

Some Hecke Eigen-Values for (q)

著者	Yamauchi Masatoshi
journal or	情報研究 : 関西大学総合情報学部紀要
publication title	
volume	26
page range	73-86
year	2007-01-10
URL	http://hdl.handle.net/10112/11876

Some Hecke Eigen-Values for $\Gamma(q)$

Masatoshi YAMAUCHI*

Abstract

We give some explicit eigen-values of Hecke operators for the cusp forms of weight 2 for the principal congruence subgroups $\Gamma(q)$ for several primes q, using the Eichler's formula [1]. For the prime $q \equiv 3 \mod 4$, the cusp forms correponding to the degree q-1 representation of the group $SL_2(\mathbb{Z}/q\mathbb{Z})$ are viewed as the cusp forms for $\Gamma_0(q^2)$. Using these cusp forms, we give an example of the class field over the imaginary quadratic field \mathbb{Q} ($\sqrt{-q}$) for q=43 which is constructed by Shimura's theory of class fields over the quadratic fields.

^{*} Faculty of Informatics, Kansai University

Introduction

In this paper, we give some explicit eigen-values of Hecke operators for the cusp forms of weight 2 for the principal congruence subgroups $\Gamma(q)$ for q=23,31,43 and 47 corresponding to the representation of degree q-1 of the group $SL_2(\mathbb{Z} | q \mathbb{Z})$, using the Eichler's formula [1]. For the prime $q\equiv 3 \mod 4$, the cusp forms corresponding to degree q-1 representations are viewed as the cusp forms for $\Gamma_0(q^2)$, and contained in the space S_1 or S_{III} defined in [3]. The cusp forms corresponding to the representations of degree q or q+1 are viewed as forms of $\Gamma_0(q)$ with some character of conductor q, of which Hecke eigen-values are not treated here, since they are rather easily obtained. We denote by \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. $GL_2(\mathbb{R})$ denotes the group of all non-singular square matrices whose components are contained in \mathbb{R} and $SL_2(\mathbb{Z})$ denotes the group of all square matrices of determinant 1 whose components are contained in \mathbb{Z} .

1 Cusp forms for $\Gamma(q)$ and $\Gamma_0(q^2)$

Let $a = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})$ $(\det(\alpha) > 0)$. For a function f(z) on the complex upper half plane \mathfrak{H} and a positive integer $k \geq 2$, we define a function $f[\alpha]_k$ on \mathfrak{H} by

$$(f|[\alpha]_k)(z) = (\det \alpha)^{k/2}(cz+d)^{-k}f(\alpha(z)),$$

where $\alpha(z) = (az + b)/(cz + d)$. For a positive integer N, we define

$$\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}) \mid c \equiv 0 \bmod N \right\}.$$

$$\Gamma(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}) \mid \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \bmod N \right\}.$$

We put $\Gamma = \Gamma(1) = SL_2(\mathbb{Z})$. We denote by $S_k(\Gamma_0(N))$ (resp. $S_k(\Gamma(N))$) the space of all holomorphic cusp forms of weight k on \mathfrak{H} satisfying

$$f|[\gamma]_k = f$$
 for $\gamma \in \Gamma_0(N)$ (resp. $\Gamma(N)$)

Further for a character ψ modulo N, we denote by $S_k(\Gamma_0(N), \psi)$ the space of all holomorphic cusp forms of weight k satisfying

$$f|[\gamma]_k = \psi(d)f$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$.

If ψ is the identity character, we simply write $S_k(\Gamma_0(N), \psi)$ as $S_k(\Gamma_0(N))$. Hereafter we take N=q, q is an odd prime. We put $\mathfrak{M}=\Gamma/\Gamma(q)$. Throughout this paper we assume k=2. Let $\mathfrak{S}=S_2(\Gamma(q))$ be the space of cusp forms of weight 2 for $\Gamma(q)$.

Then it is known by Hecke [2], the space S is decomposed as

(1)
$$\mathfrak{S} = \sum_{\mu} s^{q-1,\mu} \mathfrak{S}^{q-1,\mu} + \sum_{\nu} s^{q+1,\nu} \mathfrak{S}^{q+1,\nu} + s^q \mathfrak{S}^q + \cdots$$

where $\mathfrak{S}^{q-1,\mu}$ etc. are irreducible components of \mathfrak{S} of the representation S of \mathfrak{M} defined by

$$\begin{pmatrix} \varphi_1(z) \\ \vdots \\ \varphi_m(z) \end{pmatrix} \circ M = S(M) \begin{pmatrix} \varphi_1(z) \\ \vdots \\ \varphi_m(z) \end{pmatrix}.$$

Here $\{\varphi_1(z)\cdots\varphi_m(z)\}$ is a basis of $\mathfrak S$ and

$$\varphi_i(z) \circ M = (\varphi_i|[M]_2)(z)$$
.

The positive integer $s^{q-1,\mu}$ is the multiplicity of $\mathfrak{S}^{q-1,\mu}$. The right upper index q-1 of $\mathfrak{S}^{q-1,\mu}$, for example, means the degree of the representation and μ will be explaind later and exact values of $s^{q-1,\mu}$ etc. is given in 3. Tables (Table (A)). We have by (1),

(2)
$$\sigma(M) = \sum_{\mu} s^{q-1,\mu} \sigma^{q-1,\mu}(M) + \sum_{\nu} s^{q+1,\nu} \sigma^{q+1,\nu}(M) + \cdots,$$

where $\sigma, \sigma^{q-1,\mu}$, etc. denote the traces on the spaces $\mathfrak{S}, \mathfrak{S}^{q-1,\mu}$, etc.

Suppose n is a quadratic residue mod q, and take t so that $n \equiv t^2 \mod q$. For the Hecke operator T(n) acting on \mathfrak{S} , define $\hat{T}(n)$ as

$$\hat{T}(n) = T(n)U_t$$
 where $U_t \in \Gamma$ and $U_t \equiv \left(egin{array}{cc} t & 0 \\ 0 & t^{-1} \end{array}
ight) \bmod q$.

We put $\mathfrak{T}=\left\{\hat{T}(n)|\quad \chi(n)=1\right\}$, where χ denotes the real primitive character modulo q of order 2. Since

$$\hat{T}(n)M = M\hat{T}(n)$$
, for $M \in \Gamma$,

the trace $\sigma(\hat{T}(n))$ of the representation of $\mathfrak T$ becomes

(3)
$$\sigma(\hat{T}(n)) = (q-1) \sum_{\mu} \sigma^{q-1,\mu}(\hat{T}(n)) + (q+1) \sum_{\nu} \sigma^{q+1,\nu}(\hat{T}(n)) + \cdots,$$

where $\sigma^{q-1,\mu}$, $\sigma^{q+1,\nu}$, etc. denote the traces on certain subspaces $\mathfrak{U}^{q-1,\mu}$, $\mathfrak{U}^{q+1,\nu}$, etc. of \mathfrak{S} , and $\dim \mathfrak{U}^{q-1,\mu} = s^{q-1,\mu}$, $\dim \mathfrak{U}^{q+1,\nu} = s^{q+1,\nu}$, etc (Eichler[1]). In this paper, we exclusively treat the representation of \mathfrak{M} of degree q-1. This representation is characterized by the character $\chi(S) = -(\zeta_{\mu} + \zeta_{\mu}^{-1})$ where S is an element \mathfrak{M} of order $\frac{q+1}{2}$ and ζ_{μ} is a $\frac{q+1}{2}$ -th root of unity which is not equal to ± 1 and $1 \leq \mu \leq \frac{q-1}{4}$ in the case $q \equiv 1,5 \mod 12$ and $1 \leq \mu \leq \frac{q-3}{4}$ in the case $q \equiv 7,11 \mod 12$ (Hecke[2]). Now take

$$f(z) = \sum_{n=1}^{\infty} \lambda_n e^{\frac{2\pi i n z}{q}} \in S_2(\Gamma(q)),$$

which is a common eigen-function of Hecke operators T(n). Then we know by Shimura([4], prop.3.53, prop.3.64)

$$f(qz) = \sum_{n=1}^{\infty} \lambda_n e^{2\pi i nz} \in S_2(\Gamma_0(q^2), \varphi)$$

for a suitable character φ modulo q, which is a common eigen-function of Hecke operators. Further, for another character ξ modulo q,

$$f_{\xi}(qz) = \sum_{n=1}^{\infty} \xi(n) \lambda_n e^{2\pi i n z} \in S_2(\Gamma_0(q^2), \varphi \xi^2)$$

 $f_{\xi}(qz)$ is also a common eigen function of all Hecke operators. Further assume q is a prime such that $q\equiv 3 \mod 4$. Hence if we put $\xi=\varphi^{\frac{q-3}{4}}$, then $\varphi\xi^2=1$. Thus any function $f(z)\in S_2(\Gamma(q))$ may be regarded as a function of $\tilde{f}(z)=f_{\xi}(qz)\in S_2(\Gamma_0(q^2))$. Using the trace formula of Eichler [1], we give several characteristic polynomials $\Phi_{\tilde{f},n}(x)$ of Hecke operators T(n) on the subspace of $S_2(\Gamma_0(q^2))$ corresponding to the primitive functions $\tilde{f}(z)$ for q=23,31,43,47. We denote by χ the non-trivial quadratic character of conductor q. Then for $\tilde{f}(z)=\Sigma_{n=1}^{\infty}a_ne^{2\pi inz}\in S_2(\Gamma(q^2))$, $\tilde{f}_{\chi}(z)=\Sigma_{n=1}^{\infty}\chi(n)a_ne^{2\pi inz}$ is also contained in $S_2(\Gamma_0(q^2))$.

Let $S_2^0(\Gamma_0(q^2))$ denote the subspace of all new forms in $S_2(\Gamma_0(q^2))$. We put $S_2(\Gamma_0(q))^\chi = \{f_\chi | f \in S_2(\Gamma_0(q)) \}$, then the space $S_2(\Gamma_0(q))^\chi$ is the subspace of $S_2^0(\Gamma_0(q^2))$. We denote by $S_2^n(\Gamma_0(q^2))$ the orthogonal complement of $S_2(\Gamma_0(q))^\chi$ in $S_2^0(\Gamma_0(q^2))$ with respect to the Petersson inner product. Then we know by [3], $S_2^n(\Gamma_0(q^2))$ decomposes into four spaces,

(4)
$$S_2^n(\Gamma_0(q^2)) = S_I \bigoplus S_{II} \bigoplus S_{II_\chi} \bigoplus S_{III}$$

where

$$\begin{split} S_{\mathrm{I}} &= \left\{ f \in S_{2}^{n}(\Gamma_{0}(q^{2})) \; \middle| \; \; f | W = f, \; f | \delta_{\chi}W = f | \delta_{\chi} \right\} \\ S_{\mathrm{II}} &= \left\{ f \in S_{2}^{n}(\Gamma_{0}(q^{2})) \; \middle| \; \; f | W = f, \; f | \delta_{\chi}W = -f | \delta_{\chi} \right\} \\ S_{\mathrm{II}_{\chi}} &= \left\{ f \in S_{2}^{n}(\Gamma_{0}(q^{2})) \; \middle| \; \; f | W = -f, \; f | \delta_{\chi}W = f | \delta_{\chi} \right\} \\ S_{\mathrm{III}} &= \left\{ f \in S_{2}^{n}(\Gamma_{0}(q^{2})) \; \middle| \; \; f | W = -f, \; f | \delta_{\chi}W = -f | \delta_{\chi} \right\}. \end{split}$$

Here $W=\left(\begin{array}{cc} 0 & -1\\ q^2 & 0 \end{array}\right)$, and for the quadratic character χ , δ_χ is the twisting operator

$$f|\delta_{\chi} = \frac{1}{g(\chi)} \sum_{u=1}^{q-1} \chi(u) f|[\alpha_u]_k \quad \text{for} \quad \alpha_u = \begin{pmatrix} q & u \\ 0 & q \end{pmatrix}$$

where $g(\chi)$ is the Gaussian sum for χ .

We list the dimensions of the space $S_{\rm I}, S_{\rm II}$ and $S_{\rm III}$ in the table (B). (we note dim $S_{\rm II} = \dim S_{\rm II_x}$).

2 The case q = 43.

In [3, § 5], we have given an example of the form in $S_2(\Gamma_0(q^2))$ which relates to the theory of Shimura's construction of class fields over real quadratic fields for the case $q^2 = 19^2$. In this section we add one example for the case $q^2 = 43^2$. Hereafter we put q = 43. We denote by \circ_L the maximal orders of the number field L. Let $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$ be a primitive form corresponding to the first factor of the Table (C) (3.a), then we see $a_2 = \sqrt{\beta_2}$, $a_{11} = <-5$, 0, 5, 0, -1>, $a_{13} = <2$, -5, -5, 2, 1>, $a_{17} = <-2$, -8, 3, 2, -1> where $\beta_2 = <2$, -3, 0, 1, 0>. We note that the absolute norm of β_2 is 11. Here $< u_0$, u_1 , u_2 , u_3 , $u_4>$ denotes $u_0 + u_1\sigma_{22} + u_2\sigma_{22}^2 + u_3\sigma_{32}^3 + u_4\sigma_{42}^4$, where $\sigma_{22} = \zeta_{22} + \zeta_{22}^{-1}$ with a primitive 22-th root of unity ζ_{22} .

Let K be the subfield of \mathbb{C} generated by a_n for all n.

Now f(z) and its companions, namely $f^{\sigma}(z) = \sum_{n=1}^{\infty} a_n^{\sigma} e^{2\pi i n z}$ for all isomorphism σ from K into $\mathbb C$ span 10-dimensional subspace of $S_2(\Gamma_0(43^2))$. From this f(z) and its companions, we obtain an abelian variety of dimension $[K:\mathbb Q]$ (=10) defined over $\mathbb Q$ and an isomorphism θ of K into $\operatorname{End}(A)\otimes\mathbb Q$, $\theta(a)$ is rational for all $a\in K$. Further, we see that there is an automorphism ρ of K, other than the identity map, such that $\chi(n)a_n=a_n^{\rho}$ for all n. Thus, let F be the invariant subfield of K under ρ , then we have [K:F]=2.

Let $\mathfrak{c}=(\beta_2)\mathfrak{o}_F$ be the ideal in F, and $\mathfrak{b}=\sqrt{\beta_2}\mathfrak{o}_K$ be the ideal in K. Then $\mathfrak{b}^2=\mathfrak{c}$ and both the absolute norm of \mathfrak{b} and \mathfrak{c} is 11. Further we see $\beta_2=<2$, -3, 0, 1, 0>=<2, 1, 0, 0><1, -2, 1, 0, 0> and <1, -2, 1, 0, 0> is a unit. So we may put $\mathfrak{c}=(2+\sigma_{22})$.

We know by [6, prop.8 and prop.9] there exists an endomorphism η of A which is defined over the quadratic field $k = \mathbb{Q}(\sqrt{-q})$ and satisfies the following conditions:

- (i) $\eta^{\varepsilon} = -\eta$ if ε is the generator of $Gal(k/\mathbb{Q})$.
- (ii) $\eta^2 = \chi(-1)q \cdot \mathrm{id}_A$.
- (iii) $\eta \circ \theta(a) = \theta(a^{\rho}) \circ \eta$ for every $a \in K$.

For the ideal b given as above, we put

$$\mathfrak{x} = \{ t \in A | \ \theta(\mathfrak{b})t = 0 \} \ ,$$

then $\mathfrak x$ is isomorphic to $(\mathfrak o_K/\mathfrak b)^2$ as an $\mathfrak o_k$ -module. further we put

$$\mathfrak{y}=\{t\in\mathfrak{x}|\ (\eta-\theta(1))t=0\}$$
 ,

$$\mathfrak{z} = \{ t \in \mathfrak{x} | (\eta + \theta(1))t = 0 \}$$
.

Now as in [5,Prop.9.2], we see

The submodules $\mathfrak y$ and $\mathfrak z$ are $\mathfrak o_F$ -isomorphic to $\mathfrak o_F/\mathfrak c$ and $\mathfrak x=\mathfrak y\oplus\mathfrak z$.

Let $k(\mathfrak{x})$ (resp. $k(\mathfrak{y})$) denote the smallest extension of k over which the points of \mathfrak{x} (resp. \mathfrak{y}) are rational. Then $k(\mathfrak{x})$ is an abelian extension of k, and making $\operatorname{Gal}(k(\mathfrak{x})/k)$ act on \mathfrak{y} and \mathfrak{z} , we obtain an injective homomorphism

$$\operatorname{Gal}(k(\mathfrak{x})/k) \to (\mathfrak{o}_F/\mathfrak{c})^{\times} \times (\mathfrak{o}_F/\mathfrak{c})^{\times}$$
.

We shall examine the abelian extension $k(\mathfrak{y})/k$ following the method explained in [3, § 5].

Proposition 2.1 The field $k(\mathfrak{y})$ is a ray class field over k of conductor $\sqrt{-43}$ with a prime factor \mathfrak{l} of $\mathfrak{l}\mathfrak{l}$, one has

$$r((\alpha)) = \varphi(\alpha)\mu(\alpha \mod \mathfrak{l})$$

for every α in k prime to 43 \mathfrak{l} , where μ is the isomomorphism of $\mathfrak{o}_k/\mathfrak{l}$ onto $\mathfrak{o}_F/\mathfrak{c}$ and φ is a homomorphism of $(\mathfrak{o}_k/(\sqrt{-43}))^{\times}$ into $(\mathfrak{o}_F/\mathfrak{c})^{\times}$ of order 2.

proof. Since every prime factor of the conductor \mathfrak{f} of $k(\mathfrak{p})/k$ divides $43 \cdot N(\mathfrak{l}) = 43 \cdot 11$, [4, § 7.5 and Prop. 7.23] we may put $\mathfrak{f} = \prod_{\mathfrak{p}} \mathfrak{p}^{f_{\mathfrak{p}}}$ where \mathfrak{p} runs all prime factors of $43 \cdot 11$ By the same argument as in the proof of [5, Th.2.3], we obtain

$$r((m)) = \chi(m)\mu(m \mod \mathfrak{l})$$

for every $m \in \mathbb{Z}$ prime to $43 \cdot 11$. Thus $[k(\mathfrak{y}): k] = 5$ or 10, and so the \mathfrak{l} exponent $f_{\mathfrak{l}} = 1$ by [4,Lemma 3.2]. To determine $f_{\mathfrak{l}^e}$, we use the following fact which is nothing but [5, Th. 2.8] for the present case.

Let l be a prime which divides $N(\mathfrak{l})$ but not q=43. Suppose $\chi(l)=1$, and a_l is prime to $\mathfrak{c}=(2+\sigma_{22})$. Then \mathfrak{l} is divisible only one prime factor of l. Put $l=\mathfrak{l} \cdot \mathfrak{l}^{\mathfrak{c}}$ and suppose \mathfrak{l} divides \mathfrak{l} . Then

$$r(\mathfrak{l}^{\epsilon}) \equiv a_l \bmod \mathfrak{c}$$
.

Take l = 11. Then Since $a_{11} = < -5$, 0, 5, 0, -1> is prime to $\mathfrak{c} = (2+\sigma_{22})$, we have $f\mathfrak{c} = 0$. So we may put $\mathfrak{f} = \mathfrak{l}^t \sqrt{-43}^{t'}$. By the Hasse's conductor ramification theorem, we find t = 1 and t' = 1, since $[k(\mathfrak{y}) : k] = 5$ or 10. Thus we have

$$r((\alpha)) = \varphi(\alpha)\mu(\alpha \mod \mathfrak{l})$$

for every α in k prime to $43\mathfrak{l}$, with a homomorphism φ of $(\mathfrak{o}_k/(\sqrt{-43}))^{\times}$ into $(\mathfrak{o}_F/\mathfrak{c})^{\times}$ and the isomorphism μ of $\mathfrak{o}_k/\mathfrak{l}$ onto $\mathfrak{o}_F/\mathfrak{c}$. Now the orders of $(\mathfrak{o}_k/(\sqrt{-43}))^{\times}$ and $(\mathfrak{o}_F/\mathfrak{c})^{\times}$ are 42 and 10 respectively, and $\varphi(m)=\chi(m)$ for rational m prime to $43\cdot 11$, so the order of φ is 2. Further, $r(\mathfrak{l}^{\epsilon})\equiv a_{11}\equiv -1 \mod (2+\sigma_{22})$, we have $\lceil k(\mathfrak{p}):k \rceil = 10$. This completes our proof.

Remark. If p is a rational prime such that $\chi(p) = 1$ then $p = \alpha \alpha'$ for an integer α

 $\in \mathbb{Q}(\sqrt{-43})$. We take α so that $\chi(\alpha + \alpha') = -1$.

Then we have

$$a_p \equiv \alpha + \alpha' \mod (2 + \sigma_{22})$$
.

3 Tables

Table (A)

In the Table(A), the mulplicity $s^{q-1,\mu}$ of $\mathfrak{S}^{q-1,\mu}$ etc. is given in the decomposition of \mathfrak{S} . (see the equality (1) in the text)

1. the table of $s^{q-1,\mu}$

	$\mu \equiv 0 \bmod 6$	$\mu \equiv 3 \bmod 6$	$\mu \equiv 1,5 \bmod 6$	$\mu \equiv 2,4 \mod 6$
$q \equiv 1 \bmod 12$	(q-1)/12	(q-1)/12	(q-1)/12	(q-1)/12
$q \equiv 5 \bmod 12$	(q + 7)/12	(q + 7)/12	(q-5)/12	(q-5)/12
$q \equiv 7 \bmod 12$	(q + 5)/12	(q-7)/12	(q-7)/12	(q + 5)/12
$q \equiv 11 \bmod 12$	(q+13)/12	(q + 1)/12	(q-11)/12	(q + 1)/12

where $1 \le \mu \le \frac{q-1}{4}$ in the case $q \equiv 1$, $5 \mod 12$ and $1 \le \mu \le \frac{q-3}{4}$ in the case $q \equiv 7$, $11 \mod 12$.

2. the table of $s^{q+1,\nu}$

	$\nu \equiv 0 \bmod 6$	$\nu \equiv 3 \bmod 6$	$\nu \equiv 1,5 \bmod 6$	$\nu \equiv 2,4 \bmod 6$
$q \equiv 1 \bmod 12$	(q-25)/12	(q-13)/12	(q-1)/12	(q-13)/12
$q \equiv 5 \bmod 12$	(q-17)/12	(q-5)/12	(q-5)/12	(q-17)/12
$q \equiv 7 \bmod 12$	(q-19)/12	(q-19)/12	(q-7)/12	(q-7)/12
$q \equiv 11 \bmod 12$	(q-11)/12	(q-11)/12	(q-11)/12	(q-11)/12

where $1 \le \nu \le \frac{q-5}{4}$ in the case $q \equiv 1,5 \bmod 12$ and $1 \le \nu \le \frac{q-3}{4}$ in the case $q \equiv 7,11 \bmod 12$.

Remark that $s^{q+1,\nu} = \dim S_2(\Gamma_0(q),\psi)$, where ψ is a Dirichet character of conductor q and of order t. t is determined as ζ^{ν} is a primitive t-th root of unity, where ζ is a primitive $\frac{q-1}{2}$ -th root of unity.

3. the table $s^{\frac{q+1}{2}}$

$$s^{\frac{q+1}{2}} = \begin{cases} (q-25)/24 & q \equiv 1 \bmod 24\\ (q-5)/24 & q \equiv 5 \bmod 24\\ (q-17)/24 & q \equiv 17 \bmod 24\\ (q-13)/24 & q \equiv 13 \bmod 24 \end{cases}$$

Remark that in this case, $q\equiv 1 \mod 4$, and $s^{\frac{q+1}{2}}=\frac{1}{2}\mathrm{dim}S_2(\Gamma_0(q,(\frac{1}{q})))$, where $(\frac{1}{q})$ denotes the Legendre symbol of level q.

4. the table $s^{\frac{q-1}{2}}$

$$s^{\frac{q-1}{2}} = \frac{1}{2}h(-q) + \begin{cases} (q+5)/24 & q \equiv 7 \bmod 24\\ (q+1)/24 & q \equiv 11 \bmod 24\\ (q-7)/24 & q \equiv 19 \bmod 24\\ (q+13)/24 & q \equiv 23 \bmod 24 \end{cases}$$

In this case, $q \equiv 3 \mod 4$, and h(-q) denotes the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-q})$.

5. the table s^q

$$s^{q} = \begin{cases} (q-25)/24 & q \equiv 1 \mod 24\\ (q-5)/24 & q \equiv 5 \mod 24\\ (q+7)/24 & q \equiv 17 \mod 24\\ (q-13)/24 & q \equiv 13 \mod 24 \end{cases}$$

Note that $s^q = \dim S_2(\Gamma_0(q))$.

Table (B)

In this Table(B), $\dim S_{\mathrm{II}}$, $\dim S_{\mathrm{II}}$ (= $\dim S_{\mathrm{II}_{\chi}}$) and $\dim S_{\mathrm{III}}$ are given in the decomposition of $S_2^n(\Gamma_0(q^2))$. (see the equality (4) in the text)

	$\mathrm{dim}S_{\mathrm{I}}$	$\mathrm{dim}S_{\mathrm{II}}$	$\mathrm{dim}S_{\mathrm{III}}$
$q \equiv 1 \bmod 12$	$(q^2 - 22q + 117)/48$	$(q^2 - 2q + 1)/48$	$(q^2 - 6q + 5)/48$
$q \equiv 5 \bmod 12$	$(q^2 - 22q + 85)/48$	$(q^2 - 2q - 15)/48$	$(q^2 - 6q + 5)/48$
$q \equiv 7 \bmod 12$	$(q^2 - 6q - 7)/48$	$(q^2 - 14q + 49)/48$	$(q^2 + 2q - 15)/48$
$q \equiv 11 \bmod 12$	$(q^2 - 6q - 7)/48$	$(q^2 - 14q + 33)/48$	$(q^2 + 2q - 47)/48$

Table (C)

Table (C) is the table of the product $\Phi_{\tilde{f},n}(x)$. $\Phi_{\tilde{f}_{\chi},n}(x)$ where f(z) belongs to the space $\mathfrak{U}^{q-1,\mu}$.

(1.a) q=23, $\mu=1$ or $\mu=5$ (contained in $S_{\rm I}$)

$$T(2) \qquad (x+1)^{2} \cdot (x+1)^{2}$$

$$T(3) \qquad (x-(-1+\alpha))^{2}$$

$$T(5) \qquad (x-(\alpha\beta-\beta)/2)(x+(\alpha\beta-\beta)/2)$$

$$T(7) \qquad (x+\alpha\beta)(x-\alpha\beta)$$

$$T(11) \qquad (x-(\alpha\beta+2\beta))(x+\alpha\beta+2\beta)$$

$$T(13) \qquad (x+1+2\alpha)^{2}$$

where $\alpha = \sqrt{3}$, $\beta = \sqrt{2}$.

(1.b) q = 23, $\mu = 2$ (contained in S_{III})

$$T(2) \qquad (x - \alpha)^2 \cdot (x + \alpha)^2$$

$$T(3) \qquad (x - (1 + \alpha))^2 \cdot (x - (1 - \alpha))^2$$

$$T(5) \qquad (x - \alpha)(x + \alpha) \cdot (x - \alpha)(x + \alpha)$$

$$T(7) \qquad (x - (-3 + \alpha))(x + (-3 + \alpha)) \cdot (x - (3 + \alpha))(x + 3 + \alpha)$$

where $\alpha = \sqrt{3}$.

(1.c) q = 23, $\mu = 4$ (contained in S_{III})

$$T(2) \qquad (x - (1+\beta))^2 \cdot (x - (1-\beta))^2$$

$$T(3) \qquad (x - \beta)^2 \cdot (x + \beta)^2$$

$$T(5) \qquad (x - (1-2\beta))(x + (1-2\beta)) \cdot (x - (1+2\beta))(x + 1 + 2\beta)$$

$$T(7) \qquad (x - (2+\beta))(x + 2 + \beta) \cdot (x - (2-\beta))(x + (2-\beta))$$

where $\beta = \sqrt{2}$.

(1.d) q=23, $\mu=3$ (contained in $S_{\rm I}$)

$$T(2) \qquad (x - (-1 + \gamma)/2)^{2} \cdot (x + (1 + \gamma)/2)^{2}$$

$$T(3) \qquad (x + 1)^{2} \cdot (x + 1)^{2}$$

$$T(5) \qquad (x - (\alpha\gamma - \alpha)/2)(x + (\alpha\gamma - \alpha)/2) \cdot (x - (\alpha\gamma + \alpha)/2)(x + (\alpha\gamma + \alpha)/2)$$

$$T(7) \qquad (x + (\alpha\gamma + \alpha)/2)(x - (\alpha\gamma + \alpha)/2)) \cdot (x + (\alpha\gamma - \alpha)/2)(x - (\alpha\gamma - \alpha)/2))$$

where $\alpha = \sqrt{3}$, $\gamma = \sqrt{13}$.

(2.a) q=31, $\mu=1$ or $\mu=3$, 5, 7 (contained in $S_{\rm I}$)

where $a_2 = <-1$, -1, 0, 0>, $b_2 = <-1$, 1, 0, 0> $a_3 = <6$, -1, 0, 1>, $b_3 = <4$, 4, 1, 0>, $a_5 = <0$, 3, -1, -1>, $b_5 = <-5$, 1, 2, 0>and $< u_0$, u_1 , u_2 , $u_3>$ denotes $u_0+u_1\sigma_{16}+u_2\sigma_{16}^2+u_3\sigma_{16}^3$, where $\sigma_{16} = \zeta_{16}+\zeta_{16}^{-1}$ with a primitive 16-th root of unity ζ_{16} .

(2.b) q = 31, $\mu = 2$ or $\mu = 6$ (contained in S_{III})

$$T(2) \qquad (x^3 - \beta x^2 - 4x + (-1 + 3\beta))^2$$

$$T(3) \qquad x^6 + (3\beta - 14)x^4 + (62 - 28\beta)x^2 + (-80 + 56\beta)$$

$$T(5) \qquad (x^3 + (-2 + 2\beta)x^2 + (-3 - 3\beta)x + (2 - 7\beta))^2$$

where $\beta = \sqrt{2}$.

(2.c) q=31, $\mu=4$ (contained in S_{III})

$$T(2) \qquad (x+1)^2 \cdot (x^2 - 3x + 1)^2$$

$$T(3) \qquad (x^2 - 8) \cdot (x^4 - 6x^2 + 4)$$

$$T(5) \qquad x^2 \cdot (x^2 - 5)^2$$

(3.a)
$$q = 43$$
, $\mu = 1$ or $\mu = 5,7,9$ (contained in $S_{\rm I}$)

$$T(2) \qquad (x^{2} - a_{2}) \cdot (x^{4} - b_{2}x^{2} + c_{2})$$

$$T(11) \qquad (x - a_{11})^{2} \cdot (x^{2} - b_{11}x + c_{11})^{2}$$

$$T(13) \qquad (x - a_{13})^{2} \cdot (x^{2} - b_{13}x + c_{13})^{2}$$

$$T(17) \qquad (x - a_{17})^{2} \cdot (x^{2} - b_{17}x + c_{17})^{2}$$

where
$$a_2 = \langle 2, -3, 0, 1, 0 \rangle$$
, $b_2 = \langle 4, -1, 6, 1, -2 \rangle$,

$$c_2 = <-1, 7, 17, -1, -5>,$$

$$a_{11} = <-5, 0, 5, 0, -1>, b_{11} = <8, 4, -19, -2, 5>,$$

$$c_{11} = \langle 9, 18, 3, -6, -2 \rangle$$

$$a_{13} = \langle 2, -5, -5, 2, 1 \rangle, b_{13} = \langle -5, 5, 9, -2, -2 \rangle,$$

$$c_{13} = < -12, -6, 18, 2, -5>,$$

$$a_{17} = \langle -2, -8, 3, 2, -1 \rangle, b_{17} = \langle 1, -2, -4, 1, 1 \rangle,$$

 $c_{17} = \langle -31, -15, 39, 7, -10 \rangle$ and $\langle u_0, u_1, u_2, u_3, u_4 \rangle$ denotes $u_0 + u_1 \sigma_{22} + u_2 \sigma_{22}^2 + u_3 \sigma_{22}^3 + u_4 \sigma_{22}^4$, where $\sigma_{22} = \zeta_{22} + \zeta_{22}^{-1}$ with a primitive 22-th root of unity ζ_{22} .

(3.b) q = 43, $\mu = 2$ or $\mu = 4,6,8,10$. (contained in S_{III})

$$T(2) x8 - a2x6 + b2x4 - c2x2 + d2 T(11) (x4 - a11x3 + b11x2 - c11x + d11)2 T(13) (x4 - a13x3 + b13x2 - c13x + d13)2$$

where $a_2 = <17, 0, -8, 0, 2>, b_2 = <90, -3, -72, 1, 18>,$

$$c_2 = <154, 2, -149, -1, 36>, d_2 = <40, 17, -25, -6, 4>,$$

$$a_{11} = \langle 9, 2, -8, 0, 2 \rangle, b_{11} = \langle 13, 14, -33, -2, 8 \rangle,$$

$$c_{11} = < -80, -32, 147, 1, -40>, d_{11} = < -94, 36, 72, -12, -14>.$$

$$a_{13} = \langle 3, 4, 0, 0, 0 \rangle, b_{13} = \langle -15, 9, 13, 0, -3 \rangle,$$

$$c_{13} = < -10, -10, -36, -11, 14>, d_{13} = < 9, -50, 13, 13, -14>$$

and $\langle u_0, u_1, u_2, u_3, u_4 \rangle$ denotes $u_0 + u_1 \sigma_{11} + u_2 \sigma_{11}^2 + u_3 \sigma_{11}^3 + u_4 \sigma_{11}^4$, where $\sigma_{11} = \zeta_{11} + \zeta_{11}^{-1}$ with a primitive 11-th root of unity ζ_{11} .

(4.a) q = 47, $\mu = 1$ or $\mu = 5,7,11$ (contained in $S_{\rm I}$)

$$T(2)$$
 $(x^3 - a_2x^2 + b_2x - c_2)^2$

$$T(3) \quad \left(x^3 - a_3 x^2 + b_3 x - c_3 \right)^2$$

$$T(5)$$
 $x^6 - a_5 x^4 + b_5 x^2 - c_5$

where $a_2 = <-1$, -1, 0, 0>, $b_2 = <-2$, 1, 0, 0>, $c_2 = <0$, 1, 0, 0>, $a_3 = <-1$, -4, 0, 1>, $b_3 = <-5$, 4, 1, -1>, $c_3 = <0$, 15, 0, -4>,

$$a_5 = <14, 3, 0, 0>, b_5 = <40, 8, 2, 4>, c_5 = <4, -12, 14, 11>.$$

 $\langle u_0, u_1, u_2, u_3 \rangle$ denotes $u_0 + u_1 \sigma_{24} + u_2 \sigma_{24}^2 + u_3 \sigma_{24}^3$, where $\sigma_{24} = \zeta_{24} + \zeta_{24}^{-1}$ with a primitive 24-th root of unity ζ_{24} .

(4.b) q = 47, $\mu = 2$ or $\mu = 10$ (contained in S_{III})

$$T(2)$$
 $(x^4 - \alpha x^3 - 5x^2 + 4\alpha x + 2 - \alpha)^2$

$$T(3)$$
 $(x^4 + (-1+\alpha)x^3 + (-8-\alpha)x^2 + (4-5\alpha)x + (8-2\alpha))^2$

$$T(5)$$
 $x^8 + (-24 + 2\alpha)x^6 + (193 - 28\alpha)x^4 + (-598 + 111\alpha)x^2 + (613 - 140\alpha)$

where $\alpha = \sqrt{3}$.

(4.c) q = 47, $\mu = 4$ (contained in S_{III})

$$T(2)$$
 $(x^4-3x^3-x^2+6x-1)^2$

$$T(3)$$
 $(x^4 - 2x^3 - 5x^2 + 7x - 2)^2$

$$T(5) \quad x^8 - 30x^6 + 279x^4 - 837x^2 + 81$$

(4.d) q = 47, $\mu = 8$ (contained in S_{III})

$$T(2)$$
 $(x+1)^2 \cdot (x^3 - 2x^2 - 3x + 5)^2$

$$T(3)$$
 $(x-2)^2 \cdot (x^3 + 2x^2 - 5x - 5)^2$

$$T(5) \quad \left| (x+3)(x-3) \cdot (x^3 + x^2 - 4x + 1)(x^3 - x^2 - 4x - 1) \right|$$

(4.e) q = 47, $\mu = 3$ or $\mu = 9$ (contained in $S_{\rm I}$)

$$T(2)$$
 $(x^4 + (1+\beta)x^3 + (-5+\beta)x^2 + (-3-4\beta)x + (3-3\beta))^2$

$$T(3)$$
 $(x^4 + (2-\beta)x^3 + (-5-2\beta)x^2 + (-6+4\beta)x + (3+5\beta))^2$

$$T(5) \quad x^8 + (-26 + 9\beta)x^6 + (260 - 152\beta)x^4 + (-944 + 656\beta)x^2 + (612 - 432\beta)$$

where $\beta = \sqrt{2}$.

(4.f) q = 47, $\mu = 6$ (contained in S_{III})

$$T(2)$$
 $(x^5 - 8x^3 + 8x + 3)^2$

$$T(3)$$
 $(x^5 - 2x^4 - 7x^3 + 12x^2 + 7x - 8)^2$

$$T(5)$$
 $x^{10} - 36x^8 + 460x^6 - 2416x^4 + 4432x^2 - 2592$

Table (D)

Table (D) is the table of $\Phi_{\tilde{f},n}(x)$ where f(z) belongs to the space $\mathfrak{U}^{\frac{q-1}{2}}$.

1.q = 23, h(-23) = 3 (contained in S_{III})

$$T(2)$$
 $x^3 - 6x - 3$

$$T(3)$$
 $x^3 - 9x - 2$

$$T(5)$$
 x^3

2. q = 31, h(-31) = 3 (contained in S_{III})

$$T(2) | x^3 - 6x - 1$$

$$T(3) \mid x$$

$$T(5) \quad x^3 - 15x - 2$$

3. q = 43, h(-43) = 1 (contained in S_{I})

$$T(2)$$
 $x \cdot (x^2 - 6)$

$$T(11) \mid (x+1\cdot(x+1)^2)$$

$$T(13) | (x-3) \cdot (x+3)^2$$

4. q = 47, h(-47) = 5 (contained in $S_{\rm III}$)

$$T(2)$$
 $x^5 - 10x^3 + 20x - 9$

$$T(3)$$
 $x^5 - 15x^3 + 45x - 28$

$$T(5)$$
 x^5

References

- [1] Eichler, H. Einige Anwendungen der Spurformel im Berich der Modularkorrespondenzen, Math.Ann., 168 (1967), 128-137.
- [2] Hecke, E. Grundlagen einer Theorie der Integralgruppen und der Integralperioden bei den Normalteilern der Modulgruppe, Math.Ann., 116 (1939), 469-510.
- [3] Saito, H. and Yamauchi, M. Trace formula of certain Hecke operators for $\Gamma_0(q^{\nu})$, Nagoya Math.J., **76** (1979), 1-33.
- [4] Shimura, G. Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton Univ.Press, 1971.
- [5] Shimura, G. Class fields over real quadratic fields and Hecke operators, Ann.of Math., 95 (1972), 130-190.
- [6] Shimura, G. On the factors of the jacobian variety of a modular function fields, J.Math. Soc.Japan, 25 (1973), 523-543.