FE EATERAEE AR

Mfe Kansai University Institutional Repository

Some Hecke Eigen-Values for I ()

0d Yamauchi Masatoshi

journal or 0000 - dooooooooooo
publication title

volume 26

page range 73-86

year 2007-01-10

URL http://hdl .handle.net/10112/11876




B AER AR E [ERpE] 2675

Some Hecke Eigen-Values for I'(Q)

Masatoshi YAMAUCHI

Abstract

We give some explicit eigen-values of Hecke operators for the cusp forms of weight
2 for the principal congruence subgroups I'(q) for several primes g, using the Eichler’s
formula [1]. For the prime ¢ =3 mod 4, the cusp forms correponding to the degree
q—1 representation of the group SI.,(7 / q7 ) are viewed as the cusp forms for I'y(¢?).
Using these cusp forms, we give an example of the class ﬁeld over the imaginary
quadratic field Q ( v/—q) for g = 43 which is constructed by Shimura’s theory of class
fields over the quadratic fields.

*Faculty of Informatics, Kansai University
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Introduction

In this paper, we give some explicit eigen-values of Hecke operators for the cusp
forms of weight 2 for the principal congruence subgroupsI'(q) for ¢ = 23,31,43 and 47
corresponding to the representation of degree q—1 of the group SL2(Z /qZ ),using
the Eichler's formula [1]. For the prime ¢ = 3 mod 4, the cusp forms correponding to
degree g—1 representations are viewed as the cusp forms for T'o(¢?), and contained
in the space S1 or Sm defined in [3]. The cusp forms corresponding to the
representations of degree q or g+1 are viewed as forms of I'o(¢) with some character
of conductor g, of which Hecke eigen-values are not treated here, since they are
rather easily obtained. We denote by Z , Q, R and C the ring of rational integers,
the rational number field, the real number field and the complex number field,
respectively. GLz (R ) denotes the group of all non-singular square matrices whose
components are contained in R and SL2(Z ) denotes the group of all square

matrices of determinant 1 whose components are contained in Z .
1 Cusp forms for I'(g)and Ty(q?)

b
Let a= ( e d >E GLy(R) (det(a) >0). For a function f(z) on the complex upper

[
half plane & and a positive integer k > 2, we define a function f|[a]x on ¢ by

(flledk) (=) = (deta)*/?(cz + d)~* f(a(2)) ,

where a(z) = (az+b)/(cz +d). For a positive integer N, we define

PO(N)z{(Z’ Z)ESLQ(ZHCEOmodN}.

r(zv):{(‘cl Z)eSLz(Z)\ (‘C‘ Z>E(é ?)modN}.

We put I' = I'(1)= SL2(Z). We denote by Si(T'o(N)) (resp.Sk(I'(INV))) the space of all
holomorphic cusp forms of weight k on $ satisfying

flllk =f for v €To(N) (resp.I'(N))
Further for a character ¥ modulo N, we denote by Sk(I'o(IV),%) the space of all

holomorphic cusp forms of weight k& satisfying
a b :
i =v@f for 7= % 5 ) eTo).

If ¥ is the identity character, we simply write Sk(I'o(N),%) as Sk(T'o(N)) . Hereafter
we take N = g, ¢ is an odd prime. We put 9 = I'/T'(¢). Throughout this paper we
assume k = 2. Let & = S2(I'(¢)) be the space of cusp forms of weight 2 for I'(q).
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Then it 1s known by Hecke [2], the space & is decomposed as
(1) &= shHErhi g Y srFlrgrtly 4 g150 4.
L v
where G721+ etc. are irreducible components of & of the representation S of 9
defined by
01(2) ¢1(2)
: o M = S(M)
©m(2) om(z)
Here {¢1(2) -+ - om(2)} is a basis of & and
pi(z) o M = (i|[M]2)(2) .
The positive integer s9~1* is the multiplicity of &9-'# . The right upper index q—1
of &7~4#  for example, means the degree of the representation and # will be
explaind later and exact values of s3~1# etc. is given in 3. Tables (Table (A)). We
have by (1), |

@) o(M) = sT LI (M) + 3 TG (M) 4 -

“w

where 0,097 5" | etc. denote the traces on the spaces &,87 b | ete.
Suppose n is a quadratic residue mod g, and take ¢ so that n =¢?> mod q. For the
Hecke operator T(n) acting on @, define T'(n) as
T(n) = T(n)U; where U; € T’ and Uy = ( (t) t(_)l ) mod q .
We put € = {T(n)] x(n) = 1} , where X denotes the real primitive character modulo
g of order 2. Since
T(n)M = MT(n), for M €T,

the trace o(T'(n)) of the representation of ¥ becomes

3) o(T(m)=(g=-1)) o? (T (n)+(g+1)Y o™ (T(n) +- -,
I v

where g?=b# | 5917 | etc. denote the traces on certain subspaces Y2—1b#, 9+1v  ete.
of &, and dimy9—b# =g9=Lk | dim y9+1¥ =g2+tLv - ete (Eichler[l]). In this paper, we
exclusively treat the representation of 91 of degree g —1. This representation is
characterized by the character x(5)=- (¢, + ¢, ') where S ia an element 9t of order
% and ¢, is a %-th root of unity which is not equal to +1 and 1< # < q—;—l in
the case ¢ = 1,50 mod 12 and 1 < # < q—}ﬁ in the case g= 7,11 mod 12 (Hecke[2]).

Now take
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F(2) =D Ane™ 0 € S2((a)),

n=1
which is a common eigen-function of Hecke operators T(n). Then we know by
Shimura([4], prop.3.53, prop.3.64)
flgz) = Z An€?™ M € S5(To(q?), )
n=1
for a suitable character ¥ modulo g, which is a common eigen-function of Hecke
operators. Further, for another character £ modulo g,

fe(qz) = X:é(n)A ™" € 53(To(g?), p€?)

n=1
fe(gz) is also a common eigen function of all Hecke operators. Further assume q is a
prime such that ¢ = 3 mod 4. Hence if we put ¢=¢"T , then @£2=1. Thus any
function f(z) € S(T'(g)) may be regarded as a function of f(2) = fe(qz) € S2(To(¢?)).
Using the trace formula of Eichler [1], we give several characteristic polynomials
®5,.(z) of Hecke operators T(n) on the subspace of S(I'o(q?)) corresponding to the
primitive functions f (2) for q = 23,31,43,47. We denote by X the non- trivial quadratic
character of conducter g. Then for  f(z) =%, a,e®™™ € $(I(¢?), fxl(2)=
¥ x(n)ane?™* is also contained in S2(T'o(g?)) .

Let S9(I'o(¢?)) denote the subspace of all new forms in S2(To(¢?)). We put
S2(To())X = {fx|f € S2(To(q))} , then the space S2(I'o(q))* is the subspace of S9(To(q?)).
We denote by S7(To(¢%)) the orthogonal complement of S2(To(g))* in S9(T'o(¢?)) with
respect to the Petersson inner product. Then we know by [3], S¥(T'0(¢?)) decomposes

into four spaces,

4 S5(To(d®) =S EP Su P Su, P S

where
={f€5§L(To(q2) )| FIW = f, fI6W = floy}
Su={feSyTo(d®)| FIW =f, FI6W =—Flox}
S, = {f € 53(To(g®)) | FIW =—F, fI6xW = floy}
S = {f € S3(To(@®) | fIW =~F, fIxW = —flox}.
Here W = ( qoz _01 ), and for the quadratic character x, g, is the twisting
operator
o= 50 2 Zx(u>f| ade for au=( & )

where g(x) is the Gaussian sum for X .
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We list the dimensions of the space S1,5u and S in the table (B). (we note
dim Sy = dim S, ).

2 The case q = 43.

In [3, §5], we have given an example of the form in S2(To(¢?)) which relates to the

theory of Shimura's construction of class fields over real quadratic fields for the case
¢*=192. In this section we add one example for the case ¢°>=43?. Hereafter we put g
= 43. We denote by 0r the maximal orders of the number field L. Let f(2)=
Z ane®™™ e g primitive form corresponding to the first factor of the Table (C) (3.a),
then we see as = /B, an=<—5, 0, 5, 0, —1>, G18=<2, —5, —5, 2, 1>, =<2, -8,
3, 2, —1> where B2=<2, —3, 0, 1, 0>. We note that the absolute norm of B2 is 11.
Here <ug, u1, ug, us, ug> denotes ug+ ujoqgs+ Ua0iag+ Uz0sy + Us0s, Where gge= (oo +
(52" with a primitive 22-th root of unity (g .

Let K be the subfield of C generated by an for al{l} n.

Now f(z) and its companions, namely f"(z)=ZaZ€2m"z for all isomorphism o
from K into ¢ span 10-dimensional subspace of §2=(1F0(432)). From this f(z) and its
companions, we obtain an abelian variety of dimension [K: Q] (=10) defined over Q
and an isomorphism § of K into End(4)® Q , 6(a) is rational for all a € K. Further,
we see that there is an automorphism £ of K, other than the identity map, such that
x(n)an =af, for all n. Thus, let F be the invariant subfield of K under p, then we
have [K: F]=2.

Let ¢ = (B2)or be the ideal in F, and b = Boox be the ideal in K. Then b° = ¢
and both the absolute norm of b and ¢ is 11. Further we see 82=<2, -3, 0, 1, 0> =
<2,1,0,0, 0><1, -2, 1,0, 0> and <1,-2, 1, 0, 0> is a unit. So we may put ¢ =2+
022).

We know by [6, prop.8 and prop.9] there exists an endomorphism 7 of A which is
defined over the quadratic field & = Q(v/—¢) and satisfies the following conditions:
() n°=-n if ¢ is the generator of Gal(k/Q).
(i) 7°=x(-1)g ida.
(iii) noB(a)=60(a”)on forevery q € K .
For the ideal b given as above, we put
r={te Al 6(b)t =0},
then ¢ is isomorphic to (0x/b)? as an ok -module. further we put
p={tezl (n-0(1))t =0},
s={ter (n+06(1))t=0}.
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Now as in [5,Prop.9.2], we see
The submodules Y and 3 are op -isomorphic to or/c and t=9®3.
Let k(r) (resp. k(9)) denote the smallest extension of k& over which the points of &
(resp. 9) are rational. Then k() ia an abelian extension of k, and making Gal(k(x)/k)
act on Y and 3, we obtain an injective homomorphism

Gal(k(x)/k) — (o /)™ x (or/c)™.
We shall examine the abelian extension k(9)/k following the method explained in

3, § 5].

Proposition 2.1 The field k(v) is a ray class field over k of conductor 1/—43 with a prime
factor [ of 11, one has

r((@)) = pla)p(a mod 1
for every o in k prime to 431, where i is the isomomorphism of or/l onto or/c and
is @ homomorphism of (ox/(v/—43))* into (op/c)* of order 2.
proof. Since every prime factor of the conductor f of k(v)/k divides 43 - N([)=43-11,
[4, § 7.5 and Prop. 7.23] we may put §f = pr., where p runs all prime factors of
43 - 11 By the same argument as in the p]c'oofJ'D of [5, Th.2.3], we obtain

r((m)) = x(m)u(m . mod 1)
for every m ¢ 7 prime to 43.11. Thus [k(9): k] =5 or 10, and so the [ exponent
fi =1 by [4,Lemma 3.2]. To determine fi¢, we use the following fact which is nothing
but [5, Th. 2.8] for the present case.
Let | be a prime which divides N(I) but not q = 43. Suppose x(I) = 1, and a; is prime
to ¢ = (2+022). Then § is divisible only one prime factor of I. Put | = |- and suppose [
divides f. Then

r(I°) = a; mod ¢.
Take I = 11. Thén Since aj; = <-5,0,5, 0, —1> is prime to ¢= (2+022), we have fi
= 0. So we may put = [t\/__43t’ . By the Hasse's conductor ramification theorem, we
find t =1 and ¢’ =1, since [k(9) : k] =5 or 10. Thus we have

r((@)) = p(a)p(a mod 1
for every o in k prime to 43y, with a homomorphism ¢ of (0x/(~/—43))* into
(0p/c)* and the isomorphism u of o/l onto or/c. Now the orders of (ox/(v/—43))*
and (or/c)* are 42 and 10 respectively, and ¢(m) = x(m) for rational m prime to
43-11, so the order of ¢ is 2. Further, 7(I) = a;; = —1mod (2+022) , we have
[%(v) : £]=10. This completes our proof. '

Remark. If p is a rational prime such that x(p) =1 then p = o o/ for an integer «
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€ Q(vV—43). We take @ so that x(a+ao)= —1.
Then we have

ap =+ o’ mod (2 + o22)
3 Tables

Table (A)
In the Table(A), the mulplicity s~ 1# of G9~1# etc. is given in the decomposition of
G . (see the equality (1) in the text)

1. the table of s?—1#

©=0mod 6 © =3 mod 6 p=1,5mod6 | p=2,4mod 6
g=1mod 12 (g—1)12 (g— 1)/12 (@g—1)/12 (g—1)/12
q =5 mod 12 @+ 7)12 (@+ 7)/12 (@g— 5)/12 (@—5)/12
g = 7 mod 12 g+ 5)12 (g— 7)/12 (@— 7)/12 (g + 5)/12
g =11 mod 12 (g +13)/12 (@+ 1)/12 (g —11)/12 g+ 1)/12
-1 qg—3

where 1l < p <
= 7, 11 mod 12.

T in the case ¢ = 1, 5mod12 and 1 < p¢ < 1 in the case q

2. the table of g9t

v =0mod 6 v=3mod6 | v=1,5mod6 | v=2,4mod 6
g =1mod 12 (@ —25)/12 (@ —13)/12 (@—1)/12 (g —13)/12
g =5 mod 12 (@ -17)/12 (@— 5)/12 (@— 5)/12 (g —17)/12
g = 7mod 12 (g —19)/12 (g —19)/12 (g—7)12 (g—7)12
= 11 mod 12 (@ —11)/12 (@ —11)/12 (@ —11)/12 (@ —11)/12

q4 in the case ¢g= 1,5mod12 and 1 < » <

q .
7 in the case ¢q

where 1 < p <
= 7,11 mod 12,

Remark that s¢t1» = dimS2(I'o(¢), %), where % ia a Dirichet character of conductor g
and of order ¢. ¢ is determined as ¢ is a primitive ¢-th root of unity,where ¢ is a

-1
primitive qT -th root of unity.

3. the table %%

(g—25)/24 g=1mod 24
S5 (g—5)/24 ¢g=>5mod24
=\ (¢—17)/24 g=17 mod 24

(g—13)/24 ¢q =13 mod 24
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Remark that in this case, ¢ = 1mod 4, and (% = %dimSZ(Fo(q’(_)), where (E) denotes
q
the Legendre symbol of level gq.

4. the table ¢%*

(g+5)/24 ¢="T7mod 24
gzr 1, (q+1)/24 g=11mod 24
T =5k (g-7)/24 g =19 mod 24

(q+13)/24 ¢ =23 mod 24

In this case, g= 3 mod 4, and h(—¢q) denotes the class number of the imaginary
quadratic field Q(v/—q).

5. the table s¢

(g—25)/24 g=1mod24
¢_ ) (@—5)/24 q=5mod24
=9 (g+7)/24 g=17mod 24

(g—13)/24 ¢ =13 mod 24

Note that s¢ = dimS2(To(q)) .

Table (B)

In this Table(B), dimS;, dimSy (= dimSIIX) and dimSi; are given in the decomposition
of S7(I'o(¢%)). (see the equality (4) in the text)

dim.Sy dim.Syr dimStry
¢ =1mod 12 (> —22¢+117)/48 | (¢® —2¢+1)/48 (¢* — 6q+5)/48
g = 5mod 12 (¢® —22q +85)/48 | (¢® —2q —15)/48 (¢° — 6q+5)/48
q = 7mod 12 (*—6g—"7)/48 | (¢° —14g+49)/48 | (¢*+2q—15)/48
g =11 mod 12 (¢* —6g—17)/48 | (¢® —14g+33)/48 | (g* +2¢q —47)/48
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Table (C)
Table (C) is the table of the product q’;,n(x)' q’fx,n(ﬂf). where f(z) belongs to the

space Y9 LH .

(1.a) ¢=23, # =1 or # =5 (contained in S1)

T2) | (z+1)% (z+1)°

T3) | (x—(-1+a))?

T®G) | (z—(af—B8)/2)(z+ (af - B)/2)
(M) | (z+af)(z—apb)

T(11) | (z— (aB+26))(z+af +20)
T(13) | (z+1+2a)?

where o =3, 8=V2.

(1.b) ¢ =23, # =2 (contained in Str)

) (z—a)? (z+a)?
) | @=(1+a)® (z-(1-0a)?
T(5) (z—a)(z+a) (z—a)(z+a)
) (z-(-3+a)(z+(-3+0a) (z—B+a))(z+3+a)

where a = V3.

(1.c) g =23, i = 4(contained in Str)

T@2) | (2-1+p)? (z~(01-p)’

@) | (-8 (z+p)°

TG) | (@-01-20)(z+(1-20) (z—(1+28))(z+1+28)
T | @—2+0))(z+2+06) (z—(2-0))(=z+(2-8)

where 8 =2.
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(1.d) ¢=23, # =3 (contained in S1)

20074E 1 A

T(2) (= (=14+7)/2)* (+ (1 +7)/2)°

T(3) (x+ 1) (z+1)*

T®G) | (z-(ev—a)/2)(z+ (v —a)/2) - (z — (a7 + a)/2)(z + (a7 + a)/2)
T | (z+ (v +a)/2)(z — (a7 +a)/2)) - (z + (ay — @) /2)(z — (a7 — @)/2))

where o =3, v=V13.

(2.2) g=31, # =1or # =3,5, 7 (contained in St)

T(2) (:172 — asx + b2)2
T3) | z*—agz®+bs

T(5) | (2% —asz +bs)?

where a2 =<-1, —-1,0,0>, bo =<-1,1, 0, 0>

a3 =<6, —=1,0, 1>, b3 =<4, 4, 1, 0>,

as =<0, 3, -1, =1>, bs =<-5,1, 2, 0>

and <wug, u;, ug, uz> denotes ug+ uyoig+ U0+ uzoss, where

016 = Ci16 + (i with a primitive 16-th root of unity (s .

(2b)g=31, # =2 or # =6 (contained in Sur)

T(2) (23 — Bx? — 4z + (—1 + 3p))?
T(3) | 28+ (36 — 14)z* + (62 — 288)z? + (—80 + 560)
T(5) (23 + (=2 +28)z% + (-3 - 38)x + (2 — 78))?

where 8 = V2.

(2.c) =31, =4 (contained in Sur)

T(2) (z +1)% (22 — 3z + 1)?
T3) | (z*-8)-(z* — 62> +4)
T() | «*-(a* - 5)°
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(B.a)g=43, v =1or # =5,7,9 (contained in S1)

T(2)

T(11)
T(13)
T(17)

(2?2 — ap) - (z* — baz® + ¢3)
(37 — a11)2 . (1‘2 — bn.’B + 011)2
(z — a13)? - (2% — b13x + c13)?

(:L’ - a17)2 . (.’172 — bl7fL‘ + 017)2

where a2 =<2, —3,0,1, 0>, ba =<4, —1,6,1, —2>,
e =<-1,7,17, =1, —5>,

a;n =<-50,5,0, —1>, bi1 =<8, 4,-19, -2, 5>,
a1 =<9, 18, 3, -6, —2>,

a1z =<2, =5, =5, 2, 1>, biz=<-5,5,9, -2, —2>,
c13 =<-12, —6, 18, 2, —5>,

a7 =<-2, =8,3,2, —1>, bir =<1, -2, —4, 1, 1>,

83

cir = <—31, =15, 39, 7, —10> and <wug, u1, us, uz, us> denotes ug+ ujogyt+ UzoE, +

3 4
U059+ UsT 5o,

(3.b) g=43, # =2 or 1 =4,6,8,10. (contained in Str)

T(2)
T(11)
T(13)

28 — a9z + bozt — oz + do

4 2 2
(z* — a112® + bi12® — ez + di1)

(z* — a137® + bysz? — c137 + di3)?

where a2 = <17, 0, -8, 0, 2>, bo = <90, -3, —72, 1, 18>,

¢ = <154, 2, —149, —1, 36>, d2 = <40, 17, —25,. -6, 4>,

a11 =<9, 2, -8, 0, 2>, b1 =<13, 14, —33, -2, 8>,

cin =<—80, —32, 147, 1, —40>, diy = <—94, 36, 72, —12, — 14>,
a3 =<3,4,0,0, 0> big=<-15,9, 13, 0, — 3>,

ci3 = <—10, —10, —36, —11, 14>, d13 = <9, =50, 13, 13, —14>

where gqp = (22 + (53 with a primitive 22-th root of unity (oo .

2 3 4 —
and <ug, Ur, U, U, Us,> denotes uO+U1011+U2011+’U/30'11+’Ll,40'11, where o1 = Cll +

¢;;' with a primitive 11-th root of unity (i: .
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(4.a) g=47, # =1or # =5,7,11 (contained in S1)

T(2) (23 = agz? + boz — cp)?
T(3) (%’3 - a3x2 + b3CE - 63)2

T(5) 28 — agz* + bsz? — ¢

where a2 =<-1, —1,0,0>, bp =<-2,1,0, 0>, c2 =<0, 1, 0, 0>,

a3 =<-1, —4,0, 1>, b3 =<-5,4,1, —1>, c3 =<0, 15, 0, —4>,

as = <14, 3,0, 0>, bs = <40, 8, 2, 4>, c5s =<4, —12, 14, 11>,

<ug, w1, Uz, uz> denotes wg+ uiogst U20ss+ uzoss, Where ooy = (oa+ (3t with a

primitive 24-th root of unity Co4.

4.b) g=47, & =2 or # =10 (contained in Sir)

T(2) (z* — az® — 522 + daz + 2 — )?
T3) | (z*+ (-1+a)2® + (-8 — a)z? + (4 — 5a)z + (8 — 2a))?
T(5) | 28+ (=24 4 20)z° + (193 — 28a)z* + (=598 + 111a)z? + (613 — 1400)

where o = V3.

(4.c) g =47, 1 =4 (contained in Str)

T2) | (z*—32% —22+62—1)2
T(3) (z? — 223 — 522 + Tz — 2)?
T(() | 28 — 302 + 2792* — 83722 + 81

(4.d) g =47, # =8 (contained in Si1)

T(2) (z+1)% (23 — 22% — 3z +5)2
T3) | (z—2)% (23 +22% - 5z — 5)?
T(5) (x+3)(x—3) (23 +2% —dz + 1) (2 —2? — 4z — 1)

(4.e) g=47, # =3 or 4 =9 (contained in St1)

T(2) (* + (1 +B8)2® + (=5 + B)z? + (=3 —48)z + (3 — 38))?
T(3) (z* +(2—-B3)2® + (=5 —28)z% + (=6 + 48)z + (3 + 53))?
T(5) | x®+ (=26 + 96)z% + (260 — 1528)z* + (—944 + 6563)z + (612 — 43203)
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where 8 = V2.

(4.f) q=47, b =6 (contained in St )

T(2) | (x®—8z®+ 8z + 3)?
T(3) | (x°—2z* — 723 + 122 + 72 — 8)2
T(5) 210 — 3628 + 4602° — 24162 + 443222 — 2592

Table (D)
Table (D) is the table of ®7,(%) where f(z) belongs to the space §%z*.

l.g = 23, h(—23) = 3 (contained in Sy)

T?2) | z®—62-3
T3) | 23—-9z—2
T(5) z3

2. ¢ =31, h(—31) = 3 (contained in Sy1)

T(2) z3 — 6z —1
T3) | 48
T() | 2> —15z—2

3. q =43, h(—43) =1 (contained in Sy)

T(2) z - (z° — 6)
T(1) | (z+1-(z+1)2
T(13) | (x—3)-(z+3)?

4, q =47, h(—47) =5 (contained in Sy1)
T(2) | 2°—-102%+20z -9
T(3) | z°—152° + 45z — 28
T(5) x°
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