (21 well-differentiated, 12 moderately-differentiated and 21 poorly-differentiated), were included in the study. Immunohistochemical stainning with CD133 protein was carried out, and statistical analyses were performed. RESULTS: CD133 was found to express in all 5 normal livers and 40 out of 54 (74%) CC tissues with different subcellular localization. In the well, moderately and poorly differentiated cases, the numbers of CD133 positive cases were 19 (19 of 21, 90%), 10 (10 of 12, 83%) and 11 (11 of 21, 52%) respectively. Further statistical analyses indicated that the expression and different subcellular localization of CD133 were significantly correlated with the differentiation status of tumors (P = 0.004, P = 0.009). Among 23 patients followed up for survival, the median survival was 4 months for fourteen CD133 negative patients but 14 months for nine CD133 positive ones. In univariate survival analysis, CD133 negative expression correlated with poor prognosis while CD133 positive expression predicted a favorable outcome of CC patients (P = 0.001). CONCLUSIONS: Our study demonstrates that CD133 expression correlates with the differentiation of CC and indicates that CD133 is a potential indicator for differentiation and prognosis of human CC.Published versio

    Fabrication of micro-scale gratings for moiré method with a femtosecond laser

    Get PDF
    AbstractFabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moirĂ© method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moirĂ© patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1ÎŒm, and the frequency of grating is 500lines/mm. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on moirĂ© method, scanning electron microscope (SEM) moirĂ© patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement

    CFD simulation on wind turbine blades with leading edge erosion

    No full text
    Deep understanding on the impacts of leading edge erosion on the performance and flow characteristics of wind turbines is significant for the blade design and wind farms manage- ment. Pitting erosion and three levels of delamination are considered in the present study. The results show that the degrees of leading edge erosion have great influence on the flow separation, tangential force coefficient, normal force coefficient as well as the power output of the wind turbine. Leading edge erosion has the greatest impact on aerodynamics of the wind turbine at 15m/s, where the maximum loss in the power output can reach up to 73.26%

    Oxygen Impurity-Tuned Structure and Adhesion Properties of the Cu/SiO<sub>2</sub> Interface

    No full text
    The properties of the Cu/SiO2 interface usually deteriorate in the complex atmospheric environment, which may limit its performance and application in the engineering. Using the reactive molecular dynamics method, we investigate how the mechanical behaviors of the Cu/SiO2 interface change as it interacts with oxygen impurities. The interfacial oxidation degree could be enhanced as O2 penetrates into the interface area. This makes the interfacial structure disordered and is not conducive to the survival of Cu–O–Si bondings, which reduces the tensile and shear strengths of the interface. To improve the abrupt bonding property change at the interface and modify the interfacial adhesion properties, O impurities are introduced at the Cu interstitial sites near the interface. By doing so, the interface strength can be significantly enhanced due to the production of typical O–Cu–O bondings while the regular interfacial structure is retained. Meanwhile, the interfacial oxidation also changes the tensile failure site and shearing sliding mode of the interface, i.e., from inside the oxide to between oxide and Cu. The findings of this work may not only advance the understanding of interaction mechanism between oxygen impurities and the Cu/SiO2 interface but also provide new insights into optimizing the bonding properties of the metal/oxide interface

    Biogas desulfurization under anoxic conditions using synthetic wastewater and biogas slurry

    No full text
    A feasibility study was conducted to determine whether aerated biogas slurry is a suitable nutrient solution for biogas desulfurization systems with a biotrickling filter. At a loading rate of 36.20 g-H2S m(-3)h(-1), the H2S and NOx--N removal efficiencies were 84.7% (average elimination capacity of 30.67 g-H2S m(-3)h(-1)) and 60.9%, respectively, when utilizing synthetic wastewater in a simultaneous biogas desulfurization and wastewater de nitrification system. However, these efficiencies were just 61.9% (average elimination capacity of 22.42 g-H2S m(-3)h(-1)) and 49.2%, respectively, when biogas slurry was used. High-throughput sequencing revealed that the Thiobacillus and Sulfurimonas genera were the main functional bacteria. Alpha- and beta-diversity analyses showed that the H2S loading rate significantly affected the microbial community structure, especially in the system utilizing aerated biogas slurry. Finally, based on the results, we describe a feasible approach to using biogas slurry for biogas desulfurization

    Screening of an Endophyte Transforming Polydatin to Resveratrol from Reynoutria Japonica Houtt and the Optimization of Its Transformation Parameters

    No full text
    Resveratrol showed various kinds of bioactivities, such as antioxidant, antimicrobial, anticancer effects and, therefore, has been used widely as an important ingredient in medication, healthy foods and cosmetics. However, in nature, resveratrol usually exists at low content and more often exists as polydatin. Therefore, it becomes important to find the cost-effective and environmental-friendly way to transform polydatin to resveratrol. In this study, endophytes were isolated from the rhizome tissue of Reynoutria japonica and screened for transforming polydatin to resveratrol using reversed-phase high-performance liquid chromatography (RP-HPLC) and confirmed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. A bacterium identified as Bacillus aryabhattai using 16S rRNA phylogenetic tree analysis showed highest transformation rate. The transforming conditions were optimized including substrate concentration, substrate addition time, culture temperature and inoculation ratio. Our results demonstrated that the bacteria isolated from R. japonica rhizome tissue showed high activity in transforming polydatin into resveratrol. Crude extract of R. japonica root and rhizome (RJE) was also tested as substrate and it was found that the transformation was significantly inhibited at 10.0 mg/mL RJE. Emodin at equivalent concentration of 10.0 mg/mL RJE showed no inhibition activity, and glucose content in RJE was trace and far from enough to exhibit the inhibitory activity. Successive solvent partition followed by an inhibition activity assay revealed that the ethyl acetate fraction showed the main inhibition activity. However, due to the coexistence of polydatin and compounds with inhibitory activity, the concentration of RJE can only be used at limited concentration as substrate

    Ground Risk Assessment for Unmanned Aircraft Systems Based on Dynamic Model

    No full text
    Ground risk, as one of the key parameters for assessing risk before an operation, plays an important role in the safety management of unmanned aircraft systems. However, how to correctly identify ground risk and to predict risk accurately remains challenging due to uncertainty in relevant parameters (people density, ground impact, etc.). Therefore, we propose a dynamic model based on a deep learning approach to assess the ground risk. First, the parameters that affect ground risk (people density, ground impact, sheltered, etc.) are defined and analyzed. Second, a kinetic-theory-based model is applied to assess the extent of ground impact. Third, a joint convolutional neural network–deep neural network model (C-Snet model) is built to predict the density of people on the ground and to calculate the shelter factor for different degrees of ground impact. Last, a dynamic model combining a deep learning and a kinetic model is established to predict ground risk. We performed simulations to validate the effectiveness and efficiency of the model. The results indicate that ground risk has spatial-temporal characteristics and that our model can predict risk accurately by capturing these characteristics
    corecore