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Abstract 

In recent years, smart learning environments have become central to modern edu-
cation and support students and instructors through tools based on prediction 
and recommendation models. These methods often use learning material metadata, 
such as the knowledge contained in an exercise which is usually labeled by domain 
experts and is costly and difficult to scale. It recognizes that automated labeling eases 
the workload on experts, as seen in previous studies using automatic classification 
algorithms for research papers and Japanese mathematical exercises. However, these 
studies didn’t delve into fine-grained labeling. In addition to that, as the use of materi-
als in the system becomes more widespread, paper materials are transformed into PDF 
formats, which can lead to incomplete extraction. However, there is less emphasis 
on labeling incomplete mathematical sentences to tackle this problem in the previous 
research. This study aims to achieve precise automated classification even from incom-
plete text inputs. To tackle these challenges, we propose a mathematical exercise 
labeling algorithm that can handle detailed labels, even for incomplete sentences, 
using word n-grams, compared to the state-of-the-art word embedding method. 
The results of the experiment show that mono-gram features with Random Forest 
models achieved the best performance with a macro F-measure of 92.50%, 61.28% 
for 24-class labeling and 297-class labeling tasks, respectively. The contribution of this 
research is showing that the proposed method based on traditional simple n-grams 
has the ability to find context-independent similarities in incomplete sentences 
and outperforms state-of-the-art word embedding methods in specific tasks like clas-
sifying short and incomplete texts.

Keywords:  Automatic labeling, Word n-gram, Random forest, Incomplete text 
classification, Word embedding, Mathematical education, Mathematical education in 
Japan

Introduction
Labeling learning materials is a key problem in scaling smart learning environments 
(Contractor et al., 2015). The availability of knowledge metadata for learning materials is 
critical as important decisions, such as what to recommend for study for the next time, 
are usually made based on the metadata and the learners’ previous experience (Vovides 
et al., 2007). Each exercise in a textbook for each subject usually has a set of course units 
that clarify the category of each exercise and are very useful in educational situations and 
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the framework of educational problems. Recently, there has also been a growing trend in 
the adoption of nationwide curriculum or studying guidelines, such as: the Australian 
digital curriculum called Australian Curriculum, Assessment and Reporting Authority 
(ACARA) in Australia (Ditchburn, 2012), Common Core Standards (Porter et al., 2011; 
Ritter, 2009) in America, Mathematics Curriculum Standards for Compulsory Education 
(MOE, 2012) in China, and the Courses of Study (MEXT, 2018) in Japan. These guide-
lines provide regulations for education and instruction, as well as standard units for each 
subject (MEXT, 2018). Educators select learning materials based on these guidelines to 
meet the requirements of the compulsory curriculum. Therefore, learning materials that 
do not contain knowledge metadata are difficult to incorporate into the course of study, 
and the automated assignment of labels to learning materials could help overcome this 
problem.

In this study, the task of labeling learning materials has two main objectives: yielding 
high accuracy for detailed classification and labeling incomplete texts. First, as is com-
mon with other labeling tasks, the performance of the classification task is very impor-
tant as the aim of labeling materials is to reduce the burden of domain experts who are 
usually manually tackling the knowledge classification task. Detailed labeling of learn-
ing materials is very useful in the educational field, but assigning the classification to 
problems manually is a hard task that requires the cooperation of experts, and the bur-
den could be alleviated through automation. Schubotz et al. (2020), examined the task 
of automatically assigning coarse labels according to a mathematical subject classifica-
tion scheme for retrieving research papers and literature on mathematics in English. It 
was found that the support provided by the proposed automatic classification algorithm 
resulted in a reduced manual classification burden for domain experts. Another study 
proposed the WE-KE model, which combines word embedding and knowledge compo-
nents, to achieve accurate unit classification of Japanese mathematical exercises (Tian 
et al., 2022). With the shift to ICT education, researchers label the exercises to utilize 
them for learning pattern analysis (Wang et al., 2022). While more detailed classifica-
tions may be necessary depending on the intended use, such detailed labeling was not 
conducted in those studies.

Second, as extracting complete text is sometimes difficult due to the format of learning 
materials, another approach for labeling incomplete text is required. With the increased 
digitization of learning materials and their use in smart learning environments, teachers 
and publishers are migrating existing non-digital materials to these systems. As these 
learning materials were usually not created while considering digitization, it is often seen 
that publishers will provide publication-quality PDFs directly to teachers or educational 
institutes. Problems are caused when uploading and analyzing such materials in learning 
environments as it is difficult to extract all of the information, such as: text, formulas, 
graphs, and images, from publication-quality PDFs, resulting in incomplete information 
extraction (Abekawa & Aizawa, 2016). While researchers have tried labeling with sen-
tences, images, formulas, or a combination of them (Bhartiya et al., 2016; Shen, et al., 
2021; Tian et al., 2022; Wang et al., 2022), there has been less focus on classification with 
incomplete information of mathematical sentences. In this study, we propose a math-
ematical exercise labeling algorithm that can deal with detailed labels, even for incom-
plete sentences, by focusing on the exact match of a set of mathematical exercises and 
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predicting a unit using an existing machine learning method or calculating the similarity 
of any given exercise to a set of weighted word n-grams. Therefore, we aim to answer the 
following research question:

RQ:  What are the best features and models that can assign detailed and precise labels 
from incomplete mathematical exercise text?

We propose an algorithm to automatically provide classification results for preproc-
essed exercise sentences that have been extracted from publication-quality PDFs that 
include incomplete text. In the experiments of this study, two different levels of labels 
are assigned to each exercise for validation. We then predict the labels to evaluate the 
performance of the proposed algorithm and compare it to state-of-the-art word embed-
ding models.

Literature review
Labeling learning materials

National labeling standards for mathematical exercises

Often learning materials are labeled to notice easily what kind of knowledge is contained 
in an exercise. Government standards often provide some norms of mathematical exer-
cise classification, for example, in Japan the government provides common standards of 
subjects and directions for each unit of study that aim to develop the qualities and abili-
ties to think mathematically through mathematical activities in the Guidelines for the 
Course of Study for Senior High Schools (MEXT, 2009, 2018), and teachers prepare exer-
cises by following these directions. In the US, the Common Core State Standards (CCSS) 
classification refers to the learning standards for K-12 education that was developed in 
collaboration with teachers, school administrators, and professionals to provide a clear 
and consistent framework for preparing children for college and career success (Ritter, 
2009). It includes 11 units that students will study over the course of nine years, plus 
appendices that cover counting and radix, operations and algebraic thinking, decimal 
numbers and operations, fraction operations, measurement and data, ratios and propor-
tion relationships, number systems, expressions and equations, functions, geometry, sta-
tistics, and probability, as well as content taught in higher grades (Shintani, 2014). In 
Mathematics Curriculum Standards for Compulsory Education in China (MOE, 2012), 
learning items are distributed into one of up to four main parts and assigned categories 
10 keywords, including: number sense, symbolic awareness, space concept, geometry 
intuitive, data analysis concept, computation ability, reasoning ability, model idea, appli-
cation awareness, and innovative awareness (Guo et al., 2018). In Australian Curriculum, 
Assessment and Reporting Authority, treated as an Australian digital curriculum (Ditch-
burn, 2012), units are called “content strands” and consist of number and algebra, meas-
urement and geometry, and statistics and probability. Each of these strands has 6, 5, and 
2 units, respectively, and the structure can be described as hierarchical (ACARA). There 
is also a specialized system called Zentralblatt MATH (zbMATH) that is a mathematics-
related bibliographic database and literature search engine. The Mathematics Subject 
Classification (MSC) which zbMATH helps maintain is used to classify items in math-
ematical sciences literature. Every 10 years, two editorial groups solicit input from the 
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mathematical community. The new MSC (MSC2020) includes 63 two-digit classifica-
tions, 529 three-digit classifications, and 6006 five-digit classifications (Dunne & Hulek, 
2020; Kühnemund, 2016).

As the topic standards mentioned above can be important rules when classifying many 
mathematical materials, some researchers decided to tackled labeling math exercises 
based on the standard automatically. One study has attempted to classify according to 
the CCSS (Ritter, 2009), and this study used 385 different labels to classify 12 years of 
mathematics materials from kindergarten through to high school (Shen et  al., 2021). 
One study also proposed the MathBERT model (Shen et  al., 2021), which is a model 
created by preparing a large mathematical corpus ranging from the pre-kindergarten to 
the graduate level and training a base BERT model (Devlin et al., 2019). However, these 
studies did not tackle the problem of incomplete text classification. In this study, we use 
information from MEXT to label exercise data in both a coarse and detailed method 
while focusing on incomplete exercise text labeling.

Labeling for analysis of how students learn

There is a trend toward analyzing learning behavior in a new way using labels assigned 
to teaching materials. Regarding the use of features in the analysis of learning effec-
tiveness, a study reported that the proposed system automatically assigned labels with 
learning materials and the study shows the assigned labels can assist in the discovery of 
students’ learning patterns (Wang et al., 2022). While the analysis using labels is novel in 
the research, the labeling conducted in this research was only for one class in the univer-
sity and was not generalized using a common standard.

Giving labels to exercises for knowledge tracing is also a hot research topic. One study, 
using multiple real data sets consisting of tens of thousands of users and items, showed 
that regression classification models could accurately and rapidly estimate student 
knowledge, even when student data is sparsely observed. In addition, the study showed 
that the model can handle multiple knowledge elements and side information such as 
the number of trials of items and skill levels (Vie et al., 2019). If no labels were given to 
each exercise, the study could not accurately predict the student’s performance.

It is also useful to categorize any exercise for recommending a specific exercise to 
enhance students’ understanding. One study discusses the application of a topic-based 
tree structure to personalized adaptive educational systems for its transparency for the 
users (Sosnovsky & Brusilovsky, 2015). Another study focuses on the visualization of 
the relationship between any combination of two topics to notify the achievements of 
each student individually, which aims to be consistent among the assessments in differ-
ent courses, to do meaningful feedback to individual, and to grasp the students’ long-
term progress (Khosravi & Cooper, 2018). There has also been research into extracting 
labels from learning materials to form knowledge structure representations that learners 
can use to increase their awareness of the study process (Flanagan et al., 2019). These 
research examples show that it is easier to obtain or utilize detailed information about 
the characteristics of the material if they are labeled in advance. In addition, there is 
one system, called BookRoll, that any learner can post the PDF materials freely without 
selecting any topics (Flanagan & Ogata, 2018), so in this context the automatic labeling 
system helps the materials to obtain some topics.
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In this study, we tackle the task of text classification to automate knowledge labe-
ling process for incomplete text by proposing a more detailed and highly accurate 
method based on n-grams. The proposed method could improve the use of materials 
with knowledge labeling and assist in the analysis of how students study using these 
materials.

Labeling to reduce the burden on domain experts

Automatic labeling and classification of learning materials is a prominent area of clas-
sification research in education. Schubotz et  al., (2020), proposed an automatic clas-
sification method in a mathematical subject classification scheme for organizing 
mathematical literature, achieving a classification agreement rate of 81% with very close 
accuracy in two large peer-review services. It also enabled an 86% reduction in labor 
when compared to the manual classification task. The result shows the advantage of 
labeling automatically, although the research has a different context when compared to 
the present paper. Tian et  al. (2022), proposed a unit classification method that com-
bines natural language processing techniques with a method for extracting keywords 
from mathematical exercises, and this resulted in a 25% labor reduction compared to 
manual classification. While the paper provides a mostly accurate classification of units, 
it only provides as detailed a classification as the Courses of Study even though more 
detailed labeling may be necessary depending on the intended use.

Automated detailed labeling must be accurate in order to reduce the burden on 
domain experts and assist in assigning labels to exercises. In this study, we developed 
a more detailed automated classification that has high accuracy even when labeling 
exercises that contain incomplete text.

Hierarchical and automatic labeling of teaching materials

Hierarchical text classification (HTC) is a method that can classify objects into multi-
level detailed classifications, and this aims to assign one or more optimal categories 
to text documents from a hierarchical category space (Graovac, 2017) and literature 
in this area has applied this method to many different types of domains (Silla & Frei-
tas, 2011). Another study proposes a method of categorizing and labeling educa-
tional materials with various academic learning objectives (Bhartiya et al., 2016). This 
method selected words in the materials as labels and achieved extensive labeling in 
various grades and subjects.

When labeling the exercises, the granularity that is required depends on how the 
labels will be used, so by assigning different labels to each exercise the scope of use 
can be broadened. In the experiments, we assigned two labels to each exercise, such 
as: 1st level unit and 2nd level unit and measured the classification accuracy of each 
label. Previous studies related to labeling materials for use in Japanese schools don’t 
consider the hierarchical label. Tian et al. (2022) uses 24 labels for the Japanese high 
school curriculum, and Wang et al. (2022) uses 47 for a course at a university in Japan. 
Our study uses the most detailed labeling scheme of all previous studies into Japanese 
mathematical exercise classification with a total of 297 items at the 2nd unit level.
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Text vectorization method for classification tasks

N‑gram

We often use text mining, machine learning, and natural language processing to classify 
many kinds of text data, such as: electronic documents, online news, blogs, emails, and 
digital libraries, to obtain meaningful knowledge, and many classification methods have 
been proposed (Khan et al., 2010). Previously, Suen (1979) showed that n-gram classifi-
cation is effective to classify incomplete sentences from OCR. Text classification must 
work reliably for all input, and therefore must allow some tolerance for various types 
of text error problems, such as misspellings and grammatical errors in e-mail and char-
acter recognition errors in OCR-processed documents, and Cavnar and Trenkle (1994) 
argued that n-grams is an effective way to meet this requirement. Graovac (2014) pro-
posed an n-gram method for topic-based text classification using the characters in a text 
so that the method is independent of language and topic.

The task of classification using n-grams has been investigated in various studies. A 
study on the results of using an n-gram-based algorithm for Bangla text classification 
(Mansur, 2006) and a study that attempted to statistically estimate the expressive qual-
ity of an article by using word n-grams and part-of-speech n-grams in the article (Kob-
ayashi et  al., 2012). Despite the loss of semantic information, bag-of-n-grams-based 
methods have been shown to perform well in sentiment analysis (Li et al., 2016). Many 
studies have also found n-grams to be an effective tool for classification tasks in a variety 
of fields, such as in music analysis (Zheng et al., 2017).

However, there are still few studies that use n-gram to classify Japanese mathematical 
exercise materials. Our study uses n-grams and applies it as a novel method of Japanese 
mathematical text classification.

Word embedding

Recently, word embedding methods have become a popular text vectorization method, 
and one of the most representative and popular word embedding methods is Word2Vec 
(Mikolov et al., 2013). This method trains a model on context-independent distributed 
representations for words. Considering the context of the sentence using RNN or LSTM, 
machine learning improves the understanding of sentences, such as: ELMo (Peters et al., 
2018) that uses LSTM for a contextualized word embedding model. Moreover, OpenAI’s 
GPT model (Radford et al., 2019) is a model that can have enhanced flexibility for fine-
tuned tasks, which allows an AI to consider words at a distance and to compute it not 
as a Markov method, but in parallel. BERT (Devlin et al., 2019) is also a popular natural 
language model created by Google which has an attention mechanism instead of RNN 
and applies a masked language model for learning.

Prior studies have demonstrated the efficacy of word embedding for label classifica-
tion tasks. For instance, Dharma et al. (2022) utilized the Fasttext method to classify a 
dataset of 19,977 news articles and 20 news topics with 97.2% accuracy, outperform-
ing other word embedding techniques. However, in the case of short sentence exercises, 
the sentence vectorization methods using word embedding has been found to be less 
effective. Tian et al. (2022) applied word embedding for the classification of short Japa-
nese exercise texts, achieving an accuracy of 72.87%. The combination of this method 
along with the extraction of keywords, called the WE-KE model, further enhanced the 
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accuracy to 79.57%. These findings suggest that word embedding may not be as effective 
for short exercise texts. It is worth noting that for this experiment, incomplete sentences 
were employed as inputs.

The objective of this study is to introduce an automated classification algorithm capa-
ble of effectively categorizing short Japanese sentences found in mathematical exer-
cises. To accomplish this, we concentrate on achieving the best agreement between sets 
of mathematical exercises through the calculation of similarity using weighted word 
n-gram variance representations. The algorithm is then assessed by comparing it to sim-
ilar experiments conducted using prediction models, and its accuracy is calculated.

Morphological analysis and relation to reading comprehension

As a study of mathematical morphological analysis, it is popular to investigate the rela-
tionship between learners’ reading comprehension and their mathematical skills. It is 
suggested that general vocabulary may serve as a proxy for mathematics-specific vocab-
ulary in studies that do not include measures of mathematics-specific vocabulary (Chow 
& Ekholm, 2019). Much of the research investigating the relationship between language 
proficiency and math outcomes focuses specifically on vocabulary for reasons such as 
memorizing large numbers as words (Spelke & Tsivkin, 2001) and the need to under-
stand oral instruction (Chow & Ekholm, 2019).

While the present study does not specifically address the learners’ reading comprehen-
sion skills, but we use morphology to analyze the Japanese sentence and to create a vec-
tor representation.

Classification of incomplete exercise texts

According to previous research, exercise texts for classification task, which is called 
“TREC” in the paper, contains the least number of sentences and even the least number 
of vocabularies of all 7 dataset types, including movie review, sentiment classification 
dataset and subjectivity dataset (Liu & Guo, 2019). This fact indicates that an exercise 
text consists of relatively less characters. Previous studies have also shown that it is diffi-
cult to achieve adequate performance on the classification of short text by word embed-
ding which was also discussed in Sect. 2.2.2, and therefore another approach is required 
for this task.

Unlike other natural-language-presented subjects such as languages, history, and 
social science, mathematical learning materials involve the presentation of notations, 
formulas, and figures. Using the common PDF format, the processing of non-language 
information in the mathematical learning materials is costly and complex. Although 
prior studies have shown that formula processing is detectable if the layout and format 
are defined (Date & Isozaki, 2015; Fateman et  al., 1996), it is difficult to detect when 
they are not. Such issues arise during the uploading and analyzing of these materials in 
educational settings due to the challenge of fully extracting content like text, formulas, 
graphs, and images from published PDFs, leading to incomplete information retrieval 
(Abekawa & Aizawa, 2016). Hence, other methods should be investigated for the labe-
ling from incomplete text.

In this study, we aim to automatically label the mathematical learning materials by 
analyzing textual information which is readily extractable from PDF files.
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Mathematical education in Japan

Japanese students’ performance in mathematics is the highest level among countries in 
the world, which is said to be due to the influence of students’ confidence in mathemat-
ics, student Socio-Economic Status (SES), and school emphasis on academic success 
(Wang et al., 2023).

Japan’s Courses of Study are curriculum standards established by the Ministry of 
Education, Culture, Sports, Science and Technology (MEXT) to ensure that standards 
are maintained in all schools throughout Japan. They are revised approximately every 
10  years. In recent years, the decline in Japan’s performance in the PISA 2003 inter-
national achievement test has triggered a shift in educational policy toward improv-
ing academic achievement (Onishi, 2011). MEXT revision of that standard in 2009 
strengthened English foreign language learning and introduced task-based learning 
(MEXT, 2009). The latest revision, issued in 2018, set three items as learning objectives: 
“knowledge and skills,” “ability to think, judge, express” and “ability to learn and human-
ity” (MEXT, 2018). Students’ textbooks, exercises, and in-class learning are based on 
the Courses of Study. In mathematics, the curriculum guidelines divide mathematical 
knowledge and skills into categories, each of which has its own meaning. Table 1 shows 
the organization of mathematics units and their objectives as defined by the Courses of 
Study revised in 2009 and exercises in the materials in this study are prepared based on 
this. Because these standards are used all around Japan, the categorization of exercises 
can affect mathematical education throughout the country.

Technology is helping researchers better understand how students learn mathematics in 
order to improve studies on mathematical education (Fishback & Schlicker, 1996; Hussein, 
2023). In the context of mathematics in Japan, units on mathematics related to statistics 
have been introduced at every grade level, as indicated by the enhancement of statistical 
education, and learning activities using computers and other tools. A recent study has pro-
posed the use of programming environments to support the learning of statistics according 
to learner’s grade (Kayama et al., 2022). To support learners use of such environments, it is 
important for learners to be able to figure out which exercises are in which grade level of 

Table 1  Explanation of each organization part of the units (MEXT, 2009)

Part Description

I To provide students with an understanding of numbers and expressions, figures and measurements, 
quadratic functions, and data analysis, and to cultivate the acquisition of basic knowledge and proficiency 
in these skills, as well as to cultivate the ability to consider events mathematically, to recognize the merits 
of mathematics, and to develop an attitude of utilizing these skills

II To develop understanding of various expressions, figures and equations, exponential and logarithmic 
functions, trigonometric functions, and differential and integral calculus, to acquire basic knowledge and 
skills, to develop the ability to consider and express phenomena mathematically, and to foster an attitude 
to make use of such knowledge

III To deepen students’ understanding of curves on a plane, the complex plane, limits, differential and integral 
calculus, to develop their knowledge and skills, to develop their ability to consider and express phenom-
ena mathematically, and to foster an attitude to actively utilize these skills

A To make students understand the number of cases and probability, properties of integers, and properties 
of figures, to acquire basic knowledge and skills, to cultivate the ability to consider events mathematically, 
to recognize the goodness of mathematics, and to cultivate an attitude to utilize these skills

B To develop an understanding of probability distributions and statistical inferences, number sequences 
and vectors, to acquire basic knowledge and skills, to develop the ability to consider and express events 
mathematically, and to cultivate an attitude of using these skills
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similar statistical units without requiring teacher intervention. Another study has proposed 
the method to explain the unit structure of textbooks in order to relate knowledge in learn-
ing (Taniguchi & Itoh, 2023). However, without knowledge labeling of textbooks and exer-
cises, it is difficult to make use of such unit structures in educational settings.

In this study, we focus on the labeling of mathematics units and verify the assignment of 
units to textbooks and exercises, which have been the subject of much research. In addi-
tion, we focus on the Japanese context of mathematical education and use the most com-
mon standards in Japan.

Method
Our goal is to find an algorithm that can assign appropriate labels to educational materi-
als using characters extracted from math teaching material PDFs. In particular, we use the 
characters extracted from the math teaching material PDFs as input, vectorize them using 
natural language processing, train the vectors as features, and output the labels lpred.

We defined the method of predicting labels with the following two functions:

where t is a set of characters from a mathematical PDF material, v is a vector from t 
by vectorization. In the following section, we defined the functions fvec1 , fvec2 and 
fpred1 , fpred2 respectively as the methods of vectorization from characters and the meth-
ods of prediction from the vector. In other words, we defined fvec1 or fvec2 as the feature-
selecting method and did fpred1 or fpred2 as the model-selecting method. Note that there 
are a set of labels L that lpred can be selected from L . Figure 1 shows the experimental 
overview from inputting exercise PDF to outputting a prediction.

Data preparation

The input data in this experiment is a Japanese math exercise contained in a PDF file. To 
use the characters’ information of exercises, we first extract text and create a text set from 
the exercise PDF files. We defined datasets Q = {q1, q2, ..., qi, ..., qn} for each qi ∈ Q as an 
exercises’ text data set. Each q has its label li = {li1, li2} in advance, where li1, li2 represent 
the 1st level label, and the 2nd level label, respectively. A relation between a unit label and a 
subunit label can be formulated as follows:

(1)t
fvec
→

v
fpred
→

lpred ∈ L

(2)∀li12∈li11,li22∈li21
i11 �= i21 ⇒ i12 �= i22

Fig. 1  Overview of experiment
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We divide the obtained characters into meaningful chucks before converting them 
into vectors. This preprocessing provides us with word sets Ti = {ti1 , ti2 , ..., tij } of each Qi . 
n(Ti) equals j where n(X) represents the number of elements in the set X.

The exercise texts used are electronic pdf versions of each of the following exercise 
books:

•	 “Supplementary and Revised Edition Charting Mathematics from the Basics I + A”
•	 “Supplementary and Revised Edition Charting Mathematics from the Basics II + B”
•	 “Supplementary and Revised Edition Charting Mathematics from the Basics III”
•	 “Succeeding Mathematics I + A for Textbook Sidelines”
•	 “Succeeding Mathematics II + B for Textbook Sidelines”
•	 “Succeeding Mathematics III for Textbook Sidelines”

These exercise books are designed for high school students and align with the text-
books approved by the Japanese government (MEXT, 2021). They are produced by the 
same company responsible for the widely used textbooks in Japan.

We prepared text files by reading text data using the Python library Pdf2text (Palmer, 
2021). Note that PDF files are more difficult to obtain in their complete text form than 
HTML-formatted files (Ramakrishnan et al., 2012; Smith, 2007).

Japanese high school mathematics teachers created one 1st level unit label and one 
2nd level unit label for each exercise by referring to sections in their textbooks and map-
ping them to each other. There was a total of 2775 exercises, consisting of 24 1st level 
units and 297 2nd level units. The same 2nd level unit is never assigned across multiple 
1st level units. Each 1st level unit consists of between 25 and 200 exercises, with a mini-
mum of five exercises assigned per 2nd level unit. Table 2 shows the content of each 1st 
level unit, the organization part the unit belongs to, the number of 2nd level units it con-
tains ( n Ll2  ), the number of exercises it contains ( n(Ql) ), and the mean and standard 
deviation for the morphemes contained in each exercise ( 

−

n(Tl), sTl
 ). All of these 1st level 

units are math common standard in Japan. They are categorized into 5 big meaningful 
sets. The column “part” of Table 2 represents one of the five organization parts (refer to 
Table 1) that is assigned to the unit. Figure 2 shows an example of the hierarchical struc-
ture of 1st level unit and 2nd level unit. Figure 3 shows an example of an exercise and the 
1st level unit and 2nd level unit that has been assigned to it.

We used pdf2txt to extract the characters from the mathematical exercise PDF. Fig-
ure 4 shows an example of what was extracted from the mathematical exercise PDF. In 
the figure, (a) represents the raw PDF data of the exercise, (b) represents the extracted 
Japanese texts from (a), and (c) is an English translation of (b). As shown in (a) of the 
figure, while the information about the diagram in the PDF cannot be extracted, also the 
letters highlighted in blue in the PDF do not appear in the extracted text. These words 
consist of mathematical formulas “GH = 2OG”, figures such as “3” of “3点” (3 points), 
and symbols such as “ABC”. It is difficult to extract significant sentences from extracted 
texts because of the few of the text and symbols related to math equations could be 
extracted. We can see from (b) or (c) that we could not get the full sentence from PDF 
text, and it was also somewhat meaningless and difficult to comprehend.
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As Japanese text does not contain word boundaries, preprocessing to extract mor-
phemes is required and we used a package called Nagisa (Ikeda, 2021) for the mor-
phological analysis of text data. Nagisa is a package for the morphological analysis of 
Japanese sentences. One feature of Nagisa is that it can assign a part of speech to each 

Table 2  Detailed information of each 1st level unit

Unit Name Part English translation of the Unit Name n
(

Ll2
)

n(Ql)
−

n(Tl)
sTl

数と式 I Number and formula 18 125 51.8 43.3

集合と命題 I Set theory 9 60 124.9 79.4

二次関数 I Quadratic function 15 200 123.3 42.6

図形と計量 I Measuring graphics 10 85 78.7 49.7

データの分析 I Data analysis 3 25 107.0 60.2

式と証明 II Formulas and proofs 10 95 50.3 40.9

複素数と方程式 II Complex numbers and equations 12 115 66.5 45.1

図形と方程式 II Geometric equations 16 135 88.1 62.2

三角関数 II Trigonometric function 11 90 87.7 42.6

指数関数と対数
関数

II Exponential or logarithmic function 8 70 84.1 44.1

微分法 II Differentiation 6 100 125.0 51.9

積分法 II Integration 6 70 92.3 41.6

複素数平面 III Complex plane 8 100 111.7 59.5

極限 III Limit 12 120 83.2 43.0

式と曲線 III Equations and curves 18 175 145.2 64.9

微分法の応用 III High-leveled differentiation 17 175 110.1 46.2

積分法の応用 III High-leveled integration 18 200 91.6 54.6

場合の数 A Number of cases 13 120 121.9 104.3

確率 A Probability 11 90 115.3 74.9

図形の性質 A Geometric properties 16 110 87.4 54.6

整数の性質 A Properties of integers 16 160 81.8 61.7

平面上のベクトル B Two-dimensional vector 16 125 89.0 52.5

空間のベクトル B Three-dimensional vector 10 95 104.4 47.8

数列 B Sequence 18 135 114.3 57.9

All exercises 297 2775 98.5 61.4

Fig. 2  Example of the hierarchical structure of 1st and 2nd level unit
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segmented morpheme and can exclude words with a specific part of speech. Some 
parts of the text cannot precisely be divided into morphemes and therefore some 
parts of deviation are incorrect.

Vectorization methods

VSM created from N‑gram

We assumed that the words or a sequence of words in a sentence which has the same 
label will be similar to one and another, so we developed the n-gram word extracting 
method and compared the performance to methods using state-of-the-art word embed-
ding. As we will compare both word embeddings and n-grams in the same context, we 
have to convert the n-grams into a vector which represents the n-gram features.

Fig. 3  Example of exercises in the dataset. The 1st level unit “two-dimensional vector” and 2nd level unit “use 
of inner product” are assigned to an exercise in the figure

Fig. 4  Examples of PDF and extracted texts
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We first define vector VGi,k
 that is created from the specific exercise tokens Ti with all 

exercise text token T  and the number of consecutive tokens of k-gram k , such as:

Figure 5 shows the overview of method to convert n-gram of sentence into vector.
The method of creating n-grams is as follows:
We created a word k-grams gi,k ,l(1 ≤ l ≤ n(Ti)− k + 1) from the tokenized exercise 

sentences of t ∈ Ti . This means that k consecutive tokens from til to til+k−1
 were taken 

and stored in a single tuple:

Then we made Gi,k aggregating all l of gi,k ,l.

For vectorization using word n-grams, we prepared a list Gk that includes all gi,k ,l in 
all Gi,k . Then, we made a list called k-gram-list that indicates if each component of the n
-grams included the query n-grams. We defined the m th elements of k-gram-list:

For each i , the qi should have one vector whose length is the same as n(Gk) . The i th 
value of v at k-gram, VGi,k ,m ∈ VGi,k

 , is determined by the following formula:

When Nagisa morphologically analyzes numbers, it recognizes each number as a 
one-digit noun. In mathematical texts, different numerals are treated as different mor-
phemes, so we created an algorithm that treats digits as a single number, as shown in 

(3)fvec1(T ,Ti, k) → VGi,k

(4)gi,k ,l =
(

til , til+1
, . . . , til+k−1

)

(5)Gi,k = gi,k ,1, gi,k ,2, . . . , gi,k ,n(Ti)−k+1

(6)Gk =
{

gx,k ,z|∃x,z(x = i) ∧ (z = l)
}

(7)k − gram− list[m] = gm
(

gm ∈ Gk , ∀x,y, x �= y ⇒ gx �= gy, 0 ≤ m < n(Gk)
)

(8)VGi,k ,m =

{

1
(

gm ∈ Gi,k

)

0(otherwise)

Fig. 5  Example of the way to extract n-grams

Fig. 6  Example formula processing added to Nagisa
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Fig. 6, and treated all numbers as the same thing. This process makes easier to find the 
same exercise except for numbers or formula.

We collected the n-gram data of the exercise texts. In n-grams, it is necessary to deter-
mine the value of n for good classification accuracy. Although there are some studies that 
explore appropriate values of n for each task, as research has shown that large n-grams 
have advantages in generating features that can be interpreted in malware analysis (Raff 
et al., 2018), in almost all previous studies n values are very small, and n > 6 is extremely 
rare. Larger values of n are not tested due to the computational burden and the risk of 
overfitting. So in this study, we conducted n-g extraction for 1 ≤ n ≤ 6 . Table 3 shows 
the results of the number of n-grams with 1 ≤ n ≤ 6 . Figure 7 shows the overall flow of 
creating n-grams with Nagisa. In the figure, (a) represents the extracted full text data. 
The item (b) represents a list of morphemes with part of the speech of each morpheme: 
n, p, v, s stands for noun, particle, verb, suffix, respectively. The item (c) represents an 
obtained list of morphemes processed numbers by the method illustrated in Fig. 6. The 
item (d) represents the completely obtained bi-gram from (a).

Word embedding vectorization  We defined vector VEi that is created from the specific 
exercise tokens Ti (1 ≤ i ≤ n(Q)) and the model for word embedding model, i.e.

For vectorization with word embedding, we used a model called fastText (Joulin et al., 
2017). There is a website, https://​fastt​ext.​cc/​docs/​en/​crawl-​vecto​rs.​html, which has 
pre-trained models for 157 languages. In this experiment, we used the Japanese model, 

(9)fvec2(Ti,model) → VEi

Table 3  The number of n-gram elements in the vectors

n Number 
of n-gram 
elements

1 2451

2 20,424

3 56,324

4 95,536

5 130,034

6 157,546

Fig. 7  Processing flow of creating n-grams with Nagisa

https://fasttext.cc/docs/en/crawl-vectors.html
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which combines three methods to represent input sentence data in 300 dimensions: 
character 5-gram, weighting by position, and Word2Vec (Church, 2017).

Label prediction by vectorized sentence

Prediction by calculating cosine similarity

For any exercises text T  , we use score s(Ta,Tb) to measure the similarity of texts between 
Ta and Tb . The higher s(Ta,Tb) is, the more similar Ta and Tb are. The answer of predict-
ing labels with finding similarity of exercises can be formulated as: Given a set of query 
exercise text vector vquery , a labeled-exercise text vlabeled that has the label llabeled , weight 
parameters function fw , our goal is to integrate these heterogeneous materials to meas-
ure the similarity scores of exercise pairs and predict the 1st level unit label or the 2nd 
level unit label for any vquery by selecting the candidate label lpred with a predicted label, 
i.e.

 where Vlabeled , Llabeled is the set of vectors of labeled data and labels of them respec-
tively, fw is the weight parameters function, and L is the domain of labels in the data. The 
selected label for query lpred is the prediction label of the exercises.

In this algorithm, as shown in Fig.  1, the data set is divided into label data and 
query, and the similarity between the set of word n-grams in the label data and the set 
of word n-grams in the query is calculated. Here, the similarity of the vectors is the 
values

(

vlX , vquery
)

 obtained using the cosine similarity method, where vlX , vquery repre-
sent the vector of word n-grams of the labeled data with the label lX (1 ≤ X ≤ n(L)) and 
the vector of word n-grams of the query, respectively.

We then compute slX ,query by aggregating s
(

vlX , vquery
)

 of all vector vlX with label lX , and 
substitute them all into the determined weight function fw . Previous studies improve 
accuracy by weighting for realistic non-homogeneous data sets. One study successfully 
achieved high accuracy using cosine similarity with added weighting to effectively train 
CNNs in realistic learning situations such as class imbalance, small size, and label noise 
(Kobayashi, 2021). Weighting explanatory variables with generated n-grams is said to be 
an effective means of improving text classification accuracy (Graovac et al., 2015). The 
calculation formula of slX ,query is as follows:

 where VlabeledX represents the labeled vector assigned label X . Finally, we find slX ,query for 
all lX and determine lpred,query as follows:

(10)fpred1
(

vquery,Vlabeled , Llabeled , fw
)

→ lpred ∈ L

(11)s
(

vlX , vquery
)

=
vlX ·vquery

�vlX ��vquery�

(12)slX ,query = fw

(

ssetlX ,query

)

(13)ssetlX ,query
=

{

s
(

vlX1
, vquery

)

, s
(

vlX2
, vquery

)

, . . . , s

(

vlX
n
(

VlabeledX

)

, vquery

)}
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What this formula means is that the predicted label is the same label as the problem 
with higher similarity. Various changes in the function fw are used to determine a 
more suitable weighting for classification. In this experiment, we defined the func-
tions as follows:

where HX ,k represents the k th highest value in ssetlX ,query . The prediction vector for 
query, vquery , is defined as the array of values [sl1,query, sl2,query, . . . , sln(L),query] obtained 
by the function fw.

We created these functions based on the sentence similarity which has the same 
label: the more similar the sentences are, the more likely to have the same label. There 
are two assumptions as follows:

•	 Assumption 1: Any pair of two exercises that have the same label are similar to each 
other. Therefore, we created to find the most appropriate label considering all labeled 
exercises’ similarities, fmean.

•	 Assumption 2: Specific exercises with the same label have high similarity with each 
other. Therefore, we created to find the most appropriate label considering m labeled 
exercises’ similarities, ftopm , frankm.

Figure 8 shows the overview of how to find the weight of specific label assigns to a 
query.

(14)lpred,query =
argmax

lX (X = 1, 2, . . . , n(L))
slX ,query

(15)fmean

(

ssetlX ,query

)

=

n
(

ssetlX ,query

)

∑

k=1

slXk
,query

n
(

ssetlX ,query

)

(16)fmax

(

ssetlX ,query

)

= HX ,1

(17)ftopm

(

ssetlX ,query

)

=
m
∑

k=1

HX ,k

m

(18)frankm

(

ssetlX ,query

)

=
m
∑

k=1

(m−k+1)HX ,k
∑m

k=1 k

Fig. 8  How to find the weight at which label lX assigns to a query



Page 17 of 30Yamauchi et al. Smart Learning Environments           (2023) 10:51 	

Prediction by machine learning

The problem of finding similar exercises can be formulated as follows: Given a set of 
test exercise text vector vtest , a set of training text vectors vtrain that have the true label 
set, our goal is to integrate these heterogeneous materials to predict the 1st level unit 
or the 2nd level unit for any vector from query exercise text vquery by selecting the 
candidate label lpred with a predicted label, i.e.

where model is a package that can classify these vectors into the specific number of 
categories and L is the domain of labels in the data. The selected label for test data vtest is 
the prediction label of the exercises, described as lpred.

•	 XGBoost (Chen et  al., 2015; Chen & Guestrin, 2016): This model, which merges 
boosting with decision trees, has demonstrated promising outcomes in diverse natu-
ral language processing assignments, making it an appropriate choice for employ-
ment in this paper’s context.

•	 Random Forest (Breiman, 2001): This is a model that employs numerous decision 
trees trained using randomly selected training data. It performs effectively even with 
a considerable number of explanatory variables, enabling it to handle a 300-dimen-
sional vector.

•	 Logistic Regression (Cox, 1958), Perceptron (Rosenblatt, 1958): Both models are used 
for statistical regression with variables that follow a Bernoulli distribution. However, 
the former employs coordinate descent or quasi-Newtonian methods for parameter 
determination in optimization problems, whereas the latter utilizes the stochastic 
gradient descent method.

Evaluation

We conducted experiments using fivefold cross validation for training and prediction. 
The use of fivefold reduces over-training on training and label data. In addition, accuracy 
AL , macro F-measure FL and weighted F-measure FwL were used to evaluate this experi-
mental algorithm. Let TPl , FPl ,TNl and FNl denote that the true prediction for a label l 
is correct or wrong, and that the false prediction for a label l is correct or wrong, then 
accuracy Al and precision Pl , recall Rl and the f score Fl can be expressed as follows.

We used AL , FL , and FwL to evaluate the performance of the prediction.

Result
Classification results with selecting features and methods

We take n-grams of 1 ≤ n ≤ 6 and vector with w2vec into consideration. We also pre-
pare a cosine similarity model with the weighted function formula (15), (16), (17), (18) 

(19)fpred2(vtest , vtrain,model) → lpred ∈ L

(20)Pl =
TPl

TPl+FPl
,Rl =

TPl
TPl+FNl

,Al =
TPl+TNl

TPl+TNl+FPl+FNl
, Fl =

2PlRl
Pl+Rl

(21)PL =

∑

l∈LPl
n(L) ,RL =

∑

l∈LRl
n(L) ,AL =

∑

l∈LAl

n(L) , FL =

∑

l∈LFl
n(L) , FwL = 2PLRL

PL+RL
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(2 ≤ m ≤ 10) , and machine learning method Xgboost, Random Forest, Perceptron and 
Logistic Regression. Tables 4, 5, 6, 7, 8 and 9 show the three kinds of prediction result, 
accuracy AL , macro F-measure FL and weighted F-measure FwL , when we used the com-
bination of each feature and the model. In the tables, the best performance rate in each 
feature is bolded, and the best overall performance is  underlined. We also draw a graph 
that represents all recalls of each feature and model selection in Figs. 9 and 10. The tables 
show that at the both 1st level unit and 2nd level unit prediction, the algorithm yielded 
the best AL , FL of all when using mono-gram features with the Random Forest model, 
and best FwL when bi-gram features were used with the Random Forest model, when 
compared to the use of word embedding, n-grams of the other n features, and the other 
models such as cosine similarity or machine learning methods.

Unlike word embedding, n-grams can be analyzed literally without considering the 
context. It is a suitable feature for this experiment in that we are using text data poorly 
extracted from PDF files. In addition, since the experiment using cosine similarity con-
siders textual similarity, the text is likely to be classified into the units that contain many 
texts with high similarity. Therefore, the higher the textual similarity of the texts, the 
higher the similarity at a larger n is likely to be. However, if n is too large, there will be 
fewer matching n-gram words and less textual similarity. Considering these conditions, 

Table 4  Classification in 1st level unit between a feature and accuracy AL in n-grams and machine 
learning methods

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 w2vec

Similarity ( fmean) 0.7121 0.7398 0.7059 0.7049 0.6825 0.6858 0.3834

Similarity ( fmax) 0.8025 0.8184 0.8130 0.7953 0.7791 0.7539 0.6944

Similarity ( ftop2) 0.8328 0.8386 0.8314 0.8105 0.7838 0.7647 0.7063

Similarity ( ftop3) 0.8411 0.8429 0.8357 0.8072 0.7791 0.7625 0.7081

Similarity ( ftop4) 0.8407 0.8494 0.8328 0.8105 0.7730 0.7539 0.7049

Similarity ( ftop5) 0.8432 0.8505 0.8324 0.8022 0.7679 0.7506 0.6955

Similarity ( ftop6) 0.8443 0.8494 0.8321 0.7960 0.7607 0.7409 0.6818

Similarity ( ftop7) 0.8404 0.8523 0.8303 0.7888 0.7596 0.7373 0.6728

Similarity ( ftop8) 0.8389 0.8508 0.8256 0.7859 0.7553 0.7348 0.6595

Similarity ( ftop9) 0.8378 0.8483 0.8202 0.7831 0.7524 0.7243 0.6541

Similarity ( ftop10) 0.8350 0.8465 0.8162 0.7798 0.7481 0.7196 0.6436

Similarity ( frank2) 0.8231 0.8382 0.8281 0.8090 0.7841 0.7647 0.7095

Similarity ( frank3) 0.8353 0.8411 0.8332 0.8123 0.7852 0.7665 0.7114

Similarity ( frank4) 0.8400 0.8472 0.8364 0.8130 0.7852 0.7672 0.7106

Similarity ( frank5) 0.8432 0.8523 0.8382 0.8119 0.7813 0.7654 0.7085

Similarity ( frank6) 0.8461 0.8533 0.8371 0.8141 0.7798 0.7589 0.7067

Similarity ( frank7) 0.8458 0.8537 0.8386 0.8123 0.7780 0.7593 0.6998

Similarity ( frank8) 0.8483 0.8551 0.8375 0.8101 0.7744 0.7557 0.6951

Similarity ( frank9) 0.8479 0.8555 0.8353 0.8072 0.7759 0.7517 0.6923

Similarity ( frank10) 0.8479 0.8537 0.8335 0.8029 0.7719 0.7463 0.6836

xgb 0.8605 0.8274 0.6681 0.5831 0.4825 0.4263 0.6468

rf 0.9250 0.9013 0.8310 0.7427 0.6526 0.5968 0.7139

mlp 0.7910 0.8732 0.8631 0.8674 0.8382 0.8209 0.8065

lr 0.9193 0.8930 0.8641 0.8371 0.8025 0.7492 0.8537
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mono-grams turn out to be the most suitable n-size since it is the size of the n-gram that 
is most likely to be used in the experiment.

Figures 11 and 12 compare the graph of AL , FL , FwL between selected weighted similar-
ity models and MLP models. The reason of selecting the model in the figure is clarified 
as follows: ftop3 is the best prediction model of all ftopm models, frank3 is the best predic-
tion model of all frankm models in 2nd level unit prediction, and frank9 is the best predic-
tion model of all frankm models in 1st level unit prediction.

As shown in Figs.  11 and 12, in both experiments, we could see the results using 
weighted similarity models are similar to that using MLP models from the point of the 
shape of the figure, while the result between MLP and the other machine learning meth-
ods’ results are not so similar; the former doesn’t have a peak when n = 1 , and the lat-
ter does when n = 1 . This suggests that weighted similarity models are taking the same 
method as MLP, like aggregating the number in the way of calculating the prediction. 
This also shows that as for the optimal value of n for n-grams, n = 2 was optimal for 
prediction by searching for similar sentences using cosine similarity. This means that the 
smaller the value of n , the greater the number of matching components, while the larger 
the value of n , the higher the degree of similarity of sentences with the higher agree-
ment, suggesting that n = 2 is a moderate value that covers both aspects.

Table 5  Classification in 1st level unit between a feature and macro F-measure FL in n-grams and 
machine learning methods

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 w2vec

Similarity ( fmean) 0.7211 0.7479 0.7122 0.7058 0.6827 0.6835 0.3894

Similarity ( fmax) 0.8015 0.8124 0.8051 0.7864 0.7684 0.7437 0.7031

Similarity ( ftop2) 0.8309 0.8345 0.8236 0.8004 0.7746 0.7550 0.7133

Similarity ( ftop3) 0.8369 0.8375 0.8282 0.7969 0.7695 0.7520 0.7133

Similarity ( ftop4) 0.8370 0.8441 0.8249 0.8007 0.7607 0.7427 0.7094

Similarity ( ftop5) 0.8392 0.8457 0.8252 0.7928 0.7542 0.7369 0.7014

Similarity ( ftop6) 0.8394 0.8444 0.8243 0.7836 0.7444 0.7257 0.6868

Similarity ( ftop7) 0.8338 0.8464 0.8212 0.7728 0.7438 0.7199 0.6767

Similarity ( ftop8) 0.8328 0.8457 0.8160 0.7699 0.7389 0.7154 0.6619

Similarity ( ftop9) 0.8312 0.8421 0.8091 0.7669 0.7330 0.7004 0.6563

Similarity ( ftop10) 0.8286 0.8387 0.8013 0.7598 0.7226 0.6913 0.6440

Similarity ( frank2) 0.8209 0.8343 0.8196 0.7999 0.7740 0.7546 0.7163

Similarity ( frank3) 0.8330 0.8379 0.8254 0.8018 0.7756 0.7572 0.7181

Similarity ( frank4) 0.8379 0.8433 0.8288 0.8027 0.7752 0.7570 0.7162

Similarity ( frank5) 0.8406 0.8484 0.8304 0.8020 0.7708 0.7552 0.7139

Similarity ( frank6) 0.8433 0.8485 0.8297 0.8046 0.7666 0.7472 0.7119

Similarity ( frank7) 0.8424 0.8492 0.8310 0.8028 0.7649 0.7473 0.7050

Similarity ( frank8) 0.8439 0.8502 0.8298 0.7995 0.7605 0.7421 0.7002

Similarity ( frank9) 0.8418 0.8504 0.8275 0.7967 0.7586 0.7375 0.6965

Similarity ( frank10) 0.8414 0.8490 0.8251 0.7904 0.7551 0.7303 0.6865

xgb 0.8572 0.8212 0.6171 0.5195 0.3938 0.3312 0.6303

rf 0.9250 0.8996 0.8205 0.7133 0.6176 0.5568 0.7098

mlp 0.7914 0.8719 0.8623 0.8665 0.8393 0.8178 0.8079

lr 0.9218 0.8903 0.8570 0.8247 0.7880 0.7358 0.8566
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Random forest mono‑gram feature analysis

To examine the predictions in detail, we performed feature analysis on the random forest 
model that was trained using monograms as it had the highest accuracy of all of the models 
that were evaluated. Table 10 (a) contains the most influential monograms and their degree 
of influence. The words ‘I’, ‘III’, ‘II’, ‘A’, and ‘B’ appear to be highly influential. This is because, 
as shown in the figure, the classifications of the units fall into one of these five patterns. 
Therefore, when these classifications are listed in the PDFs, it was found that these words 
can be used to classify the unit more.

Also, not all PDFs contain a classification indicating these five categories. The word “解
説” (solution) is not a word that describes the math exercises or the solutions themselves. 
Therefore, by omitting these as stop-words, shaded in gray in Table 10 (a), the prediction 
can be performed to obtain a more general classification prediction result. This prediction 
resulted in AL of 82.88%, FL of 82.82%, and FwL of 83.08%. Table 10 (b) shows the most influ-
ential words and their degree of influence in this prediction. The top five words were words 
representing “ベクトル” (vector), “数” (number), “関数” (function), “確率” (probability) and “
複素” (complex) respectively. All of these words are used as part of more than one name of 
a specific unit. Therefore, it is likely that these words were helpful in classifying the text into 
broad categories. Note that the assertion of the organization part in a specific place in the 

Table 6  Classification in 1st level unit between a feature and weighted F-measure FwL in n-grams 
and machine learning methods

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 w2vec

Similarity ( fmean) 0.7127 0.7392 0.7055 0.7063 0.6831 0.6864 0.3962

Similarity ( fmax) 0.8024 0.8191 0.8140 0.7960 0.7797 0.7541 0.6939

Similarity ( ftop2) 0.8331 0.8393 0.8322 0.8109 0.7837 0.7638 0.7064

Similarity ( ftop3) 0.8414 0.8440 0.8365 0.8073 0.7785 0.7609 0.7091

Similarity ( ftop4) 0.8408 0.8505 0.8337 0.8105 0.7719 0.7514 0.7059

Similarity ( ftop5) 0.8434 0.8514 0.8332 0.8019 0.7659 0.7476 0.6961

Similarity ( ftop6) 0.8446 0.8502 0.8331 0.7954 0.7584 0.7378 0.6825

Similarity ( ftop7) 0.8407 0.8531 0.8313 0.7886 0.7569 0.7344 0.6735

Similarity ( ftop8) 0.8394 0.8515 0.8265 0.7852 0.7528 0.7321 0.6607

Similarity ( ftop9) 0.8385 0.8492 0.8212 0.7823 0.7504 0.7223 0.6556

Similarity ( ftop10) 0.8358 0.8475 0.8175 0.7795 0.7466 0.7184 0.6457

Similarity ( frank2) 0.8232 0.8389 0.8291 0.8093 0.7844 0.7643 0.7097

Similarity ( frank3) 0.8357 0.8419 0.8340 0.8126 0.7850 0.7656 0.7118

Similarity ( frank4) 0.8403 0.8481 0.8372 0.8134 0.7846 0.7659 0.7116

Similarity ( frank5) 0.8434 0.8532 0.8391 0.8121 0.7807 0.7638 0.7094

Similarity ( frank6) 0.8462 0.8544 0.8377 0.8139 0.7792 0.7568 0.7076

Similarity ( frank7) 0.8460 0.8547 0.8392 0.8121 0.7767 0.7566 0.7006

Similarity ( frank8) 0.8484 0.8562 0.8383 0.8099 0.7726 0.7527 0.6959

Similarity ( frank9) 0.8483 0.8563 0.8364 0.8069 0.7739 0.7486 0.6929

Similarity ( frank10) 0.8484 0.8545 0.8344 0.8025 0.7698 0.7431 0.6846

xgb 0.8601 0.8279 0.6777 0.6037 0.5274 0.4800 0.6530

rf 0.9255 0.9020 0.8315 0.7430 0.6514 0.6016 0.7191

mlp 0.7924 0.8745 0.8636 0.8673 0.8367 0.8192 0.8066

lr 0.9193 0.8935 0.8655 0.8387 0.8029 0.7453 0.8537
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PDF would be helpful in classifying exercises, however less generalizable as it would rely on 
a consistent format that might not be realistic.

Discussion
Feature selection of extracted incomplete text from PDFs

Labeling incomplete text has been tackled in previous research by using n-grams, 
which was shown to be an effective way to meet this problem (Cavnar & Trenkle, 
1994; Graovac, 2014; Suen, 1979). In the present research, we investigated using 
n-grams on the extracted texts from a PDF of mathematical exercises for which com-
plete texts were difficult to obtain and categorized them into different leveled units. 
First, the extracted text could not pick up any information such as mathematical equa-
tions, symbols, or numbers. When predicting the topic of incomplete texts, we found 
that vector classification, which involves only information on whether the text is com-
posed of similar elements and does not involve contextual analysis such as n-grams, 
was more effective than models that involve contextual analysis. However, we found 
that mono-grams which are similar to more traditional methods, such as n-grams or 
bag of words, provided the best classification performance, contradicting results from 
previous research for this specific task. Therefore, we assume that the use of n-grams 
in the classification of incomplete texts may depend on the target of the task, which 

Table 7  Classification in 2nd level unit between a feature and accuracy AL in n-grams and machine 
learning methods

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 w2vec

Similarity ( fmean) 0.4317 0.4699 0.4447 0.4418 0.4249 0.4151 0.2584

Similarity ( fmax) 0.5589 0.6076 0.5946 0.5780 0.5564 0.5305 0.5121

Similarity ( ftop2) 0.5845 0.6252 0.6050 0.5914 0.5640 0.5337 0.4941

Similarity ( ftop3) 0.5795 0.6169 0.6000 0.5823 0.5514 0.5283 0.4688

Similarity ( ftop4) 0.5553 0.5968 0.5845 0.5607 0.5359 0.5164 0.4328

Similarity ( ftop5) 0.4840 0.5586 0.5510 0.5431 0.5232 0.5074 0.3640

Similarity ( ftop6) 0.4663 0.5276 0.5276 0.5222 0.5085 0.4984 0.3495

Similarity ( ftop7) 0.4544 0.5016 0.5099 0.5045 0.4905 0.4890 0.3240

Similarity ( ftop8) 0.4411 0.4829 0.4908 0.4915 0.4861 0.4836 0.2998

Similarity ( ftop9) 0.3795 0.4490 0.4688 0.4782 0.4764 0.4782 0.2378

Similarity ( ftop10) 0.3467 0.4231 0.4468 0.4631 0.4681 0.4710 0.2288

Similarity ( frank2) 0.5895 0.6335 0.6083 0.5924 0.5676 0.5434 0.5114

Similarity ( frank3) 0.5917 0.6364 0.6119 0.5993 0.5679 0.5409 0.4915

Similarity ( frank4) 0.5813 0.6299 0.6054 0.5921 0.5604 0.5402 0.4742

Similarity ( frank5) 0.5514 0.6119 0.5989 0.5809 0.5557 0.5359 0.3968

Similarity ( frank6) 0.5124 0.5859 0.5841 0.5705 0.5467 0.5319 0.3838

Similarity ( frank7) 0.4923 0.5712 0.5723 0.5640 0.5416 0.5250 0.3726

Similarity ( frank8) 0.4782 0.5532 0.5582 0.5553 0.5337 0.5182 0.3582

Similarity ( frank9) 0.4584 0.5377 0.5467 0.5409 0.5279 0.5114 0.2847

Similarity ( frank10) 0.4321 0.5178 0.5315 0.5330 0.5214 0.5095 0.2656

xgb 0.1441 0.0868 0.0659 0.0541 0.0490 0.0375 0.1643

rf 0.6850 0.6829 0.6314 0.5957 0.5452 0.4861 0.4987

mlp 0.4418 0.6281 0.6544 0.6566 0.6414 0.6169 0.4840

lr 0.6404 0.6339 0.6270 0.6220 0.5924 0.5636 0.6245
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in this case was Japanese mathematical exercises. As the previous research that suc-
cessfully utilized n-grams to classify incomplete text (Cavnar & Trenkle, 1994; Grao-
vac, 2014; Suen, 1979) neither targeted Japanese nor mathematical exercises, this may 
have implications for future research into the classification of incomplete Japanese or 
mathematical texts.

Model selection for more precise prediction

We aimed at labeling Japanese math text more precisely. A previous study treating Jap-
anese mathematical exercises’ text classification yields 79.57% accuracy with WE-KE 
model (Tian et  al., 2022). In this experiment, proposed algorithms predicted different 
leveled units by two methods: search by similarity sentences using cosine similarity and 
classification using machine learning. The results concluded that the best prediction 
accuracy was achieved using Random Forest, which resulted in 92.50%. This shows that 
our method using mono-grams and Random Forest performed well when it comes to 
Japanese mathematical text classification.

The result indicates that mono-grams yielded the best classification when we used the 
method of Random Forest classification. The reason that mono-gram performs well is, 
as Fig. 3 shows, there are incomplete parts of the text when extracting from PDF files, 
so there is some meaningless parts that consist of multiple words within a chunk. In 

Table 8  Classification in 2nd level unit between a feature and macro F-measure FL in n-grams and 
machine learning methods

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 w2vec

Similarity ( fmean) 0.4046 0.4461 0.4288 0.4319 0.4190 0.4094 0.2459

Similarity ( fmax) 0.5103 0.5573 0.5411 0.5153 0.4958 0.4723 0.4817

Similarity ( ftop2) 0.5167 0.5616 0.5380 0.5216 0.4979 0.4725 0.4388

Similarity ( ftop3) 0.4903 0.5380 0.5182 0.4974 0.4726 0.4589 0.3904

Similarity ( ftop4) 0.4419 0.4933 0.4832 0.4666 0.4511 0.4395 0.3307

Similarity ( ftop5) 0.2694 0.4082 0.4209 0.4323 0.4297 0.4263 0.1895

Similarity ( ftop6) 0.2431 0.3376 0.3731 0.3968 0.4038 0.4150 0.1797

Similarity ( ftop7) 0.2339 0.2905 0.3413 0.3675 0.3799 0.3994 0.1592

Similarity ( ftop8) 0.2215 0.2649 0.3110 0.3485 0.3687 0.3927 0.1388

Similarity ( ftop9) 0.1604 0.2310 0.2883 0.3283 0.3548 0.3847 0.0740

Similarity ( ftop10) 0.1247 0.2061 0.2619 0.3061 0.3434 0.3789 0.0704

Similarity ( frank2) 0.5275 0.5769 0.5462 0.5274 0.5018 0.4826 0.4661

Similarity ( frank3) 0.5202 0.5703 0.5422 0.5273 0.5006 0.4772 0.4291

Similarity ( frank4) 0.4914 0.5510 0.5253 0.5121 0.4828 0.4725 0.3919

Similarity ( frank5) 0.4177 0.5179 0.5063 0.4917 0.4770 0.4620 0.2148

Similarity ( frank6) 0.3283 0.4582 0.4770 0.4748 0.4634 0.4565 0.2050

Similarity ( frank7) 0.2814 0.4250 0.4551 0.4640 0.4522 0.4476 0.1958

Similarity ( frank8) 0.2552 0.3924 0.4267 0.4488 0.4414 0.4391 0.1829

Similarity ( frank9) 0.2367 0.3609 0.4107 0.4259 0.4349 0.4317 0.1047

Similarity ( frank10) 0.2113 0.3284 0.3878 0.4150 0.4247 0.4280 0.0862

xgb 0.0333 0.0150 0.0087 0.0036 0.0026 0.0014 0.0480

rf 0.6128 0.5967 0.5478 0.5151 0.4623 0.4128 0.4285

mlp 0.3919 0.5725 0.5999 0.6084 0.5950 0.5707 0.4377

lr 0.5858 0.5828 0.5752 0.5745 0.5499 0.5385 0.5922
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Table 9  Classification in 2nd level unit between a feature and weighted F-measure FwL in n-grams 
and machine learning methods

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 w2vec

Similarity ( fmean) 0.4468 0.4799 0.4495 0.4388 0.4159 0.4051 0.2879

Similarity ( fmax) 0.5641 0.6140 0.6021 0.5860 0.5617 0.5349 0.5183

Similarity ( ftop2) 0.6025 0.6419 0.6229 0.6071 0.5768 0.5439 0.5136

Similarity ( ftop3) 0.6084 0.6422 0.6249 0.6036 0.5675 0.5406 0.5016

Similarity ( ftop4) 0.5966 0.6330 0.6186 0.5883 0.5563 0.5330 0.4755

Similarity ( ftop5) 0.5605 0.6115 0.5949 0.5768 0.5472 0.5259 0.4319

Similarity ( ftop6) 0.5478 0.5961 0.5812 0.5610 0.5367 0.5181 0.4178

Similarity ( ftop7) 0.5368 0.5788 0.5707 0.5496 0.5218 0.5118 0.3932

Similarity ( ftop8) 0.5265 0.5653 0.5565 0.5401 0.5209 0.5081 0.3711

Similarity ( ftop9) 0.4780 0.5368 0.5374 0.5296 0.5129 0.5036 0.3232

Similarity ( ftop10) 0.4551 0.5149 0.5184 0.5174 0.5065 0.4963 0.3119

Similarity ( frank2) 0.6045 0.6470 0.6238 0.6062 0.5800 0.5544 0.5261

Similarity ( frank3) 0.6131 0.6561 0.6319 0.6171 0.5821 0.5519 0.5152

Similarity ( frank4) 0.6116 0.6556 0.6303 0.6134 0.5772 0.5530 0.5075

Similarity ( frank5) 0.5999 0.6454 0.6293 0.6062 0.5730 0.5519 0.4640

Similarity ( frank6) 0.5782 0.6311 0.6211 0.5985 0.5674 0.5488 0.4511

Similarity ( frank7) 0.5672 0.6232 0.6131 0.5938 0.5645 0.5432 0.4410

Similarity ( frank8) 0.5581 0.6102 0.6043 0.5886 0.5584 0.5376 0.4281

Similarity ( frank9) 0.5412 0.6024 0.5950 0.5781 0.5528 0.5310 0.3735

Similarity ( frank10) 0.5203 0.5886 0.5839 0.5716 0.5485 0.5294 0.3570

xgb 0.2162 0.1378 0.1105 0.0971 0.0895 0.0700 0.2308

rf 0.7064 0.7099 0.6592 0.6213 0.5660 0.4969 0.5260

mlp 0.4479 0.6461 0.6692 0.6702 0.6533 0.6280 0.4867

lr 0.6533 0.6397 0.6349 0.6305 0.5939 0.5525 0.6311

Fig. 9  Relationship between n value in n-gram and evaluation values with some machine learning models in 
1st level unit prediction

Fig. 10  Relationship between n value in n-gram and evaluation values with some machine learning models 
in 2nd level unit prediction
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addition, a previous study documented good results when using the Bag-of-Words 
method and Random Forest (Montoliu et al., 2015). This is also possibly a reason why 
this model yielded the best performance.

Since Random Forest uses decision trees, it is easy to create accurate decision tech-
niques for binary vectors. Therefore, we believe that classification using Random Forest 
was able to accurately classify binary vectors with numerous dimensions. In addition, 

Fig. 11  Relationship between n value in n-gram and evaluation values with MLP and aggregate function 
methods in 1st level unit prediction

Fig. 12  Relationship between n value in n-gram and evaluation values with MLP and aggregate function 
methods in 2nd level unit prediction

Table 10   Feature analysis in mono-gram and Random Forest

(a) without omitting any words (b) omitting meaningless words

Mono-gram Mono-gram (English) Importance Mono-gram Mono-gram (English) Importance

I I 0.027101 ベクトル Vector 0.012692

III III 0.026868 数 Number 0.011921

II II 0.025151 関数 Formula 0.011126

A A 0.018989 確率 Probability 0.009463

B B 0.016693 複素 Complex 0.008825

数 Number 0.012049 点 Point 0.008570

関数 Function 0.011044 式 Formula 0.008534

解説 Solution 0.010463 よっ Therefore 0.008256

ベクトル Vector 0.009900 極限 Limit 0.008139

点 Point 0.009046 定積 Constant volume 0.007628

確率 Probability 0.008046 列 Column (or Sequence) 0.006980

複素 Complex 0.007726 値 Value 0.006849

式 Formula 0.007594 次 Next 0.006669

列 Column (or Sequence) 0.006998 求め Find [the value] 0.006547

積分 Integral 0.006740 する Do 0.006483

三角 Triangle 0.006716 積分 Integral 0.006374

定積 Constant volume 0.006563 三角 Triangle 0.006342

極限 Limit 0.006439 が Be 0.006325
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the fact that characters such as ‘I’, ‘II’, ‘III’, ‘A’, and ‘B’ existed as typical classification indi-
ces in Japanese mathematics and had a significant influence on classification, suggests 
that Random Forest with mono-grams produced the best prediction accuracy. This also 
indicates that the organization characters can be useful when classifying the exercises: if 
the PDF sentence contains such characters, as shown in Fig. 13, it can be easier to auto-
matically classify it.

Selection of evaluation method in the educational context

Three indices, AL , FL , and FwL , were used in the experiment as evaluation indices. AL is 
desired to be evaluated with a more reliable index, since in the present data set, there 
are much more data that are true-negative than true-positive data and tend to rate the 
model that is false for all data highly (Manning et al., 2008). In this case, the indicator 
F-measure is often used for two-class classification, but there are two ways to obtain it 
for multi-class classification. In the case of multiclass classification, there are two ways 
to obtain the F-measure: FL and FwL.
FL returns the average of the Fl obtained for each class l , which is equal to the average 

of the Fl obtained for all classes, even if the number of data in each class is not uniform. 
Therefore, it is possible to treat all units equally even if the number of data in each unit 
is not uniform. In other words, it is an effective indicator for labeling biased data sets. 
For example, FL is useful when a teacher in a school setting selects three 1st level units 
to create a test (ignoring the rest) and automatically assigns 2nd level units to exercises 
within those units. FwL is the F-measure calculated from the sum of Precision Pl and 
Recall Rl for each class l . This is a weighted index that takes into account the number of 
each data set. Therefore, it can be said that the index accurately reflects the distribution 
of this data set. The index FwL is useful for labeling a uniform data set, i.e., the math-
ematical material studied in three years of Japanese high school at a time.

From the experimental results, we can say that the combination of mono-gram and 
Random Forest, which has the largest FL , is effective when limiting the unit, and the 
combination of bigram and Random Forest is effective for a uniform data set of three 
years of high school. However, the accuracy rate is not much different when using the 
feature n = 1 or n = 2 in Random Forest prediction.

Practical educational implications in this research

Automatic labeling can help reduce teacher workload (Tian et  al., 2022) and develop 
mathematics workmanship (Fishback & Schlicker, 1996) by introducing systems that 
require labels (Vie et al., 2019; Wang et al., 2022). For further development of mathemat-
ics in Japan, a programming environment on supporting units on mathematics using 
data (Kayama et al., 2022) and clarification of unit structure for knowledge association in 
learning (Taniguchi & Itoh, 2023) have been proposed.

Fig. 13  The top of a sentence in a PDF. There is a character representing the part of organization in the first 
line (in this example, ‘B’ surrounded by a red circle)
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The labeling method in this study allows labels to be assigned to unlabeled mathemati-
cal instructional materials by learning the text of the labeled materials, even though they 
are not formatted suitably for extracting text, such as handmade materials by mathemat-
ics teachers. These can facilitate unit learning based on the national standard curriculum 
guidelines. For example, when students study on their own, the system can suggest dif-
ferent exercises than the ones they have solved, with the explanation that they are part of 
the same unit, which can promote student understanding. Therefore, it can be said that a 
system using units is more easily utilized in the school contexts. In other words, the con-
tribution of this study is that the automatic assignment of unit information to systems in 
the educational field will expand the range of support without burdening teachers.

In addition, although we have chosen to use mathematical exercises as the subject 
matter, we believe that such a method could be applied to other subjects as well, given 
the uniform treatment of equations, terminology, and other information as textual infor-
mation. To do so, we need clearly shared criteria and examples of exercises to which they 
are pre-assigned (i.e., we can use the method proposed in Sect. 3 if the data set is in a 
usable format).

Limitations and future research
In this study, we proposed an algorithm to solve the problem of classifying incomplete 
texts of mathematical exercises into different leveled units. However, if more detailed 
text were available, a context-aware classification algorithm is expected to produce bet-
ter accuracy.

In this experiment, we limited ourselves to one topic of the same level to be assigned to 
each mathematical exercise, but there also are mathematical exercises that span multiple 
topics. In order to properly assign topics to such mathematical exercises, a system that 
can assign multiple units using the algorithm verified in this study is needed. Multi-label 
classification is also widely used in machine learning (Sorower, 2010; Tsoumakas & Kata-
kis, 2007). Once such a system is completed, it would be possible to recommend similar 
exercises using mathematical topics and analyze student learning based on topics.

This experiment showed that even if it is not possible to read mathematical expres-
sions, numbers, or symbols, it is possible to classify with high accuracy using only the 
textual information obtained. Once such a system is developed, it would be possible to 
recommend similar exercises based on mathematical topics and analyze student learn-
ing based on topics. Since the system would be able to assign common labels to different 
teaching materials, it would be possible to develop a textbook recommendation system 
that assigns textbook subsections to exercises so that students can review them in the 
textbook when they make a mistake on an exercise. The information collected using 
these systems would then create a learning support environment that takes into account 
the degree of difficulty and understanding of the 1st level unit and 2nd level unit itself.

In addition, since the experiment was conducted independently of student learn-
ing, there are no results on the contribution to learner and teacher activities. It will 
be necessary to verify the educational effects in future experiments by using the auto-
matic labeling of the unit to recommend teaching materials or to analyze the behavior 
of the learners, especially with predicting entire difficulty of the exercises and learners’ 
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complete rate of them, or considering students reading comprehension. In addition to 
this, as one study developed a recommendation system which uses student’s action as a 
parameter of the system (Takami et al., 2022), there is also room for combining follow-
ing two approaches: topic-based model driven approach (i.e., the labeling the exercises) 
and student’s behavior data driven approach (i.e., using the student’s achievement of the 
exercise into the system).

Conclusion
This paper proposes an algorithm that uses several techniques to correctly assign top-
ics to the incomplete mathematical text obtained from PDF text. The extracted text 
showed that all information on numbers, mathematical expressions, and symbols was 
omitted when converted from PDF to text. Furthermore, we compared the prediction 
accuracy of the two methods at the stage of predicting topics from the obtained vectors. 
Two methods were used to compare their prediction accuracy: one using cosine similar-
ity and the other using machine learning. We attempted to predict with all features and 
models and found that the best prediction accuracy was achieved by using mono-grams 
as features and applying Random Forest (92.5% and 68.5% for 1st level unit and 2nd level 
unit, respectively). We conclude that the reason for the higher accuracy was the ability 
to find context-independent similarities even in incomplete sentences by using n-grams 
to find matches in which the remaining words are used, and the existence of organiza-
tion parts (‘I’, ‘II’, ‘III’, ‘A’, ‘B’) representing common national classifications for Japanese 
mathematical exercises. Given that PDFs are not necessarily assigned such national sym-
bols, we conducted a similar experiment omitting them as stop words and found that the 
accuracy dropped a little, but important mathematical knowledge elements appeared in 
the key features, which are important for the classification of mathematical exercises.

The contribution in the research is the discovery that mono-grams, a simpler approach 
similar to traditional methods like n-grams or bag of words, outperformed state-of-the-
art methods in classifying incomplete texts, particularly in the context of Japanese math-
ematics exercises. These findings challenge previous research results and suggests that 
the choice of text analysis techniques may depend on the specific task or target domain.
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