125 research outputs found

    A theory of field-aligned current generation from the plasma sheet and the poleward expansion of aurora substorms

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1990This dissertation reports a study of the generation of field-aligned currents in the plasma sheet in terms of magnetosphere-ionosphere coupling. For the study, the plasma sheet and the ionosphere are treated as two-dimensional layers by height integration. In the magnetosphere between them, the Alfven wave transition time through this region is assumed to be zero. The ionospheric momentum is allowed to be transferred to the plasma sheet. Both linear analyses and numerical simulation are performed to study the field-aligned current generation. In the linear analysis, evolution from initial perturbations is studied. Zero order configurations are steady state without field-aligned currents. The field-aligned currents are treated as a perturbed quantity and linearly related with the other perturbed quantities. One result for the linear waves is that the magnetohydrodynamics (MHD) fast mode and Alfven mode are coupled through the ionospheric Hall current. The Hall current causes the dawn-dusk asymmetry: a westward-travelling wave is amplified on the region 1 current system, while an eastward-travelling wave is amplified elsewhere. The expansion phase of the magnetospheric substorm after the onset is numerically simulated on the near-earth plasma sheet. The inner edge of the plasma sheet is taken as the outflow boundary. As the initial condition, an enhanced earthward magnetospheric convection is assumed to cause a finite pressure increase at the inner edge of the plasma sheet. The numerical results are as follows. An MHD fast-mode wave is generated. It propagates tailward accompanied by the field-aligned currents. The wave propagation and the field-aligned currents account for the poleward expansion of the aurora and the region 1 field-aligned current during the expansion phase of the substorm. The region 1 field-aligned currents are linked with the dusk to dawn current on this wave, which is driven by the dynamo mechanism of the wave. The ionospheric Hall current causes asymmetry of the wave, and hence, of the field-aligned current distribution. This asymmetry accounts for the stronger field-aligned current in the premidnight sector

    Some Hecke Eigen-Values for Г(q)

    Get PDF
    We give some explicit eigen-values of Hecke operators for the cusp forms of weight 2 for the principal congruence subgroups Г(q) for several primes q, using the Eichler\u27s formula [1]. For the prime q≡3 mod 4, the cusp forms correponding to the degree q-1 representation of the group SL_2 (Z/qZ) are viewed as the cusp forms for Г_0 (q^2). Using these cusp forms, we give an example of the class field over the imaginary quadratic field Q (√) for q=43 which is constructed by Shimura\u27s theory of class fields over the quadratic fields

    Coupled spin-charge-phonon fluctuation in the all-in/all-out antiferromagnet Cd2Os2O7

    Get PDF
    We report on a spin-charge fluctuation in the all-in/all-out pyrochlore magnet Cd2Os2O7, where the spin fluctuation is driven by the conduction of thermally excited electrons/holes and associated fluctuation of Os valence. The fluctuation exhibits an activation energy significantly greater than the spin-charge excitation gap and a peculiar frequency range of 10(6)-10(10) s(-1). These features are attributed to the hopping motion of carriers as small polarons in the insulating phase, where the polaron state is presumably induced by the magnetoelastic coupling via the strong spin-orbit interaction. Such a coupled spin-charge-phonon fluctuation manifests as a part of the metal-insulator transition that is extended over a wide temperature range due to the modest electron correlation comparable with other interactions characteristic for 5d-subshell systems
    corecore