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ABSTRACT

Loy

This dissertation reports a study of the generation of field-aligned
currents in the plasma sheet in terms of magnetosphere-ionosphere cou-
pling. For the study, the plasma sheet and the ionosphere are treated
as two-dimensional layers by height integration. In the magnetosphere
between them, the Alfvén wave transition time through this region is
assumed to be zero. The ionospheric momentum is allowed to be trans-
ferred to the plasma sheet. Both linear analyses and numerical simula-
tion are performed to study the field-aligned current generation. In the
linear analysis, evolution from initial perturbations is studied. Zero or-
der configurations are steady state without field-aligned currents. The
field-aligned currents are treated as a perturbed quantity and linearly
rclated with the other perturbed quantities. One result for the linear
waves is that the magnetohydrodynamics (MHD) fast mode and the
Alfvén mode are coupled through the ionospheric Hall current. The
Hall current causes the dawn-dusk asymmetry: a westward-travelling
wave 1s amplified on the region 1 current system, while an eastward-
travelling wave is amplified elsewhere.

The expansion phase of the magnetospheric substorm after the onset

is numerically simulated on the near-earth plasma sheet. The inner

3
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edge of the plasma sheet is taken as the outflow boundary. As the
initial condition, an enhanced earthward magnetospheric convection
is assumed to cause a finite pressure increase at the inner edge of the
plasma sheet. The numerical results are as follows. An MHD fast-mode
wave is generated. It propagates tailward accompanied by the field-
aligned currents. The wave propagation and the field-aligned currents
account for the poleward expansion of the aurora and the region 1
field-aligned current during the expansion phase of the substorm. The
region 1 field-aligned currents are linked with the dusk to dawn current
on this wave, which is driven by the dynamo mechanism of the wave.
The ionospheric Hall current causes asymmetry of the wave, and hence,
of the field-aligned current distribution. This asymmetry accounts for

the stronger field-aligned current in the premidnight sector.
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CHAPTER 1. INTRODUCTION

Large-scale field-aligned currents play an important role in polar auroral phe-
nomena such as substorms. There are two field-aligned currents in the night side
polar ionosphere. The region 1 field-aligned current flows into the ionosphere in
the morning side and flows out of the ionosphere in the evening side. The region
2 field-aligned current is located equatorward of the region 1 field-aligned current,
and its direction is opposite to that of the region 1 field-aligned current. Both
the region 1 and the region 2 field-aligned currents have been observed above the
ionosphere [Zmuda and Armstrong, 1974; Iijima and Potemra, 1976; Sugiura and
Potemra, 1976; Kamide et al., 1986] and in the magnetosphere [Fairfield, 1973;
Coleman and McPherron, 1976; Frank et al., 1981; Elphic et al., 1985; Nagas, 1987,
Ohtani et al., 1988]. During substorms, the field-aligned currents are enhanced,
especially near local midnight, and their distribution is never steady [Kamide et
al., 1986]). In fact, the poleward expansion after the substorm onset [Akasofu,
1962; 1964; 1974; 1976; 1977) suggests that the region 1 current system moves
either poleward or tailward in the magnetosphere. The westward travelling surge
[Akasofu et al., 1965; Akasofu, 1974, 1977; Kamide and Akasofu, 1975; Opgenoorth
et al., 1983)] also suggests that a large-scale wave is excited where the region 1 cur-

rent exists. Thus, the field-aligned currents are related to the large-scale dynamics

of the substorm.

13
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The generation of the field-aligned current in the magnetosphere is not as well
understood as the closure of it in the ionosphere. Theoretical studies of the field-
aligned current generation in the magnetosphere have been conducted by a number
of authors [ Vasyliunas, 1972, 1984; Jaggi and Wolf, 1973; Bostrom, 1975; Rostoker
and Bostrom, 1976; Sato and Iijima, 1979; Wolf and Spire, 1985; Ogino, 1986;
Watanabe and Sato, 1988; Kan, 1987; Walker and Ogino, 1987]. Most of these
models explain the field-aligned current generation in terms of either the pres-
sure gradient force or the inertia force (especially in terms of the vorticity). The
particle drift caused by these forces generates the magnetospheric current, and its
divergence is linked with the field-aligned current. If the current is associated with
the pressure gradient force, the field-aligned current is proportional to VP x VB
where P is the pressure and B is the strength of the magnetic field. If the current
is associated with the inertia force in the incompressible flow, the field-aligned
current is proportional to the temporal change of the vorticity.

The understanding to date is that the region 2 field-aligned current is generated
predominantly by the pressure gradient force in the plasma sheet [Vasyliunas,
1970; Harel et al., 1981; Wolf and Spiro, 1985]. Generation of the region 1 field-
aligned current is still an open issue, though the vorticity is believed to play an
important role in either the boundary layer or the plasma sheet [Sato and Iijima,

1979; Hasegawa and Sato, 1980; Sonnerup, 1980; Ogino, 1986; Kan, 1987]. Many
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different types of flow generate the field-aligned current by this “inertia” force.
For example, the field-aligned current generations from a circular flow and from a
simple shear flow are both explained merely by that “vorticity.” We have to specify
the types of flows as well as the types of forces in the study of the field-aligned
current generation from the magnetosphere. Most of the above models are based
on the quasi-steady state approximation; i.e., they consider the instantaneous flow.
In this case, for example, the field-aligned current generation from the waves is
excluded. However, the dynamics of the flow might play important roles in the
field-aligned current generation also, and should be taken into account. Since
the field-aligned current is stronger during the substorm, we specifically have to
consider the plasma sheet dynamics during that time.

Since the magnetosphere and the ionosphere are coupled through the field-
aligned currents, the large-scale plasma sheet dynamics is strongly regulated by
the ionosphere. It is necessary to develop a self-consistent quantitative model
that includes the current system in the ionosphere and the magnetosphere; say,
the magnetosphere-ionosphere (M-I) coupling model [e.g., Kan and Sun, 1985;
Watanabe and Sato, 1988]. We also retain the dynamical features of the field-
aligned current. Thus, the model has to explain not only the field-aligned current
generation, but also the other large-scale phenomena, during substorms. For exam-

ple, the poleward expansion and the westward travelling surge can be considered
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among those large-scale phenomena, and hence, they have to be explained in terms
of this model. Some of the substorm-related phenomena that can be considered
small scale may not be explained by this model.

Ideally, we want to simulate both the magnetosphere and the ionosphere at the
same time and also include the wave propagation between them. However, the
M-I coupling system is too complicated to be treated without assumptions. There
have been many simplified large-scale models. Kan et al. [1988] focused on the
ionospheric dynamics in their substorm model. In this model, the coupling with
the magnetosphere is taken into account in terms of the Alfvén wave and its re-
flection in the magnetosphere. They succeeded in demonstrating the westward
travelling surge as well as the enhancement of the field-aligned currents during
substorms. By neglecting either the pressure gradient force or the inertia force,
some authors were able to treat both the ionosphere and the magnetosphere si-
multaneously. Wolf and Spiro [1985] employed a “convection model” in which
they numerically simulated the plasma sheet convection. The convection is cal-
culated as a summation of particle drifts for many species. They neglected the
inertia force of the magnetospheric plasma; i.e., the plasma is essentially massless.
As the boundary condition, the region 1 field-aligned current is previously given
in this model. Watanabe and Sato [1988] numerically simulated the evolution of

the field-aligned current caused by the incompressible magnetospheric convection.
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They showed the development of the multiple auroral arcs that are dominant in
the premidnight side. The pressure gradient is neglected because of the incom-
pressibility assumption. However, the boundary condition is such that they do
not consider the situation during substorms. This approach is opposite to that of
Wolf and Spiro.

Another approach is to focus on the magnetospheric dynamics. The jonospheric
effect is taken into account in terms of mapping, or simply as the boundary con-
ditions. Magnetospheric dynamics itself has been studied by many authors, even
though the ionosphere is included simply as the boundary conditions [e.g. Birn
and Schindler, 1983]. On the other hand, Lotko et al. [1987] mapped the iono-
spheric quantities to the magnetospheric boundary layer in the steady state. They
also assumed an incompressible plasma in the magnetosphere. In the work pre-
sented here, we take the last approach and also include the full dynamics of the
magnetosphere; i.e., the inertia force, the pressure gradient force, and the J x B
force.

Let us consider the interconnection between the ionosphere and the magneto-
sphere. The magnetic field lines are not perfect conductors as idealized in magne-
tohydrodynamics (MHD), that is, the interconnection is not simple. We assume
zero transition time for the Alfvén wave to travel through the geomagnetic field

lines. Since the field-aligned currents and the other electromagnetic quantities are
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carried by waves, there is a time lag between the ionospheric phenomena and the
magnetospheric phenomena. This time lag is characterized by the Alfvén wave
transition time, which is considered to be a few minutes in the other M-I coupling
models by Miura and Sato [1980) and Kan and Kamide [1985]. Miura and Sato
showed that the finite transition time causes thinning of the aurora arcs through
the coupling with the ionospheric density wave [Sato, 1978]. Kan and Kamide
[1985] showed this effect also causes Pi 2 pulsation [Rostoker, 1967; Southwood and
Stuart, 1980] during substorms. The parallel electric field causes the field-aligned
potential drop between the ionosphere and the magnetosphere. It is included in
the models by Lotko et al. [1987] and Harel et al. [1981]. According to the an-
alytical study by Lotko et al., this effect brings dispersion into the M-I coupling
equations in their boundary layer model. The upward current limit proposed by
Knight [1973] and Fridman and Lemaire [1980] is employed by Kan and Sun [1985]
and Watanabe et al. [1986]. In the present work, for simplicity, none of these three
effects is considered. Instead, the present model includes both the plasma inertia
and the pressure in the magnetosphere. Thus, we may study the full dynamics of
the plasma sheet. The mapping relation between the ionosphere and the magneto-
sphere is still an open issue. For example, we do not even know where the region
1 field-aligned current originates in the magnetosphere; suggestions include the

magnetopause boundary layer [e.g., Sonnerup, 1980], the plasma sheet boundary
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layer [e.g., Frank, 1985), or the central plasma sheet [e.g., Sato and Iijima, 1979].
In the present self-consistent model, the night side region 1 field-aligned currents
map to the height integrated plasma sheet which contains both the central plasma
sheet and the plasma sheet boundary layer. Thus, the dynamics of the height
integrated plasma sheet should explain not only the generation of the region 1
field-aligned current, but also the poleward expansion in the near-earth plasma
sheet.

There are many models that describe the dynamics of the magnetosphere during
the substorm. The plasmoid model [Hones et al., 1974], the boundary layer model
[e.g., Rostoker and Eastman, 1987], and the convection model [Harel et al., 1981]
are of most interest. All of these models have an enhanced earthward convection.
We assume this enhanced convection at the substorm onset, which is the same
initial condition as used in the M-I coupling model by Kan et al. [1988]. We
formulate the basic equations in chapter 2. Under further simplified assumptions,
we perform analytical studies for some basic flow patterns in chapters 3 to 5. The
linear perturbation method is applied to static equilibrium in chapter 4, and to the

steady state flows in chapter 5. In chapter 6, we specifically study the situation

right after the substorm onset by a numerical simulation.
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CHAPTER 2. TwoO LAYER MODEL FOR M-I COUPLING SYSTEM

In this chapter, we formulate the magnetosphere-ionosphere (M-I) coupling sys-
tem to obtain macroscopic basic equations viewed from the plasma sheet side.
Figure 2-1 shows the three regions composing the M-I coupling system. They
have different scale lengths along the magnetic field: the thickness of the iono-
sphere is several 100 km, the thickness of the plasma sheet is a few Re (earth
radii), and the distance between the ionosphere and the plasma sheet 1s 10 to 15
Re along the geomagnetic field. Since field-aligned scale lengths are much smaller
in the plasma sheet and in the ionosphere compared to those in the magneto-
sphere between them, we simplify this situation into two layers plus an interface
region. The two layer interface model involves a height-integrated ionosphere,
a height-integrated plasma sheet, and the magnetosphere between them which
merely connects the two height-integrated layers through the magnetic field lines.
There are some cautions we have to consider before the two-layer interface model
1s formulated.

In many studies of the M-I coupling, the ionospheric quantities are height inte-
grated [e.g., Kan et al., 1988; Harel et al., 1981; Jaggi and Wolf, 1973; Hasegawa
and Sato, 1980]. The formulation for the height integration can be found, for ex-
ample, in Brekke et al. [1974]. The height integration of the plasma sheet is not as

simple as that for the ionosphere because we have to include the magnetic tension

20
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force caused by the bending of the geomagnetic field. We have another problem
in selecting the basic equations. In the M-I coupling, the ionospheric Ohm’s law
provides a relation between the electric current and the convection electric field.
Therefore, if we employ the normal MHD Ohm’s law in the magnetosphere, that
over-determines the current density. If we do not employ the normal MHD Ohm'’s
law, we may not employ the z, y components of the induction equation, and hence,
the z component of convection (u,). Since u, is not determined in the height-
integrated equations, this omission is rational as long as we can assume u, < u;y
as is observed [Parks et al., 1984] where u, , is the convection parallel to the
equatorial plane. Note that this dilemma of over-determination arises because we
use a height-integrated equation for the plasma sheet.

We treat the magnetosphere in between as the inertia-free interface. That means
we assume zero density there, and hence, zero transition time through this layer.
In fact, the density of this layer is much less than that in the plasma sheet [Parks
et al., 1979]. In this sense, this region exists just to connect the plasma sheet and
the ionosphere instantaneously. However, this region still acts as an active region
when plasma sheet thinning or poleward expansion is concerned. Even though the
plasma density in this region is much lower than that in the plasma sheet so that
we may neglect its plasma motion in the z, y plane, it still works as the source
or sink of plasma because the area across which the thinning plasma flows is very

large. In this way, we may not neglect its finite density effect if and only if we
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consider the mass transfer across the top boundary of the plasma sheet. Therefore,

we leave the plasma density unknown (but very small) and this effect is treated

by specifying the mass transfer across the top boundary of the plasma sheet as

a given parameter. In all other places, the plasma density outside of the plasma

sheet is neglected.

The same approximation can be applied to the plasma pressure. However, since

it is multiplied by temperature which is lower in the lobe than in the plasma sheet,

we sometimes assume the pressure transfer equal to zero while there is finite mass

transfer.

2-1. HEIGHT-INTEGRATED EQUATIONS FOR THE PLASMA SHEET

Let us start with the plasma sheet. In order to height-integrate the plasma sheet

where the magnetic field is not straight, we assume:

(a)
(b)
(c)
(d)
(e)
(f)

p(z=h) < p(==0)

P(z=h) < P(2=0)

| Ju, )
Oz

Uy,
,y| <<|( h!l

Uz K (uzy)

0B, (B.)
o <15

Bz,y(z) = -B:c,y(_z)
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(g) (J:Bzy) = (J:(2=h)B; y(2=h)
|Vz,yB:| Jz.y
(B) B.h < T

where h is that height of the plasma sheet outside which the plasma density is
negligibly small, L is the characteristic length in the (z,y) direction, the quantities
with the bracket are the height averaged values, e.g., (uz,y) = [usdz/h, etc.,
and a factor ( < 1 is assumed to be constant. These assumptions come from the
plasma sheet property observed by satellite [e.g., Parks et al., 1979; Huang, 1987]

Figure 2-2 illustrates some of the plasma sheet properties. The density and
the pressure are much higher in the plasma sheet than outside of it, and that
guarantees the rationale of assumptions (a) and (b). Since the geometry and
quantities are essentially symmetric with respect to the equatorial plane, we may
have the assumption (f). The north-south component of the convection is much
slower than the earthward convection on the plasma sheet, which provides the
assumption (d).

The rest of the assumptions comes from the fact that the geomagnetic field is
essentially the dipole field. The assumption (e) merely states that B, is nearly
constant in the z direction. This is true for the dipole field if we consider it near
the equatorial plane. Since J, « B., the assumption (g) is rather general if we
take B.(z) as a simple function of z. This is also true for the dipole field. The

assumption (h) is not intuitive. Unless J, , is much larger than J, (that is the
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cause of the change of B, in the (z,y) plane), we can assume that B is nearly
uniform. Since the geomagnetic field without any J, , is dipole, this assumption
is also reasonable.

The assumption (c) could be invalid when the flow speed in the plasma sheet
boundary layer is much faster than that in the central plasma sheet. The positive
velocity shear in the z direction might be an important cause for the field-aligned
current generation. According to observation [Parks et al., 1984], the assumption
(c) is not a bad one even though there is a velocity shear in the z direction. We
do not study the effect of this velocity shear, and hence we exclude it from the
present model as shown in Figure 2-2.

Since the external force is the ultimate source of the plasma convection and the
field-aligned current, we first consider the force balance equation in the plasma

sheet; i.e., the momentum equation. The z,y components are

0
P Moy + P(W VU y + Vo P =J.y x B, +3. x B, (2-1)

With the help of the continuity equation:

%p+v.(pu) =0 (2-2)

the above equation can be rewritten as

T,Y,2

E; 8
57 (PUzy) + > g (Puiten) + VeyP =Ty x B. +3. x By

Let us height-integrate this equation in the z direction. Taking into consideration

the north-south symmetry, the integral has to be only for half of the plasma sheet,
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i.e., from the equatorial plane ({z=0)) to the top of the plasma sheet ((z=h)). In
general, h depends on z, y and t. In other words, the height-integrated equation

still keeps all 3-D effects.

h(z,y,t) o
/0 oz )z
h(z,y,t)

T.y h(zyy,t) h(z,y,i)
+ 2,:/0 a—afi(;ou.'ux,y)dz +/; E(Puz“r,y)dz +/ Vi, Pdz

0
h(z,y,1) h(z,y,1)
:/ Jx,yszdz+/ J: x B, dz
0 0

Since

o [h=zww)
5 / puz ydz
0

1 h(z,y,t+6t) k(z,y,t)
= lim —[/ p(t + ét)u 4(t + 6t)dz — / p(t)uz 4(t)dz]
st—0 6t J, 0

1 h(zyyvt"’&t)
= lim -—-/ p(t + 8t)u, o(t + 6t)d=
s5t—0 &t h(z,y,t) y )

. 1 h(Isyvt)
+ lim — / [p(t + 8thugz,y(t + 6t) — p(t)uz,y(t)]dz
§t—0 6t 0

. 1
= 5111310 E[h(x,y,t + 6t) — h(z,y,t)]p(t)uz (1)

h(Iv.'ht) 1
+ / im = [p(t + 6t)u.,y(t + 6t) — p(t)uz 4 (t)]dz
0 §t—0 6t

Oh h(z,y,t) 5
= Epu:,y +/0 a(puz,y)dz

and similarly

T,y a h(lyy,i) Y h(x,y,t) z,Y a
— Uy ,dz = = pU; + = pu; d
Z az; J, puilr 4Gz Z 6xipu:uz,y A Z az‘_(Putur‘y) 2
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etc., the height-integrated momentum equation can be rewritten as

d AL} s,
5 pu; 4dz + }: —a-z /pu,-u;,ydz — [puxvy(ah +usy Vaegh —uz)l=s

+ V., | Pdz— P(z=h)V, 4k

= /Jz,y X Bzdz+/Jz x Bz ,dz

Now, we have to employ assumptions (a) — (h) in order to perform the integration.
For example, a factor { appears through the integration of the last two terms

because of assumption (g). We obtain

0 o
Vz,y[é’t'm + Ve y(mVey)] + mgt'vx,y +m(Vz,y Vi) Vay+ Vayr

= [T.pur,y + PV, yh+ h(I. x By yl.=n + 1y X B;
where m = [pdz, # = [Pdz, V. = [pu,dz/ [pdz ~ugy, 1., = [T, ,dz,

and

0
T, = [(—%-h tugy Ve h—ul.on (2-3)

is the unit mass transfer across the z=h boundary; e.g., 0h/0t > 0 or u, < 0
corresponds to the mass transfer from the tail lobe to the plasma sheet, and vice
versa. Though T, is multiplied by p(z="h), which is negligibly small (we assume
no inertia outside the plasma sheet), this term still remains because the area of

that boundary is large enough, as i1s previously discussed. One can consider this

is just an external source term of the kinetic energy.
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The first term of the left-hand side has an integral form of the continuity equa-

tion:
h(z.y.t) h(z.y.t)
/ Qedz—&-/ V-(pu)dz =0
0 ot 0
or
0
™ + Vo y(mV.y) =T.p(z=h) (2-4)

where the unit mass transfer across the z=h boundary (T,) again appears on the
right-hand side. With the help of this relation, the first term of the momentum
equation can be rewritten as p,=, V4T, and that cancels with the first term of
the right-hand side. The second term of the right-hand side of the momentum
equation is the pressure transfer term across the z = h boundary. This term is not
important unless h(z,y,t) varies severely and P(h) is not much smaller than P(0).

Therefore, we neglect this term hereafter. The momentum equation becomes
0 .
mEVz,y +m(V2y'Vey)Vay+Veym=h(I, xB;  (z=h)+ 1,y xB,(2-5)

Let us consider I, , and B, , terms; they are related to each other through

Ampere’s law:

h(z,y,t)
Iy = / Jzydz
0

1 . h(zvyat) a
= ;)—z x /0 (a—z'B,_-,y - V,,sz)dz
1
= =% x [Bgy(z=h) — hV, ,B.] (2-6)

Ho
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With this relation, we have

03]
mé?V,,y +m(Vzy Vi)V, + VT

=1, x B, + h{J(pols,y + 2 x V. 4 B.)

~T,y X B, + hlpod 1oy (2-5)

where we used the assumption (h) for the last part. The second term on the
right-hand side is still smaller than the first term according to assumption (h).
Since we may not neglect a drag force on the z=h boundary caused by the
ionospheric current, which has to be included in the I, , X B, term, we examine
it from the ionospheric view point. For simplicity, let us consider uniform parallel
flow in the x direction as shown in Figure 2-3. The flow’s energy is dissipated
because of the ionosphere (ionospheric ¢ — n collision) which is expressed in terms
of the viscous force. The total drag force at the ionosphere is given as
—F,(i)dzdy; = —1; x B;dz;dy;

B.(z=h)
B;
I

= —1I,,x B.dzdy
I,y

= —I; x B;dzdy

where dz;dy, is the area element in the ionosphere which corresponds to the area
element dzdy in the plasma sheet through the magnetic flux tube, I, is the iono-
spheric height-integrated current, and B, is the ionospheric magnetic field. If this

force were conserved along the magnetic flux, the drag force should be stronger

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31
than the I, , x B force by a factor of the geometric difference (~ \/m ). How-
ever, we have to take the energy, not the force, as the conserved quantity on the
same magnetic flux tube when we consider the effective drag force by the iono-
sphere. Equating the work in the plasma sheet and Joule heating in the ionosphere,

—F, -V, ydzdy = (Idz;) - Eidy;
= (Luydz) - Buydy

= (I, xB,) V, dxdy

or
-F,=1I,,xB, (2-7)

This is consistent with the height-integrated momentum equation (2-6). The minus
sign for F, is comes from the fact that the ionospheric neutrals receive this force
from the M-I coupling current system. As is obvious from the expression of (2-7),
the idea of the ionospheric ‘drag’ force allows to have the counter part of the
ionospheric current in the magnetosphere [Akasofu et al., 1981]. This assumption
is exactly right for the Pedersen current if we consider the energy budget.

In terms of the height-integrated equation, we may extract the magnetic tension
force as well as the magnetic pressure force from the J x B force. These forces
are not included in the normal 2-D equation or even in the height-integrated

ionospheric 2-D equation. The main contribution of the magnetic tension force

comes from B.B, , x I, , x B..
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Figure 2-3. Transfer of the I x B force. magnetospheric con-
vection causes the ionospheric electric field (E!) and currents
(Ip and Iy). The I x B force (= F*) acts on the ionospheric
neutrals, and its reaction forces (——Fj, and —F'H) are transmit-

ted to the magnetosphere.
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We have to examine the z component momentum equation which still is effective

after we assumed u, < uz y:

0 o 03]
b—t(puz) + V::,y'(puzuz,y) + _a;P + a—(puz)

=(Jzy X Bzy):
1,0

Ho [52—

B,y V.yB:] B, (2-8)

or integrating over z,

B;
9 /puzdz +Vey | pusugydz — Topu.(z2=h)+ [P + 3 218
ot Zpo

1
= — [ V,B;-B;,dz
#0 7y ’y

With the help of assumptions (d), (e), and (g), this equation is reduced to

B? (z=h
2(=h) 2 kg b B, ,(:=h)
210 1+ Cpo A

~P(z=0)+

This equation is a condition for h, but not included in the governing equation in
the present algorithm because this constraint is not very restrictive. In the plasma
sheet where the plasma is confined in a thin (small A compared to the extent in

the z,y direction) layer, the above relation is further reduced to:

T

B2,G=m 2 O (2:9)

The 2 component velocity (u;) can be calculated after h is determined provided
that unit mass transfer across z=h boundary is given. In this sense, u, is rather

an assumed quantity.
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As we already have the equations for the conservation of the mass and the

momentum, we need an equation for the energy conservation. The MHD energy
equation is given as:

2 o+ U+ Ve gl (5 + U+ —)1 2 S 4 vr+ )

=J;y - E;y+J:E.-V-q (2-10)
where U; is the internal energy and q is the heat flow [e.g., Nicholson, 1983].
Note that both J,; , and J, are determined as the consequence of the ionospheric

conductivity which is formulated later. The height integration over z can be

performed in the same manner as shown above:

J u? u?
En /p(—z— +Ur)dz + V5 puz’y(~2— +Up)dz+ V., | Pu;,dz

2
u
- [sz(7 +UI)]z=h - [P(uz,y'vx,yh - u:)]z:h

= /Jz,y-Ez,ydz + /E,szz —Viay | Azydz — [(Qz,y Vi, yh — ¢2)]z=n

Under the assumptions (a) — (h) we have

2 mV}2
at( 5 ’y)'*' Ve i(Vaey 9 'y) + Ve (Vzym)

+ 5 /pUIdz+ Vew(Vzy [ pUrdz)
V2
= [T~P( ,y + UI)]z L+ [P(Vz y v.r yh z)]z:h - Iz,y' (Vz,y X Bz)

- /Jt,y- (u; x Bz y)dz + /Eszdz —VyQzy—Q:

where Q, , = [ q,,,dz is the height-integrated heat flow, Q. = [q: yVz yh—¢:}.=n

is the heat flow across the z=h boundary, and we used E = —U x B.
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Let us subtract the kinetic energy from this equation. By multiplying V. , to

the momentum equation (2-5), we have the equation for the kinetic energy

72 mv2
( zy>+v ,y(vxy 9z7y) +Vx,y’vz,y7r

-

= [T:pV2,+PV.y Veyh—h(I. - (Voy x Bry)lizh —Fo-Vay

where we again used equation (2-4). Subtracting the above equation from the
height-integrated energy equation, we obtain the equation for the non-kinetic en-
ergy conservation. Under the assumptions (a) - (h), it is

®Vzy Vey+ aat /pUIdz + Ve y(Vey [ pUId2)

vz
= [T.p(~ 2,y +Ur) = Fu:losh — Vi yQzy — Q:

- Fv'v:t,y - vr,y‘ (Ir,y X Bz) + hC[Jz : (Vz,y X Bz,y)]z:h

+ /(J:,y x B y):u.dz — /J,- (uzy x By y)dz

2
= [T ’y Puz]z—h —V:yQzy —Q:
u? g
Vf + u?
= [sz(—_‘yz_ +UD)e=h = V24 Qzy — Q:

/’"‘Zd 24+ Voy ”zuz,yd‘ / ouadz

Since Ur = (f/2)P/p > u? where f is the degree of the freedom of a particle, this

equation becomes

0
Ve Vg + 12 /Pd +iv co(Vay [ PA2)+ ¥y Quy +Q:
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2 P Ou.
= [T;p(—‘—;—+-§——5)]z=h—vr< ) e

or we have an equation for the height-integrated pressure ():

f+2 f
5 wvw-vw - 73—

f
55" T Vey Vet T.P(z=h)
2
pu Ou,
- Tz(‘2_)z=h - 77('5)::)1 — vx,y‘Qx,y - Qz

I

- V:yQzy —Q: (2-11)
For the adiabatic case, we may neglect the right-hand side.

Instead of the above procedure for the energy equation, we may start with the
equation of state. Let us suppose the system obeys a polytropic relation; i.e.,
%(Pp") =Pp~7 %%1; - %%

=0

where the adiabatic assumption and isothermal assumption correspond to y=00

and y=1, respectively. With the help of the continuity equation, this equation

becomes

dpP 0
=7 +vyPV-u= ét—P + Vei(Puzy)+ (v —1)PV,yuz,y

=0

After integration over z under the assumptions (b), (¢) and (d), we obtain
0 0
Fr + Ve (aVey) =T, P(z=h) — (v —1)(7V; 4y V4 + P;uzdz)
=T, Plz=h)—(7v— 1)1V, 4V, (2-11')

This is identical to the height-integrated energy equation (2-11), if we take v =

(f +2)/f and we neglect the right-hand side of (2-11).
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Next, we obtain the equations for B., B, ,, I;,, and J.. The plasma sheet

current can be divided into two:

L,=I7,+1I,, (2-12)
where I;,y is the part which gives the ionospheric current into the magnetospheric
equations through the J x B drag force, and I7', is the rest of it. The first part
(we call it the ‘ionospheric part’) is defined as follows: we divide the magnetic flux
into small tubes (see Figure 2-4) and consider the force that the closed current
within the small tube contributes to the plasma sheet dynamics; in this way, we
can identify the part of the plasma sheet current that is related to the ionospheric

drag force on each flux tube. Therefore, the 1onospheric part of the plasma sheet

current [Akasofu et al., 1981] is defined as
IL -ds = —1,-ds; (2-13)

where ds; is the mapping image of ds through the geomagnetic field. The rest
of the plasma sheet current (I7,) is referred to as the ‘magnetospheric part’ of
the plasma sheet current. Since all divergence of I, , has to be related to the

ionospheric current through the field-aligned current, the magnetospheric part of

the plasma sheet current has to be divergence free:
Vz,y'I;r:y = O

Now, we further divide the magnetospheric part into a closed one and an open

one. The open system is given as the boundary condition, and the closed one is
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the system that develops inside the magnetosphere; e.g., it is a toroidal current

system that closes inside the plasma sheet.
I, =L, +1z, (2-12")

This notation is useful if the outside of the region which we consider is kept
steady (or we consider the region where the time dependence is more important
than elsewhere). In this case, I° is constant, the boundary value of I' is given in
terms of I; and is constant too, and only 1¢ is difficult to specify. If I is given
externally, we may calculate I, ,.

Once we can specify I, ,, we can use the expression (2-5’) instead of (2-5) for
the momentum equation. Therefore, we do not have to obtain B, ,. Otherwise,
we have to go through the following procedure to obtain B, , first. According to

Ampere’s law (e.g., equation (2-6)), B, y is mainly determined by J, ,
g . .
-a—z(z XBzy)— 2%V, B, =pol;y

However, its variation in the z,y direction is caused by J, because of the current
continuity under the quasi-neutrality. The value of B, , itself is a consequence of
the z,y variation added to the z or y boundary value which represents the current

system outside of that boundary. Thus, we just have to specify the z,y variation
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39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

completely; i.e., the divergence and the rotation of B y:

d
VeyBzylz=h)= ——:Bz(zzh) (2-14aq)
9 2 v ¢ xV..B
EVW(Z X Bz y) = #0VeyJzy+ Vey(2 x Vs yB:)
15)
= _E(#OJZ)
or VI»?I'(£ x Bz,y)::h = —/,ton(L’:h) (2 . 14b)
where we used the current continuity equation 8J;/0z = -V, ,-J; ,. From these

equations, B, , can be expressed as

Vi,yB,,y(zzh) =2 X Ve y[Vey(2xBry)izh + Va2 y[Vay B yle=n

. 0
= pof x Vg J:(z=h) - Vz,yEB:(:f:h)
= o2 X Vo Jo(2=h) + Ve y(Vary Bay)seh (2-15)

This method is very clumsy. Furthermore, we still have the problem of specifying
the boundary conditions. Therefore, we use I, , instead of B, ,.
Let us obtain the equations for B,. The induction equation is used to determine

B..

%Bz =V, y X (uxB),,
==V, (B:uzy)+ Vg - (u:Bzy)
=—V.y (B:Vzy,) (2-16)

where we used u., < u,,. The z, y components of the induction equation are

not used because they are strongly related to u, (for the motion of the flux). The
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small quantity u. is not determined self-consistently, and should not affect the
result. It is a quantity to be assumed in the height-integrated equations, instead.
Thus, B; and B, are to be solved (through J. as was previously shown) by the
current continuity equation of the M-I coupling system, i.e., in the ionosphere.
So far we have a set of the equations (2-4), (2-5°), (2-11), (2-12), and (2-16) in
thie plasma sheet. In order to complete these equations, we have to relate J. or I;
to E; , = =V, ,B, x Z by taking the ionosphere into account. Note that if the
plasma sheet is treated fully three dimensionally, the constraint associated with

the z component quantities, e.g., (2-8), becomes one of the boundary conditions

2—2. IONOSPHERIC LOADING EFFECT

As previously discussed, we employ the ionospheric Ohm’s law in order to pro-
vide current-electric relation. The height-integrated ionospheric current I; is ex-

pressed as [Brekke et al., 1974]

B.
L = SpE(D sy e« 2
where ¥’ and X'y are the height-integrated Pedersen conductivity and the Hall
conductivity in the ionosphere, EE"”) = —V;®; + V,, x B; is the ionospheric

electric field, and ®; is the ionospheric electric potential. The electric field is mea-

surcd on a reference frame co-moving with the ionospheric neutral wind (velocity
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V,) which is driven mainly by the i-n collisions [Sonnerup, 1980]. Although the
response time of V,, is comparable to the scale time of the magnetospheric con-
vection, we simply assume V, = (1 —7*)(—=V;®;) x B,/B? where 0 <n* < 1lisa

constant factor. With this assumption, the above equation is rewritten as

B,
I, = -YpV®:; +XyV,;®; x E— (2 - 17)

where ©p = n*L, and Ty = n*LYy are the effective conductivities.

Divergence of this ionospheric current becomes the field-aligned current. Let us
assume no leakage of the field-aligned currents between the magnetosphere and
the ionosphere [e.g., Lotko et al., 1987; Harel et al., 1981]. The current continuity
condition requires (J./B.):=x = (Jy/B):=n = —(J}/B)i = —(J:/B); and

J.(z=h)dzdy = —(J,)idzdy;

= +V;-Lidzdy;
where B,(z=h)dzdy = B;dr;dy;, subscript ‘¢’ denotes the quantities in the iono-
sphere, and both (Z,4,B./B;) and (&, yi, Bi/B;) are determined as the right-

hand coordinate systems. Using the Jacobian:

O(z+,yi) _ Bi.(z=h) ‘
azy) B (2-18)

the above relation is expressed as

J.(z=h) = %((“;"—z;)v,.-l,- (2-19)
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With the help of equation (2-13), we can specify all components of the current in

the plasma sheet in terms of the ionospheric current.

Substituting (2-17) into (2-19), we have

J:(z=h) = —%(If—z—;)-vr (ZpV:i®))

0(zi,yi) B, _ &, .
m-_B_. . (V:EH X vtq)t)] (2 20)

Meanwhile, equations (2-13) and (2-17) give a relation between I , and ®;.

If the mapping between the ionosphere and the plasma sheet is conformal (pre-

serving angles) as is exactly the case when the geomagnetic field is the dipole field,

equation (2:13) becomes

A(y:)
I = ————=1I;, 2-21
i 6(-"’:‘) ) 5
I, =~ ) Iy (2-21y)
when combined with (2-17),
o Oug 0% Oug 9% B,
Tew = By PPie, ~ 3y g, ) X B,
6$,‘ - 6@,‘ a:t, n 6<I>,- B,'
ik} I i} Ty s 2t .29
+ 61: Epy, Gy.- aI ZH(m’ax,') % B,‘ (2 2H)

where both (z,y) and (z;,y:) are assumed to be orthogonal systems

2-3. MAPPING BETWEEN THE IONOSPHERE AND THE PLASMA SHEET
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Along the magnetic field, provided that the mapping is specified, we may relate

®, and ®,,. where &,, is obtained as:

Vi,yq’m = _Vx,y'Et,y
=V,y (VzyB: x2) (2-23)
Though some authors assume ®; — ®,, o Jy| {Lotko et al., 1987; Watanabe et al.,
1986; Harel et al., 1981], we assume ®; = &®,, for simplicity because our viewpoint

is more on the plasma sheet. We have another expression for the potential electric

field; i.e., the potential field is given as the total field minus the solenoidal field

E; =V, ,¥ x 2. Once ¥ is solved as:

V3,0 =VY_,(:xE)
= Vs (2 X Egy)

= —vr,zi(vx,yB:) (2-24)

this ¥ can determine the potential electric field as:

—V.y®=E, (z=h) — E,

= 3% (V;yB: +V,,¥) (2-25)

This expression is useful especially when B, is time independent as equation (2-16)

guarantees ¥ = 0 in this case.
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Now, we have to specify the mapping of the electric potential through the mag-
netic field. The potential field does not change the mapping points; hence, we
have only to consider the temporal change of the magnetic field configuration by
E; through 0B /0t. Since the solenoidal field is usually smaller than the potential
field (think about a steady state when the mapping points do not change at all),
we usually ncglect this effect in the analytical study later.

The motion of the foot point is described by the drift velocity related only to
the solenoidal electric field [ Wolf and Spirc, 1985]. Let (z,y).=r be the mapping

point of (z;, y;) at time t. At t + ét, the mapping point moves as:

2(t + 6t)mh = 2(t)smh + U6t

y(t + 6t)z=h = y(t)z=n + Uyt

dr(t +6t).cn =(1+ aaci” 8t)dz(t).=n
ou,
dy(t + 5t):=h = (1 + —a?(st)dy(t):=h (2 . 26)

where U, , is the drift velocity related to the solenoidal electric field:

EtXB

U,y = 52

V:y® x B,
1,y+ B2
B,
" B?

=V

V:,y'l" (2 ' 27)

Note that U; , = 0 in the steady state.
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Inclusion of (2-26) enables us to study the field-aligned current generation that
is cause by the temporal change of the geomagnetic field. Otherwise, however, we

may neglect this effect and we assume the mapping relation is time independent.

2-4. A SIMPLIFIED MAPPING MODEL

In the above (rather strict) formulation, J.(z=h) is obtained by solving the cur-
rent continuity equation in the ionosphere. This procedure is inevitable if a global
model is considered by using rather realistic model magnetic fields for mapping
between the ionosphere and the magnetosphere. However, we may remove this
geometrical complication if we are to extract some essential physical processes of
the M-I coupling system. For example, when the mapping is conformal (preserves
angles), we may ‘map’ the ionospheric Ohm’s law to the magnetosphere as a whole
equation if we use “mapped” ionospheric conductivity to the magnetosphere.

Figure 2-5 shows area elements in the ionosphere and corresponding area ele-
ments in the magnetosphere. Figure 2-5a (left) shows a general case, and 2-5b
(right) shows a simplified conformal case. Unless we consider the cases when the
complicated mapping geometry is important in generating the field-aligned cur-
rents, we simplify the mapping to be conformal as is given as (2-21); i.e., 8z;/dy

= 0, Jy;/0z = 0, and

dr; = &(z,y,t)dz
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dy; = €y(z,y.t)dy (2-28)

where the mapping factors €, £, are assumed to be uniform for the same reason.
These factors are subject to change as time proceeds because of the plasma

convection in the magnetosphere. Thus, we finally have

0 ou, oU
5(521 §y) = (""5;517 —'a_yysy)

0 B,oY 0 B, 0¥

= (oo |22 o), €y — [ 22— 2.29

(§Ia$[32 ax]’gyay[Bz 6y]) ( )

As discussed above, we do not use this equation in the most of the study and

set £ constant unless we specifically study the effect of the geometrical change on

the generation of the field-aligned current. With these factors, we have 9/0zr; =
(dr/dz;)0/0zx = (1/€,)0/0z, etc., and the Jacobian (2-18) is expressed also as

o(zi, yi)

Aany)

Under this simple mapping relation, the ionospheric current and the magneto-
spheric convection have more direct relationship as shown below.

Let us restrict consideration to the ®;=%,, case. The current continuity equa-

tion (2-20) becomes

9% 08 95 08,
6:c.~ 6y,~ 6y,~ 6:c,~
(m)@_) [aZ(I;n) 6_@ _ 62(1—1m) 8_(1)
P oy Oor Oy Oy O

0 od o 0%
J:(z=h) = *ﬁzﬁg[a—xi(zrégg) + %(EP@:)] + 264

z_ég_"i( (m) 02
.0z " F 0oz

&9
& oy
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Figure 2-5. Mapping relations. Between the ionosphere and
the magnetosphere, (a) a conformal mapping is assumed in the
present model, which is simplified from (b) the complicated real

mapping.
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5!/ (m) O%F £f v(m) V B.
‘. 52 +-[Tp ( + V,B.)]+ ¢, By 3 5F (5o + 2]
-V, (V,,B. + V. ,¥) (2 - 30)

where £(™) is the ionospheric height-integrated conductivity mapped to the plasma
sheet, and we used B;/B; = B,/B, = 2. The first two terms are related to the
divergence of the Pedersen current, while the last term is related to the inhomo-
geneity of the Hall conductivity. Let us take z; northward (take z tailward) in
which direction the convection is flowing. Since £; is normally smaller than ,
(<1), the first bracket is usually larger than the second bracket. The last term
could be important in generating the field-aligned current when the flow experi-
ences the gradient of ¥ 5. Note that the time dependence of the mapping relation
also reflects the mapped values of the ionospheric conductivities.

The ionospheric part of the magnetospheric current (2:22) becomes

m 08 (m) 0P e (m 0P | (m) 0P
( 2() _pmd®y L Ganmd® | 5m 02y

P 6;{; H 3 fy a a
y

Even though the energy dissipation should come only from the Pedersen current.

we still have the contribution from the Hall conductivity in (2-31).
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In both (2-30) and (2-31), the geometrical difference between the coupled iono-
sphere and the magnetosphere is condensed into §, and all the ionospheric quanti-
ties are expressed in terms of the mapped quantities. In this way, we have a simple

2-D equation set for the M-I coupling system. One can easily see that (2:30) and

(2-31) satisfies

J(z=h)= -V, L}, (2-32)
and hence it is consistent with V:,y-lgy = 0 too.

2-5. SUMMARY OF THE Basic EQUATIONS

As shown above, we have obtained basic equations for the height-integrated

plasma sheet which is coupled with the ionosphere.

0o
m-ét—V,,y =—m(VzyVey)Vey =V 7

+1., x B, + hCuo .1, , (25
L,=I.,+1I7, (2-12)
0
b—tm = -V, y(mV, )+ T.p(z=h) (2-4)
0
—a—iw = —V.y(®Vzy)+ T:P(z=h)— (v — 1)7VseyVeiy (211
)
55: = —V.(B:V.,) (2-16)
; €y (m) 02 () 0% () 0%  (m)02
IL = (X
z,y ( EP ax ) +( a + E )y
or [gyz“")( +V,B.)+ 2‘"‘)( ~ 4 V.B.)J2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



+1 zzg’“ ‘Z‘I’+VB)+ ‘"‘)( +VB)]g (2-31)
V2, 2=[Veyx(ViyB.): (2-23)
or VI ¥=-V.(V.,B:) (2-24)
J.(z=h) = —VN,-I;J (2-32)

= ( D gf- (“""’M’H (Ve x V&),

o = Z 2=+, 5+ e - 2 o 20 S FV.B.)
— V., = (V, B, + V. ,¥) (2 - 30)

VeI, =0

where ¥ g is positive, and T, (unit mass transfer across z=h boundary as defined
in (2-3)) is to be given externally so that the plasma sheet thinning or expansion
near the plasmapause can be included as well as the compression by the equa-
torial convection. The magnetospheric part of current I, is given as the initial
conditions. The height of the plasma sheet h has to satisfy

s

Bzyy(z: h) /2410

after the end of the calculation. Unless we stress the effect of the geometrical

= O(h) (2-9)

change on the field-aligned current generation, we assuine £ constant, and we do
not employ equation (2-29), which is

6B6\I' 0 B, 0¥

0

Note that ¥ = 0 for the steady state.
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CHAPTER 3. STEADY-STATE SOLUTIONS

Based on the two layer model summarized in section 2—-5, we obtain steady-state
analytical solutions under simplified assumptions. These solutions can be used as
the initial configurations for the simulation as well as the 0’th order configuration
for the linear perturbation analysis. Since more complicated (e.g., time dependent,
etc.) solutions will be studied in terms of the linear analysis or the numerical
simulation, we concentrate on simple situations.

Four types of flows are presented in this chapter. They are: 1. static equilibrium
(Vg,y = 0); 2. incompressible parallel flow in the z direction; 3. compressible
parallel 1-D (8/8y = 0) flow in the z direction; 4. incompressible circular flow (V; =
0, and 3/3¢ = 0). We do not add any complicated =,y dependence on these flows.
The common assumptions for these flows are: 1. 3/t = 0 (steady-state flow) ; 2.
T. = 0 (no thinning nor expansion of the plasma sheet); . Ty «x Tp = uniform
(uniform conductivities); 4. £;/€y = uniform (uniform mapping); and 5. J, =0
(no field-aligned current). As a direct consequence of the steady-state assumption,
we have ¥ = 0 according to equations (2:16) and (2-24) of chapter 2.

To begin with, let us express the electric currents in terms of the convection
velocity and the pressure. The momentum equation provides an expression for
total plasma sheet current (I ,) in terms of the height averaged velocity (V. y),

the height integrated density (m), and the height integrated pressure (7). The

52
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ionospheric part (Ii’y) is also expressed directly in terms of V., and 7 (we now
have ¥ = 0) through the ionospheric Ohm’s law. Therefore, we may also determine

the magnetospheric part (I7',) by subtracting these two.

B.
L.y = B2 X [M(VzyVey)Vay+ Viym) (3-1)
II = g—yEpV,,B, + V. B; (3-2)
xr
I = —E—’EPV,BZ + SV, B, (3-3)
y
7, =L,-I,, (3-4)

Thus, we can obtain the driving force 17", x B, from the assumed values of V ,
and 7, even though I7', is a quantity that is given externally. This force maintains
the convention flowing against the ionospheric drag force.

The other basic equations of section 2-5 provide the conditions that the con-

vection has to obey.

Vey(mVzy)=0 (3-5)
Vl'vl‘l'(ﬂ'vt,y) = —'(7 - l)wvz,y'vz,y (3 . 6)
Vey(B:Vzy)=0 3-7)
6!/ 6 £:c 6
< = —_ E _——— -_— -
J.(z=h) pl . or (VyB;) + ‘ By(VIB‘)]

=0 (3 . 8)

m 0 mV,, -V, V, 0 mV,, V.,V

VI,yIr,y = ay[ Bz ]_ 6:5[ Bz ]
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or 0,1 or 0 1
5;9;('3—:)—5&7(—.)

z

=0 (3-9)

Once the convection velocity satisfies these equations, all the forces are cancelled,

so that the 8/8t term becomes zero even if we did not assume the steady-state.

3-1. STATIC EQUILIBRIUM WITHOUT FLOW

We first assume V., = 0. The ionospheric part of the basic equations provides
J. = 0, which is consistent with this assumption. The basic equations and a

condition of z component momentum balance become:

Iy =1y
B,
= —Eg X V,,yw (3 - 10)
VeyB: x Vo ymr =0 (3-11)
1 % h
~P(2=0)+ —B? (z=h)= ———V, B, -B,  (z=h 3-12
(:=0)+ 5B, (:=h) = Tp - VeuBe Boy(z=h)  (3-12)

The pressure distribution in the z direction is, in general, not uniform. This fact
reflects the bending of the geomagnetic field. The degree of the non-uniformity
in the z direction is condensed into the factor { in equation (2:5’) of the previous
chapter. For example, the least bending case of a dipole field is achieved when

OP/0z = 0, which is represented by {( = 1 as shown below. Let us take the origin
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of the Cartesian coordinate at the center of a dipole moment @ = az. The magnetic

field is expressed as

3az
Bx!y = _rs_(x’ y) (3 . 13)

2
—a z
B, = 75—(1—3:2-) (3-14)
1 z2
or V:yB: = ;(1 - 5r—2-)B,,y
where 7 is the distance from the origin. As the expression (3-13) shows, ¢ has to

be unity. If we neglect 22/r? <« 1, which is good approximation near the plasma

sheet, we have

B;,=2:V,;,B.

Bz,y2(z= h) _h
2p0 2u

or

V.yB: B, (z=h) (3-15)
0

This equation is identical to (3-12). On the other hand, since there is no pressure
gradient and there is no current in the dipole field, equations (3-10) and (3-11)
are automatically satisfied. Thus, the two layer interface model includes the case
of the dipole magnetic field if we neglect h?/r? < 1. This is the degree of the

approximation for the basic equations.

3—-2. INCOMPRESSIBLE PARALLEL FLow
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Suppose there is an uniform flow which satisfies V, = 0 and V; = V(y) as shown
in Figure 3-1a. In this incompressible situation, equations (3-5) — (3-7) require
that m, 7, and B; (# 0) are also constant along the stream line (in the z direction).
Therefore, condition (3-9) is automatically satisfied.

The equations for the electric current (3-1) — (3-4) are simplified to

= —F—— 316

Izsy :EB: ay ( )

I! =XyVB, (3-17)
i_ &

Il = -2%pVB, (3-18)
€y

7, =1.,-I., (3-19)

and the condition for the self-consistency (3-8) is rewritten as

)
6—y(VB,) =0 (3-20)

Even though there is no field-aligned current, the ionosphere still consumes the
energy through Joule heating. It causes an effective drag force working on the
plasma sheet, as discussed in section 2-1. The driving force maintaining the
steady-state convection is the J x B force supported by the magnetospheric part
of the plasma sheet current I7’,, which is externally provided. This J x B force
is a different expression of the magnetic tension force BB, , as discussed in the

previous chapter (see the explanation for equation (2:7)).
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Figure 3—-1. Simple flow patterns without field-aligned cur-
rents. (a) A shear flow where B.V, is constant in the y direc-
tion: (b) A 1-D compressible flow; and (c) A circular flow where

rB_.V, is constant in the r direction.
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The present situation is achieved if the J x B force drives the flow in the z
direction, while the plasma pressure adjusts its direction so that the ionospheric
Hall current does not alter the flow direction. The field-aligned current generation
by the shear flow can be studied in terms of the perturbation method from the
uniform convection of the 0’th order. In this case, B, is also uniform, and hence,

the ionospheric drag force is uniform too.

3-3. COMPRESSIONAL 1-D PARALLEL FLow

For simplicity, the compressional flow is considered to be one dimensional as
shown in Figure 3-1b. We assume Vy = 0, V; = V(z) and 7 = n(z), and the
rest of the 1-D conditions (B, = B,(z) and m = m(z)) are obtained from the
above assumptions through the conditions (3-8) and (3-9). This situation is also

applicable to finite amplitude 1-D waves. The equations for the electric current

(3-1) — (3-4) are simplified to

1 0 )
Im=-I
= -YyVB, (3-22)
I = £ YpVB
y=——XpVB; (3-23)
€y
It=1I,-1I} (3-24)
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and the conditions (3-5) — (3:7) for the self-consistency of the flow become

0
or V x e (3-25)
m

agz-(lmr +4InV)=0

or Toxm? (3-26)
0
6—:5(B:V) =0
or B,xm (3-27)

With the help of (3-25) and (3-26), the gradient of the total kinetic pressure

mV? 4+ 7 is expressed in terms of the density gradient:

0 2  9es2 ym om
a(mﬁ +7m)=m"V ( ) B
—(—V2 2y -
where Ci= % (3-28)
Therefore, (3-21) is rewritten as
_Liczoyyom
Iy = 53— V)3 (3-29)

This equation indicates that the total current direction in the plasma sheet depends
on the direction of the density gradient as long as the convection is subsonic. Thus,

the plasma sheet current can flow in both the +y and —y directions.
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Equations (3-21) — (3-27) represent several situations. If the pressure gradient is
the primary force that drives the flow in the z direction, the other quantities are
determined from it according to (3-21) — (3:27). In this case, the ionospheric Hall
current drags the plasma in the y direction. This drag force has to be cancelled
by I7 x B, so that straight flow is maintained. Thus, the external quantity IT*
is determined from the assumed pressure. If the pressure is rather determined
self consistently (e.g., waves), we may still calculate the other quantities from the
pressure and vice versa.

Conditions (3-26) and (3-27) are sometimes extended to more general situations
when we use the analytical method. We assume these extensions for the 0'th order

quantities when we perform the linear analysis.

3—-4. INCOMPRESSIBLE CIRCULAR FLOW

In this section, we show a solution of the flow with curvature and with no field-
aligned current. The flow does not have to be a circular one. We study the portion
in which the flow speed is constant along the curving stream line as shown in Figure
3-1c. Let us assume that V, = 0 and V, (= V) are constant along the stream line.
This situation is essentially the same as parallel flow except centripetal force is

added. We keep the 0w /0¢ term so that it can represent viscous-like stress force.
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We again have constant m, 7, and B, along the stream line according to (3-5) -

(3-7). With the help of the general relations

é

~
Il

SNERNES
©
il
|
~3

the equations for the electric currents are rewritten as

1 or

_ — _— 3-30

IY‘ TBZ aqs ( )
mV? 1 On

Iy rB, +Bz or (3-31)

Ii = %EPVBZ (3-32)

I,=SyVB, (3-33)

(I I3) = (I 1g) = (I, 1)

where the centripetal force in (3-31) comes from the convection term:

v
(V:,y’vr,y)vx,y = —TT

The conditions for the self-consistency (3-8) and (3-9) are rewritten as

, o

5.("VB:) =0 (3-34)
OB, o~
36 =0 (3-35)

If there exists Kelvin-Helmholtz type drag force [Azford and Hines, 1961] repre-
sented by 0n/0¢, the last condition requires that B, should be uniform. Oth-

erwise, the last condition is automatically satisfied. Nonzero V causes nonzero
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Jr = J.(r) through nonzero By. In this case, we need a driven force different
from the viscous-like stress force (07 /3¢ term). There is a singular point of J;
at the center of the circular flow, if the convection flows in a closed circle. As we
take V(r — 0) — 0, no flow can satisfy condition (3-34); i.e., there should be the
field-aligned current at the center of the vortex. A further study is given later in

terms of the linear analysis and the numerical simulation.
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CHAPTER 4. LINEAR ANALYSIS OF THE FIELD-ALIGNED CURRENT: 1

— PERTURBATION FROM STATIC EQUILIBRIUM —

Once we have the zero-order configuration, we may apply the linear perturbation
method. This method is commonly used to study the waves [e.g., Southwood and
Stuart 1980], but not for the plasma sheet dynamics. All variables are divided into
the zero-order quantities and the 1st order quantities; e.g., m+ém, V + 6V etc..
The second order terms are neglected from the equations. Since zero-order J; is
set as zero, the field-aligned current is the perturbed quantity (=6J,). We express
the field-aligned current in terms of the the other perturbed quantities. We also
study the temporal development (or relaxation) of a given initial perturbation to
a steady state, its relaxation time, and the field-aligned current generation during
these processes. Even though the basic equations are nonlinear, the linear analysis
is still useful because it diagnoses the behavior of the nonlinear solutions that are
to be obtained in terms of the numerical simulation.

The zero-order configurations are taken from the previous section. There are
several assumptions for these steady state configurations. Here, we further simplify
the zero-order configuration. Those assumptions are: 1. /3t =0; 2. T, = 0; 3.
Y x Xp; 4.J. =0; 6 £ = &; 6. mx m?; and 7. B; x m. The first four
assumptions are the same as in the previous chapter. The last two assumptions

have been explained in section 3-3: they replace the equation of the state and the
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= component induction equation self-consistently. Both assumptions are not valid
if the T. terms are not zero. The assumption for £ is a special case of £; x §,.
That assumption provides £ = \/m

The zero-order steady-state equations without the field-aligned currents are even

more simple than in the previous chapter:

iy = 55 XIn(V ey Fuy)V ey + V7] (4-1)

I: =TpB.V, + ZyB.V; (4-2)

I, = -SpB.V, + TyB.V, (4-3)
I7,=1,-1I, + (4-4)
Vey(mVe,y) =0 (4-5)

Veyly, = Veyloy
=0 (4-6)
Equation (4-3) provides a relation

A

m

Vr,y‘(AVz,y) = mvr,y'vr,y( ) (4-3")

for an arbitrary function A. The function A can be either the zero-order quantity
(e.g., ™, m) or the first order quantity (e.g., éw, ém, or §B,).
To derive the first order equations, it is necessary to make some assumptions

for the first order quantities too. We totally neglect T, terms for simplicity. That
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guarantees the consistency of the assumptions of * « m?” and B: x m. We
also neglect 6£, and hence, neglect the temporal change of the mapping points
(expressed by (2-29) in section 2-5). Since we concentrate on the internal dynamics
of the system rather than the response of complicated external conditions, we
assume that the external driving force is constant in time. Therefore, 8IT  is

constant.

With the help of (4-3’), the first order equations are given as

m—a—évz,y =—=6m(V; Ve )Vey —mb[(Vzy-Vay)Viyl =V, b7

ot
+ 681,y x B, +1;, x 6B, + h(uedJ:I;, (4-7)
5Iz,y = 51;,3/ + 61231 (4-8)
15)
aém = =V y(6mV, ) — Vi y(méV. )

ém m
= —-mVI’y'Vx’y(F) _— Vx,y'(B_Bz(SVI,y) (4 . 9)

0
a&r ==V Ve b1 =6V, Vo ym =467V, -V — 7V, 6V,

= -BIV,,V ’y( 6V, Vo ym — YAV 2 6V

Bw)
= —BZVz,y-Vx y B”) B- z,y'(B:‘Svr,y) (4-10)
5;9B: = —v,,y-(aBzVI,y) — V. ¢ (B.6V.,)
=_Bv,yv,,,( ) Vi (B:6Vzy) (4-11)
61, , = SpV, 6@ + 6XpB,V, , x 2

+SHE XV, 68 + 6SyB.V,,
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or =TpV, 06U x 2+ SyV, ,6F
+8(SpB.V.,y) x:+6EuB,V.,) (4-
§J:(z=h) = =V, 6l

— —TpV2 68— V., Tp-V, 68 +[B.V., x V. ,6Tp].

4+ [VeyZh X Vi y68]: — BV, -V, 65y (4

Ve 817, =0 (4

2 X V,y6® = B.6V,y+ V6B, + V. 60 (4
V2,862 =V, (B.6V,y x 2+ V, 6B, x 2) (4-

or VI 6V =-V, (B:6V,y+ V. ,6B.) (4

66

12)

13)

. 14)

. 15)

16)

-17)

where £ > 0. All of &,, £,, and 8V disappears from the equation for J, because

of £z = &y,

The last term of (4-7) is negligible compared to the previous term if

0B,
0B 4

h
>>L—OC

is satisfied. Since h <« Lo and ¢ ~ 10~! (¢ = 1/5 for the hyperbolic geomagnetic

field in the plasma sheet), the above inequality is normally satisfied unless 6B, =

0. Therefore, we neglect the last term in (4-7) as an additional assumption.

Since (4-16) and (4-17) are related to B;6V ., rather than 6§V, , itself, we

rewrite (4-7) in terms of B,6V . ,. With the help of the above assumption, (4-7)
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becomes
m 0 6B,
KE(B OV, z/) = (_. - —)m(V, y Vg y)Vt v
—m(8V .y Ve y) Ve y —m(Vz V)6V, ,
6B, R
— V.07 + B—szyvr + B 01, x 2 (4-18)
b4
where
Voym = 'J’B—”vz,yB, (4-19)

All the above equations are used through chapters 4 and 5.
In this chapter, we take V4, = 0 for the zero order: we study the perturbation
from the static equilibrium that we studied in 3-1. The nonzero V, , cases are

studied in chapter 5. The zero-order equations (4-1) — (4-6) are reduced to

1 :
I;.n,y = B—f X Vx,yn' (4 . 20)

which corresponds to equation (4-10) of section 3-1. Equation (4-11) of section
3-1 is automatically satisfied because we have assumed 7 x m « B,.

Before we write down the first order perturbed equations, let us introduce D

and R as the divergence and the rotation of B.6V, ,;i.e.,

D=V, (B.6V,,) (4-21)

R=V,(B:6V,yx2) (4-22)
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These quantities are directly related to the potentials 6® and 6¥:

V2 6@ =R (4 -23)

V2,9 =-D (4-24)

Spatial derivatives of B,6V; 4 can be rewritten through (4-21) and (4-22). The
other B.6V ., terms can be rewritten through (4-15): Rewriting the linearized

perturbed equations (4-8) — (4-18) in terms of D, R, é®, and 6¥ when there is no

zero-order convection, we find

m O m 0 .
_— = ——=—(2 2,90® — V. 69
Bz at(BZ6VI,y) Bz at(z X v 'Y Y )
6B, i m R
= —V;,yéﬂ' + —ijz,yﬂ' + Bz(élz,y + 5Iz,y) X z (4 . 25)
0 m
el - 4-2
atém BzD (4-26)
o 7
—6 - —— 4.
a5t "~ "B, (4-27)
-263 =-D (4-28)
ot ¢ -
I, , =TpV. 68 —ZpV, 6@ x £ (4 -29)

8J, = ~EXpR =V, yEp -V 6@+ [V, yZn x V69, (4-30)

17, =V, ,6K™ x 3 (4-31)

where 6 K™ is the potential for 617, and constant in time. The existence of such

a potential is guaranteed by (4-14). Since ém and éJ, do not appear in any
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other equations, equations (4-26) and (4-30) can be separated from the rest of the

equations. By substituting (4-29) and (4-31) into é1; , in equation (4-25), we have

m )

;5 v %vx,ym +TpB.Ex V, 68 — SyB.V, ,6® — ——gzavz.y&p
§B. . .

~ —Vz,y57\' + —B——Vx,y‘lr - B;V11y51\ (4-32)

Equations (4-21) — (4-24), (4-27), (4-28), and (4-32) are the governing equations
for this chapter. The field-aligned currents are related to the plasma motion
through (4-30). Equation (4-32) includes the ionospheric ‘drag’ force as well as
the magnetospheric pressure gradient force and the J x B force. The second
term on the left-hand side (with £p) of (4-32) represents the ionospheric drag
force with dissipation (Joule heating). The third term represents the ionospheric
nondissipative J x B force.

The momentum equation (4-32) can be divided into a rotation-free part and a

divergence-free part. Taking the divergence and the rotation of (4-32), we have

}—’;‘—%2 — SyB.R— [V, ,(SpB,) x V, ,68], — V. ,(SyB.)-V, 6@
2 6BZ -m
= = V357+ Ve (= Vie®) = Viy(B:Va ySK™) (4 -33)
m OR

B. ot +EZpB., R+ V, (EpB,)-V.;,62 — [V, (EuB,) x V, ,6%],

§B,
= ~[Vay® X Vay(F): = [VayB: x Vo SK™ (4-34)

The ionospheric effects are collected on the left-hand sides. By picking up the first

two terms on the left-hand side of (4-34), one notices that the deceleration of R
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is caused by the Joule dissipation. In order to delete é7 and 6B from (4-33) and

(4-34), we take the time derivatives of these equations:

o*D Yy 1 0R

at2 EP T1 6‘t
1_1 3 101 o
—_ — P — z E N '—VI 6
Tl ZPB [ T y( PB ) X V:c y(S@] + TI EPBZV Yy( HB._) at ¥ @
B B,
+-TT;V3' y('}’ﬂ'D)_ sz( yﬂ') (4.35)
PR, 10R
8t2 Ty at
1 d 11 - )
T nTp B.[V 2a(SnB:) X 52V 88 — —5mm- Ve y(BpB:) 5 Ve 062
B. D
+ _T’,T[V:r,y"r X Vz,y(B_)]z (4-36)

z

where

Ty = Esz (437)

is 1 ~ 10 minute in the plasma sheet.

Equations (4-23), (4-24), (4-35), and (4-36) construct a closed set for D, R, 69,
and §¥. One of the standard methods to solve these equations is Fourier analysis,
which is adopted later in section 4-4. Before that, we examine special cases
to extract the contribution of each term. Without solving equations (4-35) and
(4-36), we may extract two essentially different phenomena: the wave propagation
and exponential-type decay. Both phenomena are to be generated simultaneously.

A propagating wave is generated when the steep temporal variation makes the
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second order time derivative term dominant in the equation. Since the balancing
term 1is Vi’y&r, the wave 1s the magnetosonic mode. The other type of solution,
the decay, achieves the redistribution of the plasma toward an asymptotic state.
Combination of the wave and decay will be found later in the numerical simulation
(chapter 6).

In order to make things clear, we neglect the gradient of B, (and ) and ¥

Equation (4-35) and (4-34) become, respectively,

_2H o0 4.
ot2  Tpr 9t m oY (4-38)
BR R

Without the ionospheric current, these two equations are independent of each
other. Equation (4-38) obeys the wave equation if D is larger than R. At the
same time, R, which is related to J,, decays from its initial value according to
(4-39). A steady-state solution is obtained by setting 9/9t = 0 for the first or-
der quantities. Details for the wave mode, decaying mode, and the steady-state
solution are studied in the following sections.

Let us go back to (35) and (36). Equating OR/&t terms, we have

0’D Ty 0°R SH 2 Bs 9
£ E%)] —{Vey(SpBy) X 5 Ve y89]:

Ty D
=Vv2 y( D) ,y-(;v,,yw) + :‘Z?[V”’” X vz,y(;)]z (4 - 40)
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If D> (Sy/Zp)R, we may neglect the R term and the 6@ term; i.e.,

8*D . T D Sy D
—872— = Vr'y ;D) - V,‘y(r—n-V,,,,vr) + S;[V;,yﬂ' x Vz'y(’rn)]z (4 41)
Especially when the zero-order gradient is not very steep (|VD/D| > |Vr/x|),

this equation is further simplified to

9*D g 1 Zu,l
o = ViD= Ve Ve, D+ E%[;n-vx,yw x Vo,Dl. (4-42)

The first term comes from the pressure gradient force, the second term comes from
the I x 6B force, and the third term comes from R /3t through the éI x B force.
This nonzero R is excited by Iz x §B. Since the effect of the Hall current comes
into the system through R, this term is related to field-aligned current generation
too.

This equation describes many situations according to which term of the right-
hand side is balanced with the left-hand side. The first term causes the wave
propagation that will be considered in section 4-4, the second term is considered

in section 4-2-2, and the third term in section 4-2-3.

4-1. STEADY-STATE PERTURBATION FROM STATIC EQUILIBRIUM

As a simplest case, we give the steady-state (0/0t = 0) perturbation; we study

the field-aligned current generation from a maintained perturbed flow. Directly
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from (4-26) — (4-28), we have D = 0. Equation (4-24) leads 6¥ = 0 too. Now,
equations (4-27) and (4-28) are not related to each other; i.e., §7 and 6B; can be
given independently (i.e., arbitrarily). Since 6B. can be included in B., we set

6B. =0 and hence, é7 # 0. The momentum equation (4-25) or (4-32) becomes:

2x 6L, , = (—SH+ Tpix)V, 69

1 -m
= -—B—zvzyy&r — V0K (4-43)

Operating with £y + £ p2x, we have

1
(£} + 2LV, 6 = (Zu + zpsx)(ﬁ—v,,yaw + V., 6K™) (4-43")

This equation still holds in 6 K™ = 0 cases too. The field-aligned current 6J, =

~V. y1;, is calculated as

1
6J, = [Vz,y(E) X Vg b7, (4 - 44)

Apparently, the steady-state field-aligned current does not depend on the iono-
spheric conductivities. Since zero-order velocity is zero, the field-aligned current
generation is related only to VP x VB among many terms in the expression by
Kan [1987]. This term originally comes from the divergence of the VB drift which
is expressed as B x VP/B?2. The solution presented here also satisfies the original

first order equations that contain 8/30t terms.
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Employing the above solution as the initial values for the time-dependent equa-
tions (4-27), (4-28), and (4-32). we find that the time derivatives of éw, 6B, and

OV, y at t=0 are

0 T
5707l=0 = — 5 Dli=o
=0
d
§5B;It=o = —Dl¢=g
=0
o h Y pix )V, 69 ! Vi,6 V. ,6R™
aévz,yllzo =B:[(~‘H - —JPZX) z,y - B_z z,y0T — Vz.y ]t=0
6B,
+[ B vz,y‘”]t:O
=0

Therefore, the perturbation does not change for ¢t > 0. In other words, once this
steady-state is achieved, and if we take 6 K™ = 0, the field-aligned currents keep
flowing without any external maintenance force.

This result is not consistent with the law of the conservation of energy. Let us
consider the energy budget. Since we have §J, « é7, there is the energy dissipation
related to é7 in the ionosphere, while we have the steady-state solution. Therefore,
the initial perturbation of é7 has to decay. This paradox comes from the linear

approximation. Since the energy dissipation is the second order quantity (product
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of §V ., and é7), the pressure does not decay. It will be more clear if we retain

the second order term only in (4-27):

o ~m
5t—67r = —EZ—D =6V Ve ybm — 467V, y6V 4y

§
= 6V, V, b7 + —gav,,y-vz,yw

5
= 6V yTVa() (4-45)

where we used the first order solutions; e.g., D = 0, etc.. Since 6V, , is directly
related to 6@ through (4-15), it is related to 5I;‘y or é7 as (4-43) shows; i.e., the
time derivative of é7 is proportional to (ém)2. A further discussion will follow
in section 5-1. In the plasma sheet, the energy dissipation can be supported by

internal heating or plasma sheet thinning that maintains the pressure.

4-2. EVOLUTION OF LINEAR PERTURBATIONS

In this section, we give an initial perturbation to the static equilibrium and study
the change of the initial configuration and the field-aligned current generation. We
obtain the relaxation time for this process too. As the asymptotic solution, we
may also obtain the steady-state solution caused by the initial and /or a maintained

disturbance. Equations (4:33) and (4-34) are still complicated, and they are further

simplified.
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Since we consider the redistribution process of the initial disturbances, we ne-
glect the external J x B force caused by é A'™. This term causes a different physics
from the relaxation of the initial perturbation, and will be studied in section 4-3.

Thus, equations (4-33) and (4-34) are simplified to

m 0D YTy R

“B?j('gt‘ - E—P';'l') - Vz.y(EHBz)'vt.yéq) - [Vx,y(zPBZ) X V,.,,y&b],
éB,
= —Vi’y&ﬂ' =+ Vz’y'(—‘gz—vx’yﬂ') (4 - 46)
OR R
%”-(57 )+ Vay(TpBa) Vi 68 - [Vey(SHB:) X V, ,6@],
6B,
= —[Vl,y‘lr X Vr,y(?)]z (4 . 47)
where
R=V2 62 (4-23)
0 T
25B =-D (4-28)
ot
m
7'1=2PBg (4-37)

We still have too many terms to extract the essential physical mechanism that takes
place in the relaxation process. Since, in many works, the gradient of pressure (and
hence, B;) and the gradient of the conductivity are considered important in the

field-aligned current generation [e.g., Kan et al., 1988; Vasyliunas, 1984; Jagg: and
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Wolf, 1973], we categorize the situation by the gradient of the zero order (¥ pB.)
or T pm.

Case 1. When V, ,(SpB;) is significant, we may neglect R terms in (4-46).
Since (4-47) is the equation for R, we may not neglect both R terms. Here, we
assume that the intrinsic scale time 7 is short compared to the time scale of the
driven term of D. Therefore, we neglect the OR/0t term instead of the R term in

(4-47). Thus, equations (4-46) and (4-47) are simplified as

—;i%) V. y(SuB.) V.68 — [V, ,(SpB.) x V. ,68],
6
=-Vi n+V, y( B*v 4T) (4 -48)
1 1
R+ 55 Veu(SpB:) Vieyb® = 5mr[Va (S Bi) X Va8
= "7'1['1"V:z,y7r X Vx,y5Bz]z (4 . 49)
m

These equations can be further simplified according to whether R or D is larger.

Case 2. If V, ,(XpB.;) is not so significant, we may drop all the second or-
der V. 4,(EZpB.) terms from equations (4-46) and (4-47). Since 6@ is another
expression of R as of (4-23), and since all §® terms in (4-47) are multiplied by
V:.y(EpB;), these terms provide only the second order of V. (XpB.) in the

expression of R. Therefore, we neglect §® terms in (4-47):

R R
%t —[— 2y X Vi y6B.). (4-50)

Let us drop the second order V; , B, terms from (4-46). Equation (4-50) states that

R, and hence é®, are the first order quantities in terms of “small” V, ,(E£pB,).
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Thus, all of the §& terms are the second order V; ,(XpB;) terms in (4-46) too,

and we neglect them. We have

oD B: 0B;
E + ™ Vi,y(Sﬂ’ - V,,y-(-ﬁ-vxyy‘n) =

M|M
2ol oo
Sl f~v

(4-51)

which corresponds to (4-41). Each equation has a coupling term.

Case 3. If the gradient of B, is exactly zero, (4-50) and (4-51) are further

simplified to

OR

T]E‘*’R: (4'52)
oD B._, Sx R
= =222 4.53
ot + sz,y&r Ypm ( )

Equation (4-52) is homogeneous for R, while equation (4:53) has a coupling term
with R.

Now, we consider the initial conditions. They are determined in terms of the
set of §B,, D, and R at t =0; i.e., §B,o(z,y), Do(z,y), and Ro(z,y). According to
equations (4-46) and (4-47), the initial condition of Dy =0, Ry =0 and 6B, =0
provide D(t) = R(t) = 0 for all t as we have shown in section 4-1. If we specially
employ (4-52) and (4-53), the initial condition of Ry = 0 provides R(t) = 0 for all
t.

In subsection 4-2-1, we study the behavior of a shear flow in terms of the
behavior of R. Since we are not considering the effect of the gradient of B, i.e.,

6B,y = 0, and émy = 0, we use (4-52) and (4-53). A pure shear flow is given as
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Ry # 0, Doy = 0. A nonzero Dy case is given in 4-2-2, where we study the plasma
compression by an enhanced convection. Therefore, equations (4-48) and (4-49)
are employed with the initial conditions of Ry = 0 and 6B, = 0. In subsection
4-2-3, we study the relaxation process of VP x VB by means of equations (4-50)
and (4-51). This initial condition for this case is nonzero 6B, and Dy = 0. As
shown later, these conditions require Ry # 0 in order to obtain a meaningful
solution. These initial conditions are the same as 4-2-1 except 6B;y. Thus, we
may have different initial conditions. However, once we have equation (4:47), all
the solutions for R, and hence for §J,, are essentially the same no matter what the

initial conditions are: it always decays with the time constant 7, = m/(ZpB?).

4-2-1. RELAXATION OF THE SHEAR FLow

First, we study a shear flow and its relaxation process as shown in Figure 4-1.
Since we concentrate on the effect of the shear flow, we start with a pure shear flow
(Do = 0) without any perturbation of the magnetic field (6B, = 0) or pressure
(6mo = 0) under uniform B, (i.e., uniform =). In this simplified situation, the
expression for field-aligned current (4-30) is simplified to 6J, = —SpR, and we
may employ (4-52) and (4-53) as the governing equations for R and D.

As is demonstrated by equation (4-52), the field-aligned current decays from

its initial value to zero. The decay time 73 = m/(XpB?)is 1 ~ 10min. This is
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Figure 4-1. Evolution of a shear flow. The perturbed flow
(solid arrow) in the z direction given at t=0 causes the electric
field, and hence, the electric current in the ionosphere. Both the
Pedersen and the Hall currents “drag” the ionospheric neutrals
by the I» x B and the Iy x B forces. Their reaction forces (open
arrows) are assumed to be transmitted to the plasma sheet, and

these forces decelerate and bend the original perturbed flow.
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shorter than the time scale of the large-scale field-aligned currents (~ 1hour) As
one can see from the expression of 7; that includes ¥ p, the decay is caused by
the ionospheric Joule dissipation. While the equation for R is homogeneous, the
equation for D contains R according to (4-53). The governing equation for D is

obtained by substituting (4-28) into the time derivative of (4-53).

e VP =T e
_ Yu Ro t
=%, 72 exp( 7_1) (4-54)
where C%= % (4 - 55)

Apparently, a propagating wave of D is excited by R. The initial conditions Dy

and D, = 0D /8t|¢=¢ for this equation are

D0=0

D, = Ry

D, is directly expressed in terms of Ry.
There is no feedback from D to R. This is true as long as (4-52) is valid; i.e., as

long as we may neglect the right-hand side of (4-50) compared to the second term

of the left-hand side:

R _ CiSB

n > 1.L,

o B G
D~ L.L,

(4 - 56)
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where L; and L, are the scale length in the z and y directions, respectively.
However, once a wave is generated, D can be much larger than R. Let us estimate
the duration of how long the R > D condition holds: neglecting the Laplacian
term (by giving a wide-spread initial perturbation), we can approximate (4-53) for

small D that

-
2 H

D~ Ryt
Epm o

The wave is generated more quickly if the field-aligned current (or R) is very

localized. Now the condition (4-56) is rewritten as

t Ty Cint
expl—) > <
P-7)> 5. 1.1,

Unless there is a pre-existing wave or a local and intense field-aligned current, this
relation holds longer than t = 7;. After the wave amplitude grows, equation (4-52)
does not hold any more. Thus, we may not obtain the asymptotic state from this
equation.

Figure 4-1 illustrates the 1-D situation (8/0z = 0) for small ¢ before the wave
mode dominates. Initially, we have a shear flow with Ry < 0 for 0 < y < y, and
Ry > 0 for —yg < y < 0. Since D obeys (4-54) for small t, the plasma is rarefied
(D > 0) for y < 0 and compressed for y > 0. Meanwhile, R decays; i.e., the shear
is weakened. Imposing 6V, , = 0 at y = +y,, the flow is determined as shown

in Figure 4-1. Deceleration of flow is expressed by the change of R, and hence,
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it is caused by the ionospheric Joule dissipation. Thus, we have the ‘drag’ force
which is expressed as 6Ii’y x B, as illustrated by the empty arrow in Figure 4-1.
Distortion of the flow is caused by the ionospheric Hall current through the Iz x B
force. This force works on the ionospheric plasma, and its reaction works on the
plasma sheet. The force is nondissipative; i.e., its direction is perpendicular to the
flow. If we have enough 617, that can cancel these ‘drag’ forces, the perturbation
becomes steady.

If the background plasma is not uniform, e.g., dm/0z is not zero, the reaction of
the I 7 x B force causes propagation of the shear. The governing equation for R is
obtained from (4:47). For the present purpose, we simply neglect D compared to
R for small t (the initial condition is exactly Dy = 0). If the first order quantities

depend only on the y, (4-47) becomes

TG+ ) = 5(CuB 50

Therefore,

62R 1 3R EH kB+kE

2o T oy ST R (4-57)
where kg = ; aai

- Cé—m% (4-58)

by = zl,, ai” (4-59)

Apparently the solution has to be asymmetric between +y and —y.
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This situation is illustrated in Figure 4-2. As mentioned above, the 1onospheric
Hall current causes the ‘drag’ force in the y direction as shown in the figure. This
force has a shear in the z direction because of the change of VX g through the
change of Iy or because of the change of B. The convection 6V, caused by this
force also has the same shear in the z direction. The sense of the shear is the same
as R in the +y direction and opposite in the —y direction. Thus, the shape of R

moves toward Vm x B direction.

4-2-2. PLAsMA COMPRESSION BY AN ENHANCED FLOW

Contrary to the previous case, we consider here a compressional flow without
shear. Therefore, we set Ry = 0 while we have nonzero Dy. A compressional flow
experiences a zero-order pressure gradient. We start with (4-48) and (4-49) under
the assumption of D > R. We neglect 6® terms compared to 6B, terms because
6P is related to R while §B, is related to D.

Since we do not have V, ,6® terms, the flow direction does not affect the equa-
tion. Therefore, we may take an arbitrary direction for V; ,B.. Let us take the
z axis in the V 7 (or V. ,B.) direction as shown in Figure 4-3.

The governing equations for D and R are

oD B, 0, 10r
_— = —;I-Vi,y&lr + a—(

z m Ox

é6B.) (4 - 60)
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Figure 4-2. Evolution of a shear flow in VBz. The zero-
order gradient of B, exists in the z direction (same as the flow
direction). As illustrated in Figure 4-1, the —I 4 x B force bends
the flow. This distortion is different in the r direction because
B. is different. Therefore, the field-aligned currents become

asymmetric.
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High Pressure Low Pressure

Small B,
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Large B,

R

s VvV v v LV

P

Figure 4-3. A compressible flow. The flow (solid arrow)
which experiences the zero-order gradient of B. in the z di-

rection. If the flow is one dimensional, there is no field-aligned
current.
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1 0r 0
LpR=————6B.; 4-61
PR B?0oxr oy ( )

With the help of (4:27) and (4-28), (4:60) determines the behavior of D whereas
(4-61) indicates that R is directly determined by D. The first term of the right-
hand side of (4-60) represents the pressure gradient force while the second term
comes from the I x B force. This force varies as éB, varies in the z direction.
The right-hand side of (4:61) represents the field-aligned current generation by
VP x VB term. This term originally comes from divergence of gradient B drift:
I, = B x VP/B?. The initial condition of Ry = 0 implies §B,o = 0 through
(4-61) and 0D/0t|4=¢ = 0 through (4-60). Note that Ry = 0 means, practically,

Ry < Dgy. Otherwise, we have 3/3y = 0 and R is always zero as illustrated in the

figure.

Taking the time derivative of (4-60), we have

1 9’°D oD
ciom ~ Vel koG (462

where kg is given as (4-59). Initial conditions are Doy # 0 and D, = 0D/d%|,=¢ = 0.
This equation can be also obtained from (4-42) if we neglect the third term on the
right-hand side of it. In order to solve (4-62), we also have to specify the boundary
condition at x = z3. The last term comes from the mechanism below. The wave
with 6V, (or D) generates the electric field and the ionospheric Pedersen current

in the y direction. There is the Ip x B, force onto the ionospheric plasma. The
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reaction force of the I p x B, force works in the z direction onto the magnetospheric
plasma. Thus, the last term is related to the ionospheric Pedersen conductivity.

The details are discussed in section 5—4.

4-2-3. FIELD-ALIGNED CURRENTS BY VP x VB

If there is a pressure gradient that is not parallel to the gradient of the total
magnetic field, the pressure gradient force drives the plasma. This process is

initiated from nonzero

VP x VB

We study the evolution from this initial configuration with the behavior of the
plasma quantities during this process. Since V., 7 || V. B, is already given,
we need to give §B;o = 6B,(t=0) such that V. 4(B.+6B.o) is not parallel to

Vg y(m+6my). This condition is achieved if 6B satisfies
Vey® X Vg 6B #0

when 67y = 0. If §B, is maintained somehow, the situation is exactly the same as

4-1.
We extract the most important mechanism in this process. Therefore, we do not

have to take V, ,m very large. We start with equations (4-50) and (4-51), rather
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