6,464 research outputs found

    A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20

    Full text link
    The brightest giant flare from the soft γ\gamma-ray repeater (SGR) 1806-20 was detected on 2004 December 27. The isotropic-equivalent energy release of this burst is at least one order of magnitude more energetic than those of the two other SGR giant flares. Starting from about one week after the burst, a very bright (∼80\sim 80 mJy), fading radio afterglow was detected. Follow-up observations revealed the multi-frequency light curves of the afterglow and the temporal evolution of the source size. Here we show that these observations can be understood in a two-component explosion model. In this model, one component is a relativistic collimated outflow responsible for the initial giant flare and the early afterglow, and another component is a subrelativistic wider outflow responsible for the late afterglow. We also discuss triggering mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for publication in ApJ Letter

    Electrical conductance at initial stage in epitaxial growth of Pb on modified Si(111) surface

    Full text link
    The electrical conductance and RHEED intensities as a function of the coverage have been measured during Pb depositions at 105 K on Si(111)-(6x6)Au with up to 4.2 ML of annealed Pb. The experiments show the strong influence of used substrates on the behavior of the conductance during the epitaxy of Pb atoms, especially for very initial stage of growth. Oscillations of the conductance during the layer-by-layer growth are correlated with RHEED intensity oscillations. The analysis of the conductance behavior is made according to the theory described by Trivedi and Aschcroft (Phys.Rev.B 38,12298 (1988)).Comment: 5 pages, 3 figures. Surf. Sci. - accepte

    The preliminary lattice QCD calculation of κ\kappa meson decay width

    Full text link
    We present a direct lattice QCD calculation of the κ\kappa meson decay width with the s-wave scattering phase shift for the isospin I=1/2I=1/2 pion-kaon (πK\pi K) system. We employ a special finite size formula, which is the extension of the Rummukainen-Gottlieb formula for the πK\pi K system in the moving frame, to calculate the scattering phase, which indicates a resonance around κ\kappa meson mass. Through the effective range formula, we extract the effective κ→πK\kappa \to \pi K coupling constant gκπK=4.54(76)g_{\kappa \pi K} = 4.54(76) GeV and decay width Γ=293±101\Gamma = 293 \pm 101 MeV. Our simulations are done with the MILC gauge configurations with Nf=2+1N_f=2+1 flavors of the "Asqtad" improved staggered dynamical sea quarks on a 163×4816^3\times48 lattice at (mπ+mK)/mκ≈0.8(m_\pi + m_K) / m_\kappa \approx 0.8 and lattice spacing a≈0.15a \approx 0.15 fm.Comment: To make it concise. arXiv admin note: text overlap with arXiv:1110.1422, but much of v1 text overlap with articles by same and other authors remove

    Jet Precession Driven by Neutrino-Cooled Disc for Gamma-Ray Bursts

    Get PDF
    A model of jet precession driven by a neutrino-cooled disc around a spinning black hole is present in order to explain the temporal structure and spectral evolution of gamma-ray bursts (GRBs). The differential rotation of the outer part of a neutrino dominated accretion disc may result in precession of the inner part of the disc and the central black hole, hence drives a precessed jet via neutrino annihilation around the inner part of the disc. Both analytic and numeric results for our model are present. Our calculations show that a black hole-accretion disk system with black hole mass M≃3.66M⊙M \simeq 3.66 M_\odot, accretion rate M˙≃0.54M⊙s−1\dot{M} \simeq 0.54 M_\odot \rm s^{-1}, spin parameter a=0.9a=0.9 and viscosity parameter α=0.01\alpha=0.01 may drive a precessed jet with period P=1 s and luminosity L=1051L=10^{51} erg s−1^{-1}, corresponding to the scenario for long GRBs. A precessed jet with P=0.1P=0.1s and L=1050L=10^{50} erg s−1^{-1} may be powered by a system with M≃5.59M⊙M \simeq 5.59 M_\odot, M˙≃0.74M⊙s−1\dot{M} \simeq 0.74 M_\odot \rm s^{-1}, a=0.1a=0.1, and α=0.01\alpha=0.01, possibly being responsible for the short GRBs. Both the temporal and spectral evolution in GRB pulse may explained with our model. GRB central engines likely power a precessed jet driven by a neutrino-cooled disc. The global GRB lightcurves thus could be modulated by the jet precession during the accretion timescale of the GRB central engine. Both the temporal and spectral evolution in GRB pulse may be due to an viewing effect due to the jet precession.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore