47 research outputs found

    Pollen Grain Counting Using a Cell Counter

    Full text link
    The number of pollen grains is a critical part of the reproductive strategies in plants and varies greatly between and within species. In agriculture, pollen viability is important for crop breeding. It is a laborious work to count pollen tubes using a counting chamber under a microscope. Here, we present a method of counting the number of pollen grains using a cell counter. In this method, the counting step is shortened to 3 min per flower, which, in our setting, is more than five times faster than the counting chamber method. This technique is applicable to species with a lower and higher number of pollen grains, as it can count particles in a wide range, from 0 to 20,000 particles, in one measurement. The cell counter also estimates the size of the particles together with the number. Because aborted pollen shows abnormal membrane characteristics and/or a distorted or smaller shape, a cell counter can quantify the number of normal and aborted pollen separately. We explain how to count the number of pollen grains and measure pollen size in Arabidopsis thaliana, Arabidopsis kamchatica, and wheat (Triticum aestivum)

    TLR2-Dependent Induction of IL-10 and Foxp3+CD25+CD4+ Regulatory T Cells Prevents Effective Anti-Tumor Immunity Induced by Pam2 Lipopeptides In Vivo

    Get PDF
    16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2) lipopeptides act as toll-like receptor (TLR)2/6 ligands and activate natural killer (NK) cells and dendritic cells (DCs) to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3+CD4+ regulatory T (T reg) cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine

    Generation of novel cationic antimicrobial peptides from natural non-antimicrobial sequences by acid-amide substitution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cationic antimicrobial peptides (CAMPs) are well recognized to be promising as novel antimicrobial and antitumor agents. To obtain novel skeletons of CAMPs, we propose a simple strategy using acid-amide substitution (i.e. Glu→Gln, Asp→Asn) to confer net positive charge to natural non-antimicrobial sequences that have structures distinct from known CAMPs. The potential of this strategy was verified by a trial study.</p> <p>Methods</p> <p>The pro-regions of nematode cecropin P1-P3 (P1P-P3P) were selected as parent sequences. P1P-P3P and their acid-amide-substituted mutants (NP1P-NP3P) were chemically synthesized. Bactericidal and membrane-disruptive activities of these peptides were evaluated. Conformational changes were estimated from far-ultraviolet circular dichroism (CD) spectra.</p> <p>Results</p> <p>NP1P-NP3P acquired potent bactericidal activities via membrane-disruption although P1P-P3P were not antimicrobial. Far-ultraviolet CD spectra of NP1P-NP3P were similar to those of their parent peptides P1P-P3P, suggesting that NP1P-NP3P acquire microbicidal activity without remarkable conformational changes. NP1P-NP3P killed bacteria in almost parallel fashion with their membrane-disruptive activities, suggesting that the mode of action of those peptides was membrane-disruption. Interestingly, membrane-disruptive activity of NP1P-NP3P were highly diversified against acidic liposomes, indicating that the acid-amide-substituted nematode cecropin pro-region was expected to be a unique and promising skeleton for novel synthetic CAMPs with diversified membrane-discriminative properties.</p> <p>Conclusions</p> <p>The acid-amide substitution successfully generated some novel CAMPs in our trial study. These novel CAMPs were derived from natural non-antimicrobial sequences, and their sequences were completely distinct from any categories of known CAMPs, suggesting that such mutated natural sequences could be a promising source of novel skeletons of CAMPs.</p

    Genome-wide association study of aphid abundance highlights a locus affecting plant growth and flowering in Arabidopsis thaliana

    Full text link
    Plant life-history traits, such as size and flowering, contribute to shaping variation in herbivore abundance. Although plant genes involved in physical and chemical traits have been well studied, less is known about the loci linking plant life-history traits and herbivore abundance. Here, we conducted a genome-wide association study (GWAS) of aphid abundance in a field population of Arabidopsis thaliana. This GWAS of aphid abundance detected a relatively rare but significant variant on the third chromosome of A. thaliana, which was also suggestively but non-significantly associated with the presence or absence of inflorescence. Out of candidate genes near this significant variant, a mutant of a ribosomal gene (AT3G13882) exhibited slower growth and later flowering than a wild type under laboratory conditions. A no-choice assay with the turnip aphid, Lipaphis erysimi, found that aphids were unable to successfully establish on the mutant. Our GWAS of aphid abundance unexpectedly found a locus affecting plant growth and flowering

    A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects

    Get PDF
    We thank the Genomic Technologies Facility (GTF) and the Central Imaging Facility (CIF) of the University of Lausanne for expert technical support. We thank Valérie Dénervaud Tendon, Guillaume Germion, Deborah Mühlemann, and Kayo Konishi for technical assistance and John Danku and Véronique Vacchina for ICP-MS analysis. This work was funded by grants from the Swiss National Science Foundation (SNSF), the European Research Council (ERC) to NG and a Human Frontiers Science Program (HFSP) grant to JT and NG. GL and CM were supported by the Agropolis foundation (Rhizopolis) and the Agence Nationale de la Recherche (HydroRoot; ANR-11-BSV6-018). MB was supported by a EMBO long-term postdoctoral fellowship, JEMV by a Marie Curie IEF fellowship and TK by the Japan Society for the Promotion of Sciences (JSPS).Peer reviewedPublisher PD

    The Peptide Sequence of Diacyl Lipopeptides Determines Dendritic Cell TLR2-Mediated NK Activation

    Get PDF
    Natural killer (NK) cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC) in various modes. In this study, we synthesized 16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2Cys) lipopeptides with sequences designed from lipoproteins of Staphylococcus aureus, and assessed their functional properties using mouse (C57BL/6) bone marrow-derived DC (BMDC) and NK cells. NK cell activation was evaluated by three criteria: IFN-γ production, up-regulation of NK activation markers and cytokines, and NK target (B16D8 cell) cytotoxicity. The diacylated lipopeptides acted as TLR2 ligands, inducing up-regulation of CD25/CD69/CD86, IL-6, and IL-12p40, which represent maturation of BMDC. Strikingly, the Pam2Cys lipopeptides induced mouse NK cell activation based on these criteria. Cell-cell contact by Pam2Cys peptide-stimulated BMDC and NK cells rather than soluble mediators released by stimulated BMDC induced activation of NK cells. For most lipopeptides, the BMDC TLR2/MyD88 pathway was responsible for driving NK activation, while some slightly induced direct activation of NK cells via the TLR2/MyD88 pathway in NK cells. The potential for NK activation was critically regulated by the peptide primary sequence. Hydrophobic or proline-containing sequences proximal to the N-terminal lipid moiety interfered with the ability of lipopeptides to induce BMDC-mediated NK activation. This mode of NK activation is distinctly different from that induced by polyI:C, which is closely associated with type I IFN-inducing pathways of BMDC. These results imply that the MyD88 pathway of BMDC governs an alternative NK-activating pathway in which the peptide sequence of TLR2-agonistic lipopeptides critically affects the potential for NK activation

    Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana

    Full text link
    BACKGROUND: Genetic variation in plants alters insect abundance and community structure in the field; however, little is known about the importance of a single gene among diverse plant genotypes. In this context, Arabidopsis trichomes provide an excellent system to discern the roles of natural variation and a key gene, GLABRA1, in shaping insect communities. In this study, we transplanted two independent glabrous mutants (gl1-1 and gl1-2) and 17 natural accessions of Arabidopsis thaliana to two localities in Switzerland and Japan. RESULTS: Fifteen insect species inhabited the plant accessions, with the insect community composition significantly attributed to variations among plant accessions. The total abundance of leaf-chewing herbivores was negatively correlated with trichome density at both field sites, while glucosinolates had variable effects on leaf chewers between the sites. Interestingly, there was a parallel tendency for the abundance of leaf chewers to be higher on gl1-1 and gl1-2 than on their different parental accessions, Ler-1 and Col-0, respectively. Furthermore, the loss of function in the GLABRA1 gene significantly decreased the resistance of plants to the two predominant chewers; flea beetles and turnip sawflies. CONCLUSIONS: Overall, our results indicate that insect community composition significantly varies among A. thaliana accessions across two distant field sites, with GLABRA1 playing a key role in altering the abundance of leaf-chewing herbivores. Given that such a trichome variation is widely observed in Brassicaceae plants, the present study exemplifies the community-wide effect of a single plant gene on crucifer-feeding insects in the field

    The UV RESISTANCE LOCUS 8-Mediated UV-B Response Is Required Alongside CRYPTOCHROME 1 For Plant Survival Under Sunlight In Field Conditions

    Full text link
    As sessile, photoautotrophic organisms, plants are subjected to fluctuating sunlight that includes potentially detrimental ultraviolet-B radiation (UV-B). Experiments under controlled conditions have shown that the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) controls acclimation and tolerance to UV-B in Arabidopsis thaliana; however, its long-term impacts on plant fitness remain poorly understood in naturally fluctuating environments. Here we quantified the survival and reproduction of different Arabidopsis mutant genotypes in diverse field and laboratory conditions. We found that uvr8 mutants produced more fruits than wild type when grown in growth chambers under artificial low UV-B conditions but not in natural field conditions, indicating a fitness cost in absence of UV-B stress. Importantly, independent double mutants of UVR8 and the blue-light photoreceptor gene CRYPTOCHROME 1 (CRY1) in two genetic backgrounds showed a drastic reduction in fitness in the field. Experiments with UV-B attenuation experiments in field and with supplemental UV-B in growth chambers demonstrated that UV-B caused the conditional cry1 uvr8 lethality phenotype. Using RNA-seq data of field-grown single and double mutants, we explicitly identified genes showing statistical interaction of UVR8 and CRY1 mutations in the presence of UV-B in the field. They were enriched in Gene Ontology categories related to oxidative stress, photoprotection, and DNA damage repair in addition to UV-B response. Our study demonstrates the functional importance of the UVR8-mediated response across life stages in natura, which is partially redundant with that of cry1. Moreover, these data provide an integral picture of gene expression associated with plant responses under field conditions

    Cognitive behavioral therapy with interoceptive exposure and complementary video materials for irritable bowel syndrome (IBS): protocol for a multicenter randomized controlled trial in Japan

    Get PDF
    BackgroundThere is growing evidence of the treatment efficacy of cognitive behavioral therapy (CBT) for irritable bowel syndrome (IBS). CBT is recommended by several practice guidelines for patients with IBS if lifestyle advice or pharmacotherapy has been ineffective. Manual-based CBT using interoceptive exposure (IE), which focuses on the anxiety response to abdominal symptoms, has been reported to be more effective than other types of CBT. One flaw of CBT use in general practice is that it is time and effort consuming for therapists. Therefore, we developed a set of complementary video materials that include psycho-education and homework instructions for CBT patients, reducing time spent in face-to-face sessions while maintaining treatment effects. The purpose of this study is to examine the effects of CBT-IE with complementary video materials (CBT-IE-w/vid) in a multicenter randomized controlled trial (RCT).MethodsThis study will be a multicenter, parallel-design RCT. Participants diagnosed with IBS according to the Rome IV diagnostic criteria will be randomized to either the treatment as usual (TAU) group or the CBT-IE-w/vid + TAU group. CBT-IE-w/vid consists of 10 sessions (approximately 30 min face-to-face therapy + viewing a video prior to each session). Patients in the CBT-IE-w/vid group will be instructed to pre- view 3- to 13-min videos at home prior to each face-to-face therapy visit at a hospital. The primary outcome is the severity of IBS symptoms. All participants will be assessed at baseline, mid-treatment, post-treatment, and follow-up (3 months after post assessment). The sample will include 60 participants in each group.DiscussionTo our knowledge, this study will be the first RCT of manual-based CBT for IBS in Japan. By using psycho-educational video materials, the time and cost of therapy will be reduced. Manual based CBTs for IBS have not been widely adopted in Japan to date. If our CBT-IE-w/vid program is confirmed to be more effective than TAU, it will facilitate dissemination of cost-effective manual-based CBT in clinical settings

    PRIMA: a rapid and cost-effective genotyping method to detect single-nucleotide differences using probe-induced heteroduplexes

    Full text link
    Targeted mutagenesis by programmable site-specific nucleases like CRISPR typically produce 1-base pair (bp) insertion or deletion (indel) mutations. Although several methods have been developed to detect such 1-bp indels, each method has pros and cons in terms of cost and/or resolution. Heteroduplex mobility assay (HMA) is a traditional technique detecting small base pair differences but it has a limited resolution of mutation size and the band patterns are often complex. Here, we developed a new method called PRIMA (Probe-Induced HMA) using a short single-stranded DNA molecule as a probe in HMA. By utilizing a 40-mer probe containing a 5-nucleotide deletion, we assessed the mobility of a heteroduplex with a target DNA fragment from a plant, bacterium, and human. This method allowed us to detect a 1-bp indel mutation consistently. We also showed that SNPs can be detected using PRIMA. PRIMA provides a rapid and cost-effective solution for the genotyping
    corecore