8 research outputs found

    Association between transcription factor 7-like-2 polymorphisms and type 2 diabetes mellitus in a Ghanaian population

    Get PDF
    Type 2 diabetes mellitus (T2DM) has been strongly associated with single nucleotide polymorphisms (SNPs) in the TCF7L2 gene. This study investigated the association between rs12255372, rs7903146 in the TCF7L2 gene and T2DM in a Ghanaian population. A case-control study design was used for this study. A total of 106 T2DM patients and 110 control participants were selected. Basic data collected included body mass index, blood pressure and socio-demographics. Fasting blood samples were collected and processed for: serum lipid analysis, plasma glucose estimation and plasma HbA1c estimation. Parts of the whole blood samples were used for DNA extraction using a modified salting-out method. Common and allele-specific primers were designed for genotyping using the Modified Tetra-Primer Amplification assay. Associations were evaluated using logistic regression models. The rs7903146 risk variant was significantly associated with 2.16 vs. 4.06 increased odds for T2DM in patients \u3c60 years vs. ≄60 years. Both rs7903146 and rs12255372 were significantly associated with increased odds of T2DM in women, overweight/obese, T2DM negative family history (T2DM-NFH) and low-HDL-C. In a multivariate model, rs7903146 but not rs12255372 was significantly associated with 2.18, 5.01 and 2.25 increased odds of T2DM, under the codominant, recessive and additive model, respectively (p \u3c 0.05). The association between rs7903146 and rs12255372 with T2DM is more highly associated in a subgroup—women and those with T2DM-NFH, yet who have cardiometabolic risk

    Association between Transcription Factor 7-like-2 Polymorphisms and Type 2 Diabetes Mellitus in a Ghanaian Population

    No full text
    Type 2 diabetes mellitus (T2DM) has been strongly associated with single nucleotide polymorphisms (SNPs) in the TCF7L2 gene. This study investigated the association between rs12255372, rs7903146 in the TCF7L2 gene and T2DM in a Ghanaian population. A case-control study design was used for this study. A total of 106 T2DM patients and 110 control participants were selected. Basic data collected included body mass index, blood pressure and socio-demographics. Fasting blood samples were collected and processed for: serum lipid analysis, plasma glucose estimation and plasma HbA1c estimation. Parts of the whole blood samples were used for DNA extraction using a modified salting-out method. Common and allele-specific primers were designed for genotyping using the Modified Tetra-Primer Amplification assay. Associations were evaluated using logistic regression models. The rs7903146 risk variant was significantly associated with 2.16 vs. 4.06 increased odds for T2DM in patients <60 years vs. ≄60 years. Both rs7903146 and rs12255372 were significantly associated with increased odds of T2DM in women, overweight/obese, T2DM negative family history (T2DM-NFH) and low-HDL-C. In a multivariate model, rs7903146 but not rs12255372 was significantly associated with 2.18, 5.01 and 2.25 increased odds of T2DM, under the codominant, recessive and additive model, respectively (p < 0.05). The association between rs7903146 and rs12255372 with T2DM is more highly associated in a subgroup—women and those with T2DM-NFH, yet who have cardiometabolic risk

    Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study

    No full text
    Background: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms—many related to the structure or function of red blood cells—and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. Methods: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. Findings: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11–0·20; p=2·61 × 10−58), blood group O (0·74, 0·66–0·82; p=6·26 × 10−8), and –α3·7-thalassaemia (0·83, 0·76–0·90; p=2·06 × 10−6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63–0·92; p=0·001) and FREM3 (0·64, 0·53–0·79; p=3·18 × 10−14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49–0·68; p=3·22 × 10−11), as was homozygosity (0·26, 0·11–0·62; p=0·002). Interpretation: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. Funding: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative

    Evolution of advanced technologies in prostate cancer radiotherapy

    No full text
    corecore