128 research outputs found
Automated labeling of PDF mathematical exercises with word N-grams VSM classification
In recent years, smart learning environments have become central to modern education and support students and instructors through tools based on prediction and recommendation models. These methods often use learning material metadata, such as the knowledge contained in an exercise which is usually labeled by domain experts and is costly and difficult to scale. It recognizes that automated labeling eases the workload on experts, as seen in previous studies using automatic classification algorithms for research papers and Japanese mathematical exercises. However, these studies didn’t delve into fine-grained labeling. In addition to that, as the use of materials in the system becomes more widespread, paper materials are transformed into PDF formats, which can lead to incomplete extraction. However, there is less emphasis on labeling incomplete mathematical sentences to tackle this problem in the previous research. This study aims to achieve precise automated classification even from incomplete text inputs. To tackle these challenges, we propose a mathematical exercise labeling algorithm that can handle detailed labels, even for incomplete sentences, using word n-grams, compared to the state-of-the-art word embedding method. The results of the experiment show that mono-gram features with Random Forest models achieved the best performance with a macro F-measure of 92.50%, 61.28% for 24-class labeling and 297-class labeling tasks, respectively. The contribution of this research is showing that the proposed method based on traditional simple n-grams has the ability to find context-independent similarities in incomplete sentences and outperforms state-of-the-art word embedding methods in specific tasks like classifying short and incomplete texts
A Keck/DEIMOS Spectroscopy of Lyman Alpha Blobs at Redshift z=3.1
We present the results of an intermediate resolution (~2 angstrom)
spectroscopy of a sample of 37 candidate Lyman alpha blobs and emitters at
redshift z=3.1 using the DEIMOS spectrograph on the 10 m Keck telescope. The
emission lines are detected for all the 37 objects and have variety in their
line profiles. The Lyman alpha velocity widths (FWHM) of the 28 objects with
higher quality spectra, measured by fitting a single Gaussian profile, are in
the range of 150 - 1700 km/s and correlate with the Lyman alpha spatial
extents. All the 12 Lyman alpha blobs (>16 arcsec^2) have large velocity widths
of > 500 km/s. While there are several possible physical interpretations of the
Lyman alpha velocity widths (motion of gravitationally-bound gas clouds,
inflows, merging of clumps, or outflows from superwinds), the large velocity
widths of the Lyman alpha blobs suggest that they are the sites of massive
galaxy formation. If we assume gravitationally-bound gas clouds, the dynamical
masses of the Lyman alpha blobs are estimated to be ~10^12 - 10^13 Msun. Even
for the case of outflows, the outflow velocities are likely to be the same
order of the rotation velocities as inferred from the observational evidence
for local starburst galaxies.Comment: Accepted for publication in ApJ
Feasibility study of high-resolution coherent diffraction microscopy using synchrotron x rays focused by Kirkpatrick-Baez mirrors
High-flux coherent x rays are necessary for the improvement of the spatial resolution in coherent x-ray diffraction microscopy (CXDM). In this study, high-resolution CXDM using Kirkpatrick-Baez (KB) mirrors is proposed, and the mirrors are designed for experiments of the transmission scheme at SPring-8. Both the photon density and spatial coherence of synchrotron x rays focused by the KB mirrors are investigated by wave optical simulation. The KB mirrors can produce nearly diffraction-limited two-dimensional focusing x rays of ∼1 μm in size at 8 keV. When the sample size is less than ∼1 μm, the sample can be illuminated with full coherent x rays by adjusting the cross-slit size set between the source and the mirrors. From the estimated photon density at the sample position, the feasibility of CXDM with a sub- 1-nm spatial resolution is suggested. The present ultraprecise figuring process enables us to fabricate mirrors for carrying out high-resolution CXDM experiments.Yukio Takahashi, Yoshinori Nishino, Hidekazu Mimura, Ryosuke Tsutsumi, Hideto Kubo, Tetsuya Ishikawa, and Kazuto Yamauchi, "Feasibility study of high-resolution coherent diffraction microscopy using synchrotron x rays focused by Kirkpatrick–Baez mirrors", Journal of Applied Physics 105, 083106 (2009) https://doi.org/10.1063/1.3108997
High-resolution projection image reconstruction of thick objects by hard x-ray diffraction microscopy
Hard x-ray diffraction microscopy enables us to observe thick objects at high spatial resolution. The resolution of this method is limited, in principle, by only the x-ray wavelength and the largest scattering angle recorded. As the resolution approaches the wavelength, the thickness effect of objects plays a significant role in x-ray diffraction microscopy. In this paper, we report high-resolution hard x-ray diffraction microscopy for thick objects. We used highly focused coherent x rays with a wavelength of ∼0.1 nm as an incident beam and measured the diffraction patterns of a ∼150-nm -thick silver nanocube at the scattering angle of ∼3°. We observed a characteristic contrast of the coherent diffraction pattern due to only the thickness effect and collected the diffraction patterns at nine incident angles so as to obtain information on a cross section of Fourier space. We reconstructed a pure projection image by the iterative phasing method from the patched diffraction pattern. The edge resolution of the reconstructed image was ∼2 nm, which was the highest resolution so far achieved by x-ray microscopy. The present study provides us with a method for quantitatively observing thick samples at high resolution by hard x-ray diffraction microscopy. © 2010 The American Physical Society.Yukio Takahashi, Yoshinori Nishino, Ryosuke Tsutsumi, Nobuyuki Zettsu, Eiichiro Matsubara, Kazuto Yamauchi, and Tetsuya Ishikawa. Phys. Rev. B 82(21), 214102 (2010)
Large-scale Filamentary Structure around the Protocluster at Redshift z=3.1
We report the discovery of a large-scale coherent filamentary structure of
Lyman alpha emitters in a redshift space at z=3.1. We carried out spectroscopic
observations to map the three dimensional structure of the belt-like feature of
the Lyman alpha emitters discovered by our previous narrow-band imaging
observations centered on the protocluster at z=3.1. The feature was found to
consist of at least three physical filaments connecting with each other. The
result is in qualitative agreement with the prediction of the 'biased'
galaxy-formation theories that galaxies preferentially formed in large-scale
filamentary or sheet-like mass overdensities in the early Universe. We also
found that the two known giant Lyman alpha emission-line nebulae showing high
star-formation activities are located near the intersection of these filaments,
which presumably evolves into a massive cluster of galaxies in the local
Universe. This may suggest that massive galaxy formation occurs at the
characteristic place in the surrounding large-scale structure at high redshift.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter
An experimental procedure for precise evaluation of electron density distribution of a nanostructured material by coherent x-ray diffraction microscopy
We developed a coherent x-ray diffraction microscopy (CXDM) system that enables us to precisely evaluate the electron density of an isolated sample. This system enables us to determine the dose per surface unit of x rays illuminated onto an isolated sample by combining incident x-ray intensity monitoring and the CXDM of a reference sample. By using this system, we determined the dose of x rays illuminated onto a nanostructured island fabricated by focused-ion-beam chemical vapor deposition and derived the electron density distribution of such a nanostructured island. A projection image of the nanostructured island with a spatial resolution of 24.1 nm and a contrast resolution higher than 2.3× 107 electrons/pixel was successfully reconstructed. © 2010 American Institute of Physics.Yukio Takahashi, Hideto Kubo, Yoshinori Nishino, Hayato Furukawa, Ryosuke Tsutsumi, Kazuto Yamauchi, Tetsuya Ishikawa, and Eiichiro Matsubara, "An experimental procedure for precise evaluation of electron density distribution of a nanostructured material by coherent x-ray diffraction microscopy", Review of Scientific Instruments 81(3), 033707 (2010) https://doi.org/10.1063/1.3361265
Coupled spin-charge-phonon fluctuation in the all-in/all-out antiferromagnet Cd2Os2O7
We report on a spin-charge fluctuation in the all-in/all-out pyrochlore magnet Cd2Os2O7, where the spin fluctuation is driven by the conduction of thermally excited electrons/holes and associated fluctuation of Os valence. The fluctuation exhibits an activation energy significantly greater than the spin-charge excitation gap and a peculiar frequency range of 10(6)-10(10) s(-1). These features are attributed to the hopping motion of carriers as small polarons in the insulating phase, where the polaron state is presumably induced by the magnetoelastic coupling via the strong spin-orbit interaction. Such a coupled spin-charge-phonon fluctuation manifests as a part of the metal-insulator transition that is extended over a wide temperature range due to the modest electron correlation comparable with other interactions characteristic for 5d-subshell systems
- …