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A b s t r a c t

This dissertation reports a study of the generation of field-aligned 

currents in the plasma sheet in terms of magnetosphere-ionosphere cou­

pling. For the study, the plasma sheet and the ionosphere axe treated 

as two-dimensional layers by height integration. In the magnetosphere 

between them, the Alfven wave transition time through this region is 

assumed to be zero. The ionospheric momentum is allowed to be trans­

ferred to the plasma sheet. Both linear analyses and numerical simula­

tion are performed to study the field-aligned current generation. In the 

linear analysis, evolution from initial perturbations is studied. Zero or­

der configurations are steady state without field-aligned currents. The 

field-aligned currents are treated as a perturbed quantity and linearly 

related with the other perturbed quantities. One result for the linear 

waves is that the magnetohydrodynamics (MHD) fast mode and the 

Alfven mode are coupled through the ionospheric Hall current. The 

Hall current causes the dawn-dusk asymmetry: a westward-travelling 

wave is amplified on the region 1 current system, while an eastward- 

travelling wave is amplified elsewhere.

The expansion phase of the magnetospheric substorm after the onset 

is numerically simulated on the near-earth plasma sheet. The inner

3
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4

edge of the plasma sheet is taken as the outflow boundary. As the 

initial condition, an enhanced earthward magnetospheric convection 

is assumed to cause a finite pressure increase at the inner edge of the 

plasma sheet. The numerical results are as follows. An MHD fast-mode 

wave is generated. It propagates tailward accompanied by the field- 

aligned currents. The wave propagation and the field-aligned currents 

account for the poleward expansion of the aurora and the region 1 

field-aligned current during the expansion phase of the substorm. The 

region 1 field-aligned currents are linked with the dusk to dawn current 

on this wave, which is driven by the dynamo mechanism of the wave. 

The ionospheric Hall current causes asymmetry of the wave, and hence, 

o f the field-aligned current distribution. This asymmetry accounts for 

the stronger field-aligned current in the premidnight sector.
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C h a p t e r  1 . I n t r o d u c t i o n

Large-scale field-aligned currents play an important role in polar auroral phe­

nomena such as substorms. There are two field-aligned currents in the night side 

polar ionosphere. The region 1 field-aligned current flows into the ionosphere in 

the morning side and flows out of the ionosphere in the evening side. The region 

2 field-aligned current is located equatorward of the region 1 field-aligned current, 

and its direction is opposite to that of the region 1 field-aligned current. Both 

the region 1 and the region 2 field-aligned currents have been observed above the 

ionosphere [Zmuda and Armstrong, 1974; Iijima and Potemra, 1976; Sugiura and 

Potemra, 1976; Kamide et al., 1986] and in the magnetosphere [Fairfield, 1973; 

Coleman and McPherron, 1976; Frank et al., 1981; Elphic et al., 1985; Nagai, 1987; 

Ohtani et al., 1988]. Dining substorms, the field-aligned currents are enhanced, 

especially near local midnight, and their distribution is never steady [Kamide et 

al., 1986]. In fact, the poleward expansion after the substorm onset [Akasofu, 

1962; 1964; 1974; 1976; 1977] suggests that the region 1 current system moves 

either poleward or tailward in the magnetosphere. The westward travelling surge 

[Akasofu et al., 1965; Akasofu, 1974, 1977; Kamide and Akasofu, 1975; Opgenoorth 

et al., 1983] also suggests that a large-scale wave is excited where the region 1 cur­

rent exists. Thus, the field-aligned currents are related to the large-scale dynamics 

of the substorm.

13
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The generation of the field-aligned current in the magnetosphere is not as well 

understood as the closure of it in the ionosphere. Theoretical studies of the field- 

aligned current generation in the magnetosphere have been conducted by a number 

of authors [ Vasyliunas, 1972, 1984; Jaggi and Wolf, 1973; Bostrom, 1975; Rostoker 

and Bostrom, 1976; Sato and Iijima, 1979; Wolf and Spiro, 1985; Ogino, 1986; 

Watanabe and Sato, 1988; Kan, 1987; Walker and Ogino, 1987]. Most of these 

models explain the field-aligned current generation in terms of either the pres­

sure gradient force or the inertia force (especially in terms of the vorticity). The 

particle drift caused by these forces generates the magnetospheric current, and its 

divergence is linked with the field-aligned current. If the current is associated with 

the pressure gradient force, the field-aligned current is proportional to V P  x V S  

where P  is the pressure and B  is the strength of the magnetic field. If the current 

is associated with the inertia force in the incompressible flow, the field-aligned 

current is proportional to the temporal change of the vorticity.

The understanding to date is that the region 2 field-aligned current is generated 

predominantly by the pressure gradient force in the plasma sheet [ Vasyliunas, 

1970; Harel et al., 1981; Wolf and Spiro, 1985]. Generation of the region 1 field- 

aligned current is still an open issue, though the vorticity is believed to play an 

important role in either the boundary layer or the plasma sheet [Sato and Iijima, 

1979; Hasegawa and Sato, 1980; Sonnerup, 1980; Ogino, 1986; Kan, 1987]. Many

14
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different types of flow generate the field-aligned current by this “ inertia” force. 

For example, the field-aligned current generations from a circular flow and from a 

simple shear flow are both explained merely by that “vorticity.” We have to specify 

the types of flows as well as the types of forces in the study of the field-aligned 

current generation from the magnetosphere. Most of the above models are based 

on the quasi-steady state approximation; i.e., they consider the instantaneous flow. 

In this case, for example, the field-aligned current generation from the waves is 

excluded. However, the dynamics of the flow might play important roles in the 

field-aligned current generation also, and should be taken into account. Since 

the field-aligned current is stronger during the substorm, we specifically have to 

consider the plasma sheet dynamics during that time.

Since the magnetosphere and the ionosphere are coupled through the field- 

aligned currents, the large-scale plasma sheet dynamics is strongly regulated by 

the ionosphere. It is necessary to develop a self-consistent quantitative model 

that includes the current system in the ionosphere and the magnetosphere; say, 

the magnetosphere-ionosphere (M-I) coupling model [e.g., Kan and Sun, 1985; 

Watanabe and Sato, 1988]. We also retain the dynamical features of the field- 

aligned current. Thus, the model has to explain not only the field-aligned current 

generation, but also the other large-scale phenomena, during substorms. For exam­

ple, the poleward expansion and the westward travelling surge can be considered

15
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among those large-scale phenomena, and hence, they have to be explained in terms 

of this model. Some of the substorm-related phenomena that can be considered 

small scale may not be explained by this model.

Ideally, we want to simulate both the magnetosphere and the ionosphere at the 

same time and also include the wave propagation between them. However, the 

M-I coupling system is too complicated to be treated without assumptions. There 

have been many simplified large-scale models. Kan et al. [1988] focused on the 

ionospheric dynamics in their substorm model. In this model, the coupling with 

the magnetosphere is taken into account in terms of the Alfven wave and its re­

flection in the magnetosphere. They succeeded in demonstrating the westward 

travelling surge as well as the enhancement of the field-aligned currents during 

substorms. By neglecting either the pressure gradient force or the inertia force, 

some authors were able to treat both the ionosphere and the magnetosphere si­

multaneously. Wolf and Spiro [1985] employed a “convection model” in which 

they numerically simulated the plasma sheet convection. The convection is cal­

culated as a summation of particle drifts for many species. They neglected the 

inertia force of the magnetospheric plasma; i.e., the plasma is essentially massless. 

As the boundary condition, the region 1 field-aligned current is previously given 

in this model. Watanabe and Sato [1988] numerically simulated the evolution of 

the field-aligned current caused by the incompressible magnetospheric convection.

16
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They showed the development of the multiple auroral axes that axe dominant in 

the premidnight side. The pressure gradient is neglected because o f the incom­

pressibility assumption. However, the boundary condition is such that they do 

not consider the situation during substorms. This approach is opposite to that of 

Wolf and Spiro.

Another approach is to focus on the magnetospheric dynamics. The ionospheric 

effect is taken into account in terms of mapping, or simply as the boundary con­

ditions. Magnetospheric dynamics itself has been studied by many authors, even 

though the ionosphere is included simply as the boundary conditions [e.g. Birn 

and Schindler, 1983]. On the other hand, Lotko et al. [1987] mapped the iono­

spheric quantities to the magnetospheric boundary layer in the steady state. They 

also assumed an incompressible plasma in the magnetosphere. In the work pre­

sented here, we take the last approach and also include the full dynamics of the 

magnetosphere; i.e., the inertia force, the pressure gradient force, and the J x B 

force.

Let us consider the interconnection between the ionosphere and the magneto­

sphere. The magnetic field lines are not perfect conductors as idealized in magne- 

tohydrodynamics (MHD), that is, the interconnection is not simple. We assume 

zero transition time for the Alfven wave to travel through the geomagnetic field 

lines. Since the field-aligned currents and the other electromagnetic quantities are

17
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carried by waves, there is a time lag between the ionospheric phenomena and the 

magnetospheric phenomena. This time lag is characterized by the Alfven wave 

transition time, which is considered to be a few minutes in the other M -I coupling 

models by Miura and Sato [1980] and Kan and Kamide [1985]. Miura and Sato 

showed that the finite transition time causes thinning of the aurora arcs through 

the coupling with the ionospheric density wave [Sato, 1978]. Kan and Kamide 

[1985] showed this effect also causes Pi 2 pulsation [Rostoker, 1967; Southwood and 

Stuart, 1980] during substorms. The parallel electric field causes the field-aligned 

potential drop between the ionosphere and the magnetosphere. It is included in 

the models by Lotko et al. [1987] and Harel et al. [1981]. According to the an­

alytical study by Lotko et al., this effect brings dispersion into the M -I coupling 

equations in their boundary layer model. The upward current limit proposed by 

Knight [1973] and Fridman and Lemaire [1980] is employed by Kan and Sun [1985] 

and Watanabe et al. [1986]. In the present work, for simplicity, none of these three 

effects is considered. Instead, the present model includes both the plasma inertia 

and the pressure in the magnetosphere. Thus, we may study the full dynamics of 

the plasma sheet. The mapping relation between the ionosphere and the magneto­

sphere is still an open issue. For example, we do not even know where the region 

1 field-aligned current originates in the magnetosphere; suggestions include the 

magnetopause boundary layer [e.g., Sonnerup, 1980], the plasma sheet boundary

18
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layer [e.g., Frank, 1985], or the central plasma sheet [e.g., Sato and Iijima, 1979]. 

In the present self-consistent model, the night side region 1 field-aligned currents 

map to the height integrated plasma sheet which contains both the central plasma 

sheet and the plasma sheet boundary layer. Thus, the dynamics of the height 

integrated plasma sheet should explain not only the generation of the region 1 

field-aligned current, but also the poleward expansion in the near-earth plasma 

sheet.

There are many models that describe the dynamics of the magnetosphere during 

the substorm. The plasmoid model [Hones et al., 1974], the boundary layer model 

[e.g., Rostoker and Eastman, 1987], and the convection model [Harel et al., 1981] 

are of most interest. All of these models have an enhanced earthward convection. 

We assume this enhanced convection at the substorm onset, which is the same 

initial condition as used in the M -I coupling model by Kan et al. [1988]. We 

formulate the basic equations in chapter 2. Under further simplified assumptions, 

we perform analytical studies for some basic flow patterns in chapters 3 to 5. The 

linear perturbation method is applied to static equilibrium in chapter 4, and to the 

steady state flows in chapter 5. In chapter 6, we specifically study the situation 

right after the substorm onset by a numerical simulation.

19
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C h a p t e r  2 .  Two L a y e r  M o d e l  f o r  M - I  C o u p l i n g  S y s t e m

In this chapter, we formulate the magnetosphere-ionosphere (M-I) coupling sys­

tem to obtain macroscopic basic equations viewed from the plasma sheet side. 

Figure 2-1 shows the three regions composing the M-I coupling system. They 

have different scale lengths along the magnetic field: the thickness of the iono­

sphere is several 100 km, the thickness of the plasma sheet is a few Re (earth 

radii), and the distance between the ionosphere and the plasma sheet is 10 to 15 

Re along the geomagnetic field. Since field-aligned scale lengths axe much smaller 

in the plasma sheet and in the ionosphere compared to those in the magneto­

sphere between them, we simplify this situation into two layers plus an interface 

region. The two layer interface model involves a height-integrated ionosphere, 

a height-integrated plasma sheet, and the magnetosphere between them which 

merely connects the two height-integrated layers through the magnetic field lines. 

There are some cautions we have to consider before the two-layer interface model 

is formulated.

In many studies of the M-I coupling, the ionospheric quantities are height inte­

grated [e.g., Kan et al., 1988; Harel et al., 1981; Jaggi and Wolf, 1973; Hasegawa 

and Sato, 1980]. The formulation for the height integration can be found, for ex­

ample, in Brekke et al. [1974]. The height integration of the plasma sheet is not as 

simple as that for the ionosphere because we have to include the magnetic tension

20
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Morning

Figure 2—1. Two-layer model for the M-I coupling system. 
The magnetosphere and the ionosphere are treated as 2-D  lay­
ers after height integration. The geometry that connects these 
layers is also simplified.
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force caused by the bending of the geomagnetic field. We have another problem 

in selecting the basic equations. In the M-I coupling, the ionospheric Ohm’s law 

provides a relation between the electric current and the convection electric field. 

Therefore, if we employ the normal MHD Ohm’s law in the magnetosphere, that 

over-determines the current density. If we do not employ the normal MHD Ohm’s 

law, we may not employ the x , y components of the induction equation, and hence, 

the 2 component of convection (u z). Since u t is not determined in the height- 

integrated equations, this omission is rational as long as we can assume uz <C ux,y 

as is observed [Parks et al., 1984] where ur y is the convection parallel to the 

equatorial plane. Note that this dilemma of over-determination arises because we 

use a height-integrated equation for the plasma sheet.

We treat the magnetosphere in between as the inertia-free interface. That means 

we assume zero density there, and hence, zero transition time through this layer. 

In fact, the density of this layer is much less than that in the plasma sheet [Parks 

et al., 1979]. In this sense, this region exists just to connect the plasma sheet and 

the ionosphere instantaneously. However, this region still acts as an active region 

when plasma sheet thinning or poleward expansion is concerned. Even though the 

plasma density in this region is much lower than that in the plasma sheet so that 

we may neglect its plasma motion in the x, y plane, it still works as the source 

or sink of plasma because the area across which the thinning plasma flows is very 

large. In this way, we may not neglect its finite density effect if and only if we
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consider the mass transfer across the top boundary of the plasma sheet. Therefore, 

we leave the plasma density unknown (but very small) and this effect is treated 

by specifying the mass transfer across the top boundary of the plasma sheet as 

a given parameter. In all other places, the plasma density outside o f the plasma 

sheet is neglected.

The same approximation can be applied to the plasma pressure. However, since 

it is multiplied by temperature which is lower in the lobe than in the plasma sheet, 

we sometimes assume the pressure transfer equal to zero while there is finite mass 

transfer.

2 - 1 .  H e i g h t - I n t e g r a t e d  E q u a t i o n s  f o r  t h e  P l a s m a  S h e e t

Let us start with the plasma sheet. In order to height-integrate the plasma sheet 

where the magnetic field is not straight, we assume:

23

(a)

(b)

(c)

(d)

(e)

(f)

p(z =  h) <C p ( z - 0) 

P (z  =  h) < ^ P (z = 0 )

i^ i « i ^ f > i
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(g) (J* B x,,) =  C Jz{z =  h)Bx,y(z =  fi)

B , / / i  J*

where h is that height of the plasma sheet outside which the plasma density is 

negligibly small, L is the characteristic length in the (r , y ) direction, the quantities 

with the bracket are the height averaged values, e.g., (ux,») =  f  ux,ydz/h, etc., 

and a factor £ < 1 is assumed to be constant. These assumptions come from the 

plasma sheet property observed by satellite [e.g., Parks et al., 1979; Huang, 1987] 

Figure 2-2 illustrates some of the plasma sheet properties. The density and 

the pressure are much higher in the plasma sheet than outside of it, and that 

guarantees the rationale of assumptions (a) and (b). Since the geometry and 

quantities are essentially symmetric with respect to the equatorial plane, we may 

have the assumption (f). The north-south component o f the convection is much 

slower than the earthward convection on the plasma sheet, which provides the 

assumption (d).

The rest o f the assumptions comes from the fact that the geomagnetic field is 

essentially the dipole field. The assumption (e) merely states that B z is nearly 

constant in the z direction. This is true for the dipole field if we consider it near 

the equatorial plane. Since Jz oc B z, the assumption (g) is rather general if we 

take B z(z)  as a simple function of 2. This is also true for the dipole field. The 

assumption (h) is not intuitive. Unless Jx y is much larger than Jz (that is the

24
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Figure 2—2. Schematic diagram of the plasma sheet. The 
configuration is symmetric with respect to the equatorial plane 
(center of the figure). The pressure and the density are much 
greater near the equatorial plane than at the boundaries. The 
convection is assumed to be two dimensional as indicated by the 
arrows.
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cause of the change of B~ in the (x ,y )  plane), we can assume that B z is nearly 

uniform. Since the geomagnetic field without any Jx y is dipole, this assumption 

is also reasonable.

The assumption (c) could be invalid when the flow speed in the plasma sheet 

boundary layer is much faster than that in the central plasma sheet. The positive 

velocity shear in the z direction might be an important cause for the field-aligned 

current generation. According to observation [Parks et al., 1984], the assumption 

(c) is not a bad one even though there is a velocity shear in the 2 direction. We 

do not study the effect o f this velocity shear, and hence we exclude it from the 

present model as shown in Figure 2-2.

Since the external force is the ultimate source of the plasma convection and the 

field-aligned current, we first consider the force balance equation in the plasma 

sheet; i.e., the momentum equation. The x ,y  components are

p-Qiu*,y +  p(u -V )u*,s/ +  =  J *,» x Br +  Jz X B ti,  (2 • 1)

With the help of the continuity equation:

^  +  V -(p u ) = 0  (2 - 2)

the above equation can be rewritten as

~0 ^ ( p ' i* x , y )  +  ' y  ^  x , y P  =  J  x , y  x  B z  +  J j  X  B Xiy

t 1

Let us height-integrate this equation in the 2 direction. Taking into consideration 

the north-south symmetry, the integral has to be only for half o f the plasma sheet,

26
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i.e., from  the equatorial plane ((z  =  0)) to  the top o f the plasma sheet ( ( z — h )). In 

general, h depends on x, y and t. In other words, the height-integrated equation 

still keeps all 3-D effects.

r h ( x , y , i )  q

I ~ g j . ( P u x , y ) d z

x -y i ' h ( x , y , t )  q  r h ( x  ,y,1)  q  r h { x , y , t )

+  J  faT.(Pu 'u x,y)dz +  j  -Qz{puz\ix,y)dz +  J  V ZtyPdz

r h ( x , y , t )  i - h ( x , y , t )

— I Jx,j( x B 2̂  +  /  J 2 ^ B j-tydz
Jo Jo

Since

Q rh(x,y,t)
I P^x,ydz

Jo9t . .

rh(x,y,t + 6t) *h(x,y,t)
=  lim — [ p(t +  St)uXjy(t +  6t)dz -  p ( t )uZty(t)dz]

fit—o 6t J 0 J o

 ̂ rh(x,y,t+St)

=  }}mn 77 p(t +  +  8t)dzfit—0 6t Jh(x,y,t)
2 rHx,y,t)

+  lim — [p(t +  6 t )u Xjy(t +  6t) -  p ( t )u x y(t)]dz
fit—o ot J o

=  Km j^[h{x,  y, t +  St) -  h(x, y , t ) ]p ( t ) u z>y(t)

+  J0 f e  +  ~  p(J)u* M )\ dz
dh rH*,y,t) q

~  d t pUx’y +  I

and similarly

4 ^  d  ^  dh rk (x , y , t )^  q

X ' d i i h  puiu- ’ d z= X  d r r * * * + / „  b
) d z
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etc., the height-integrated momentum equation can be rewritten as

$ f   ̂  ̂ d f  d—  pux,ydz +  "^2—  I put\ix^dz -  [p\ix,y( —  h +  uI ,j,-VI ,y/i -  uz)]z=h

+  V x,y j  Pdz — P{z  — h ) V Xiyh 

=  / j ^ x B , * *  j i . y . ' Q x ^ d z

Now, we have to employ assumptions (a) -  (h) in order to perform the integration. 

For example, a factor £ appears through the integration of the last two terms 

because of assumption (g). We obtain

d dV Xi!/[— m +  V XjB-(m V Xj s)] +  m.— V Xy +  m (V X)!/ • V Xiy )V Xi!, +  V XiJ,7r

=  [ T j P U j; ^  +  P V Xi j / !  +  / l £ J X X  B Xi j , ] z = fc - f  I Xiy X  B *

where m =  J pdz, tt =  J Pdz,  V XiJ/ =  f  p\xx^dzj  J pdz ~  u Xjy, I XiJ, =  J 3 x ydz,

and

Tz =  [— h +  u x%y- V Xyyh -  uz}z=h (2 -3 )

is the unit mass transfer across the z—h boundary; e.g., dh/dt >  0 or u z <  0 

corresponds to the mass transfer from the tail lobe to the plasma sheet, and vice 

versa. Though Tz is multiplied by p(z — h), which is negligibly small (we assume 

no inertia outside the plasma sheet), this term still remains because the area of 

that boundary is large enough, as is previously discussed. One can consider this 

is just an external source term of the kinetic energy.

28
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The first term of the left-hand side has an integral form of the continuity equa­

tion:
• h(z,y.t) O fh(x,y,i)

29

rhyx.y.t) o

or

+  V T,y{mVx,y) =  Tzp(z =  h) (2 • 4)

where the unit mass transfer across the z—h boundary (Tz) again appears on the 

right-hand side. With the help of this relation, the first term of the momentum 

equation can be rewritten as pi=/lV Ii!/T j and that cancels with the first term of 

the right-hand side. The second term o f the right-hand side of the momentum 

equation is the pressure transfer term across the z =  h boundary. This term is not 

important unless h(x, y, t) varies severely and P(h)  is not much smaller than P (0). 

Therefore, we neglect this term hereafter. The momentum equation becomes

Q
rnd t ^ x'y +  +  V *.i'7r =  x B Xi!,(z =  h) +  I XjV x B x (2 • 5)

Let us consider I XiS and B xy terms; they are related to each other through 

Ampere’s law:

r h ( x , y , t )

=  I 3x,ydz
• = JJo

 ̂ rh(x,y,t) Q

=  V o Z * Jo B x 'V ~  V x » B *>dz

=  —  z x [BXty(z =  h) -  h'VXiyBz] ( 2 -6 )
P o
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With this relation, we have

Q
X y +  rn(V Iiy• y ) V Xiy -(- V Xiy7r

=  I Xi!/ x B z +  h (J z(poIx<y +  hz x S7XtyBz)

~  I Xi9 x B . +  h£fi0Jzl Xty (2 • 5')

where we used the assumption (h) for the last part. The second term on the 

right-hand side is still smaller than the first term according to assumption (h).

Since we may not neglect a drag force on the z—h boundary caused by the 

ionospheric current, which has to be included in the I X)J, x B x term, we examine 

it from the ionospheric view point. For simplicity, let us consider uniform parallel 

flow in the x direction as shown in Figure 2-3. The flow’s energy is dissipated 

because of the ionosphere (ionospheric i — n collision) which is expressed in terms 

of the viscous force. The total drag force at the ionosphere is given as 

—F v ( i ) d x i d y i  =  —  I ,  X B ,d r ,d j / ,

„  , , B z(z = h)
=  —I, x B idxdy------ —-----

Bi

=  X B zdxdy

where dxidyi is the area element in the ionosphere which corresponds to the area 

element dxdy in the plasma sheet through the magnetic flux tube, I, is the iono­

spheric height-integrated current, and B , is the ionospheric magnetic field. If this 

force were conserved along the magnetic flux, the drag force should be stronger

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



than the I IiS, x B  force by a factor o f the geometric difference (~  y/Bi/B). How­

ever, we have to take the energy, not the force, as the conserved quantity on the 

same magnetic flux tube when we consider the effective drag force by the iono­

sphere. Equating the work in the plasma sheet and Joule heating in the ionosphere, 

- F v ■ V XfVdxdy =  ( I idxi) • E {dyt

=  ( I x,ydx) ■ E z,ydy

=  (Iz,y x B 2) • V x y d x d y

or

—F „ =  I X)!, x B z (2 - 7 )

This is consistent with the height-integrated momentum equation (2-6). The minus 

sign for F „ is comes from the fact that the ionospheric neutrals receive this force 

from the M -I coupling current system. As is obvious from the expression of (2-7), 

the idea of the ionospheric ‘drag’ force allows to have the counter part o f the 

ionospheric current in the magnetosphere [Akasofu et al., 1981]. This assumption 

is exactly right for the Pedersen current if we consider the energy budget.

In terms of the height-integrated equation, we may extract the magnetic tension 

force as well as the magnetic pressure force from the J x B  force. These forces 

are not included in the normal 2-D equation or even in the height-integrated 

ionospheric 2-D  equation. The main contribution of the magnetic tension force 

comes from B zB xy  oc I I)9 x B z.

31
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Ionosphere

Fp = - I p  x B*

F*„ = - I „  x B*

F igure 2—3. Transfer o f the I x B force, magnetospheric con­
vection causes the ionospheric electric field (E 1) and currents 
(Ip  and I / / ) .  The I x B  force (=  F*) acts on the ionospheric 
neutrals, and its reaction forces ( - F p  and — F'w) are transmit­
ted to the magnetosphere.
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We have to examine the z component momentum equation which still is effective 

after we assumed u z <C ux y \

3 3 3
^  x , y { p u z u x , y )  +  ~ Q ^ *

— (Jr.jf x B i i9) :

= -  — [ | - B T1> -  V ei,S ,]  • B If,  (2 • 8)
P o  O z

or integrating over z,

Pi t [ B ^
—  f  p u zdz  +  V Xyy- p u zu x,ydz -  T zp u z ( z  =  h) +  [ P  +
a t  J  J  * V o

=  I  V x , y B z ■ B x<y d z
V o  J

With the help of assumptions (d), (e), and (g), this equation is reduced to

- P ( z  =  0) +  g ' ’y (Z = -~- =  r ^ - : — V XiyBz • B x,„(z =  h)
Z p 0 -t +  <, P o

This equation is a condition for h, but not included in the governing equation in 

the present algorithm because this constraint is not very restrictive. In the plasma 

sheet where the plasma is confined in a thin (small h compared to the extent in 

the x , y direction) layer, the above relation is further reduced to:

B l J z l h ) / 2 „ „  =  ° {k)  (2 ' 9)

The z component velocity (uz) can be calculated after h is determined provided 

that unit mass transfer across z—h boundary is given. In this sense, uz is rather 

an assumed quantity.

33
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As we already have the equations for the conservation of the mass and the 

momentum, we need an equation for the energy conservation. The MHD energy 

equation is given as:

+  Uj )] +  v r!3/-[puEij,(—  ■+-1/ /  +  —)] +  ~q z \pu^ ~  +  Ui  +  — )]

=  J x, y E x>y +  JzE z - V - < l  (2-10)

where C// is the internal energy and q is the heat flow [e.g., Nicholson, 1983]. 

Note that both J XtV and Jz are determined as the consequence of the ionospheric 

conductivity which is formulated later. The height integration over z can be 

performed in the same manner as shown above:

J  p{~— b Uj)dz +  V Z)y- J  p\lX y(—  +  Uj)dz +  V  Xfy- ^ P\lX yd,Z 

u2
— [Tzp(~2 b Ui)]z=h — — u2:)]z=/l

— ^ x,y ' E Xyd,Z +  E z J Zdz V j j '  J" q  Xydz \.(.Qx,y'  ̂x,yh 9z)]z=fc

Under the assumptions (a) -  (h) we have 

d ( m V l y m V l

34

"b J  pUidz -b V liS-(V li9 J  pUjdz)

V 2
=  [TxP(~f-  +  Ur)\z=h +  [ P ( V x, y V ttVh -  u: )]2=k -  I Xty  ( V x,y x  B ,)

^x,y' (U2 x B x y^dz -b ^  E ZJZdz Q z

where — J *iz, ydz is the height-integrated heat flow, Q z =  [qIiV-VXiS/i — qz\z-h

is the heat flow across the z —h boundary, and we used E =  —U  x B.
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Let us subtract the kinetic energy from this equation. By multiplying V  x,y to 

the momentum equation (2-5), we have the equation for the kinetic energy

| ( !^ )  +  v ,. ,- (  v „ ^ a )  +  V , , , .

— [ P z p V x ,y  ~b -P V  x , y  ■ V  x . y h  — J 2 • ( V  x ,y X B x,y)]i=:/( — F „ ' V j  s

where we again used equation (2-4). Subtracting the above equation from the

height-integrated energy equation, we obtain the equation for the non-kinetic en­

ergy conservation. Under the assumptions (a) -  (h), it is

7rVX)!/-V Xi!/+  ^  J  pUidz +  V X)j,-(VX)!, J  pUidz)

=  +  Uj)  -  F u z] z=h -  V x,yQx,y  ~  Qz

-  F „ - V XiV -  V x,y- (lx,y X B 2) +  h ( [ J z ■ ( V x,„ X B x ,y ) ] z = h

“b J " x  B x<y) zuzdz J" J 2* ( u Xi  ̂ x  B x^y)dz 

V 2
- [Tzp{  +  Vi) — P u z)z=h — V xyQ x.j — Qz

=  [ T z P ( - Vx’-y^ Uz +  Uj))z=h -  V x,yQ x<9 -  Q z

+  !k I  ~2^dz +  V z ’y' J  ^ Ux^dz ~ J P !TzUzdz

Since Uj =  ( f  /2)P/p u2 where /  is the degree of the freedom of a particle, this 

equation becomes

J  Pdz  +  — V x ,y (V X)!/ j p d z ) +  V x, , Qxiy +  Q z

35
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r_  . u2 f  P  
=  P > ( - y  +  2 - ) ] * - = *

or we have an equation for the height-integrated pressure ( tt):

2 ^  +  2 V *-»'V t ’»T +  "  ^ zP(z  =  h)

=  -  Tz( ^ - ) z=k -  ~  V x y Q z ,  -  Q*

=  -  V ^ -Q * ,,  -  Q* (2 - 11)

For the adiabatic case, we may neglect the right-hand side.

Instead of the above procedure for the energy equation, we may start with the 

equation of state. Let us suppose the system obeys a polytropic relation; i.e.,

=  o

where the adiabatic assumption and isothermal assumption correspond to 7=00 

and 7 = 1, respectively. W ith the help of the continuity equation, this equation 

becomes

^  +  7 P V - u  = ^ P  +  V IlS-(P u Ii#) +  (7 -  l ) P V Iiy.uliy 

=  0
After integration over z under the assumptions (b ), (c) and (d), we obtain

d /* d+  V x,j,-(7rV rij,) =  TzP (z  — h) -  (7 -  l X x V ^ 'V ^ , ,  4- P — u zdz)

=  TzP (z  =  h) -  (7 -  l ) 7r VXt9- V I)y (2 ■ 11')

This is identical to the height-integrated energy equation (2-11), if we take 7 =  

( /  +  2) / /  and we neglect the right-hand side of (2-11).

36
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Next, we obtain the equations for B z, B z y , Ix,s, and Jz. The plasma sheet 

current can be divided into two:

1. , ^ 1^ + l i , ,  (2 - 12)

where I x is the part which gives the ionospheric current into the magnetospheric 

equations through the J X B  drag force, and is the rest o f it. The first part 

(we call it the ‘ ionospheric part’ ) is defined as follows: we divide the magnetic flux 

into small tubes (see Figure 2-4) and consider the force that the closed current 

within the small tube contributes to the plasma sheet dynamics; in this way, we 

can identify the part of the plasma sheet current that is related to the ionospheric 

drag force on each flux tube. Therefore, the ionospheric part of the plasma sheet 

current [Akasofu et al., 1981] is defined as

I ^ -d s  =  - h - d s i  (2-13)

where d s ,  is the mapping image of ds through the geomagnetic field. The rest 

of the plasma sheet current (I™j,) is referred to as the ‘magnetospheric part’ of 

the plasma sheet current. Since all divergence of I XJ/ has to be related to the 

ionospheric current through the field-aligned current, the magnetospheric part of 

the plasma sheet current has to be divergence free:

v  .Tm — n v I,SI J-x,!/ — u

Now, we further divide the magnetospheric part into a closed one and an open 

one. The open system is given as the boundary condition, and the closed one is

37
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the system that develops inside the magnetosphere; e.g., it is a toroidal current 

system that closes inside the plasma sheet.

i Z ,  =  K , t  +  r . , t (2 - i 2')

This notation is useful if the outside of the region which we consider is kept 

steady (or we consider the region where the time dependence is more important 

than elsewhere). In this case, 1° is constant, the boundary value of I ‘ is given in 

terms of I, and is constant too, and only I c is difficult to specify. If I c is given 

externally, we may calculate I rj / .

Once we can specify I i ,y, we can use the expression (2-5’ ) instead of (2-5) for 

the momentum equation. Therefore, we do not have to obtain B I(S. Otherwise, 

we have to go through the following procedure to obtain B r v first. According to 

Ampere’s law (e.g., equation (2-6)), B Xjy is mainly determined by J X)!,

Q
2 ^ ( 5  X B x<y) Z X  ^  z ^ y B z =  fl oJx,y

However, its variation in the x , y  direction is caused by Jz because of the current 

continuity under the quasi-neutrality. The value of B Iy  itself is a consequence of 

the x, y variation added to the i  or y boundary value which represents the current 

system outside of that boundary. Thus, we just have to specify the x ,y  variation

38
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Geomagnetic Field

Figure 2—4. Closure of the magnetospheric current. The 
magnetospheric part o f the plasma sheet current ( I m) is de­
fined as I — I ', where I 1 x B is exactly the same as — F ' which 
is shown in Figure 2-3. I m is further divided into a closed part 
( Ic) and an open part (1°).
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completely; i.e., the divergence and the rotation of

d
V x,y-B x,y(z =  h) =  - — B z(z =  h) (2 • 14a)

X B x,y) =  1^0^ x,y’ ̂  x,y ^  xyy'{z X
C/Z

=  ~Tz^ qJz^

or V IiW-(f x B x,y)z=h =  —^oJz (^ -h )  (2-146)

where we used the current continuity equation dJz/dz =  — V I)# • Jx,y. From these 

equations, B I J( can be expressed as

— =  z  X ^ x ,y  x , y ( z  X B Xjy)]* =  /, +  • B Ity] 2=fc

Q
=  /X0f  X V  x,yJz(z =  h) -  V I|S— B z(z =  h)

— /J-oz x V x,yJz(z — h) +  V I J((V I;j,■BI;J() 2=ft (2 • 15)

This method is very clumsy. Furthermore, we still have the problem of specifying 

the boundary conditions. Therefore, we use I r y instead of B r y.

Let us obtain the equations for B z. The induction equation is used to determine 

B z .

~ ^x*y X (u *

=  ^X ,y  ' ( B  Z ^ x , y  ) 4“ ^  x , y  ' ( ^ z B i , y )

=  —^x,y  ' ( B zV Xty) (2 • 16)

where we used u z -C ux y. The x, y components of the induction equation are 

not used because they are strongly related to uz (for the motion of the flux). The
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small quantity u£ is not determined self-consistently, and should not affect the 

result. It is a quantity to be assumed in the height-integrated equations, instead. 

Thus, B x and B y axe to be solved (through Jz as was previously shown) by the 

current continuity equation of the M-I coupling system, i.e., in the ionosphere.

So far we have a set o f the equations (2-4), (2-5’ ), (2-11), (2-12), and (2-16) in 

the plasma sheet. In order to complete these equations, we have to relate J2 or I, 

to E x y =  —V x y B z x z by taking the ionosphere into account. Note that if the 

plasma sheet is treated fully three dimensionally, the constraint associated with 

the z component quantities, e.g., (2-8), becomes one of the boundary conditions 

at z h.

2 - 2 .  I o n o s p h e r i c  L o a d i n g  E f f e c t

As previously discussed, we employ the ionospheric Ohm’s law in order to pro­

vide current-electric relation. The height-integrated ionospheric current I , is ex­

pressed as [Brekke et al., 1974]

J-i =  LpEj x —

where E'p and are the height-integrated Pedersen conductivity and the Hall 

conductivity in the ionosphere, = — V j$ ; +  V n X Bi is the ionospheric

electric field, and <3>, is the ionospheric electric potential. The electric field is mea­

sured on a reference frame co-moving with the ionospheric neutral wind (velocity

41
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V „ )  which is driven mainly by the i -n  collisions [Sonnerup, 1980]. Although the 

response time of V n is comparable to the scale time of the magnetospheric con-

42

Viection, we simply assume V „  =  (1 — 77*)(—V t$i )  x B i/B{ where 0 <  77* <  1 is a

constant factor. With this assumption, the above equation is rewritten as

I, =  - S p V . ^  +  E tfV ,* , x (2-17)
-Di

where Ep =  77*Sp and E #  =  t)*T,'h are the effective conductivities.

Divergence of this ionospheric current becomes the field-aligned current. Let us 

assume no leakage of the field-aligned currents between the magnetosphere and 

the ionosphere [e.g., Lotko et al., 1987; Harel et al., 1981]. The current continuity 

condition requires (Jz/Bz) z=h =  (J\\/B)z=h =  — (J\\/B){ — —(Jz/B)i and

Jz(z =  h)dxdy =  —(Jz)idxidyi 

=  +Vi-Iidxidyi

where B 2(z =  h)dxdy — B tdxidyi, subscript ‘i ’ denotes the quantities in the iono­

sphere, and both ( x , y , B Z/Bz) and (£,,  y z, ~Qi/Bi) are determined as the right- 

hand coordinate systems. Using the Jacobian:

d(xi,yi)  B z(z =  h)
d (x ,y ) Bi

the above relation is expressed as

(2-18)

J,(z  =  h ) =  (2-19)
0 (x ,y )  '
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With the help of equation (2-13), we can specify all components of the current in 

the plasma sheet in terms of the ionospheric current.

Substituting (2-17) into (2-19), we have

Jz(z =  h) =  (S PV ,$ ,)
d (x ,y )

+  d ( x „ yi ) B . (V j S H x V ' 4j)]
o ( x , y )  Bi

Meanwhile, equations (2-13) and (2-17) give a relation between 1̂ . y and 4>1.

If the mapping between the ionosphere and the plasma sheet is conformal (pre­

serving angles) as is exactly the case when the geomagnetic field is the dipole field, 

equation (2-13) becomes

< * ■ » » )

when combined with (2-17),

T , _  dyi „ dy± d$i Bi
** dy p X ,dXi dy ^ d y ^  B {

dxi  ̂ d$ i  dxi d$i .  B ;
+  a T S p V i -  a T ^ ‘ aT ?  x %  ( 2  ' 2 2 )

where both (x ,y )  and (:rt, y,) are assumed to be orthogonal systems.

2 - 3 .  M a p p i n g  b e t w e e n  t h e  I o n o s p h e r e  a n d  t h e  P l a s m a  S h e e t
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Along the magnetic field, provided that the mapping is specified, we may relate 

and <£m, where is obtained as:

^ X,ŷ m = —

=  V x,„ - ( V x,yBz x z) ( 2 -23)

Though some authors assume oc Jy [Lotko et al., 1987; Watanabe et al.,

1986; Harel et al., 1981], we assume for simplicity because our viewpoint

is more on the plasma sheet. We have another expression for the potential electric

field; i.e., the potential field is given as the total field minus the solenoidal field

Et =  \7X y >̂ x z. Once is solved as:

v l , *  = * E‘)

=  V X>!/-(S X E Xjy)

=  —^x,g'(Vx>yBz) (2 • 24)

this ^  can determine the potential electric field as:

- V E,S$ =  E riy(z =  h) -  Et

=  z x ( V x<yB z +  V x,ytf) (2-25)

This expression is useful especially when B z is time independent as equation (2-16) 

guarantees =  0 in this case.

44
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Now, we have to specify the mapping of the electric potential through the mag­

netic field. The potential field does not change the mapping points; hence, we 

have only to consider the temporal change of the magnetic field configuration by 

E< through <9B jdt.  Since the solenoidal field is usually smaller than the potential 

field (think about a steady state when the mapping points do not change at all), 

we usually neglect this effect in the analytical study later.

The motion of the foot point is described by the drift velocity related only to 

the solenoidal electric field [Wolf and Spire, 1985]. Let (x , y ) z-h  be the mapping 

point o f (X{, yi) at time t. At t +  8t, the mapping point moves as:

x(t +  6t)z=h =  x(t)z=h +  Ux8t 

y(t +  6t)z=h =  y { t ) z=h +  Uy6t

QTT
dx(t +  8t)z=k =  (1 +  ~g^8t)dx(t)z=h

A r r

dy(t +  6i)z-h  =  (1 +  -^ - 8 t ) d y ( t ) z=h (2 • 26)
d y

where U X)J, is the drift velocity related to the solenoidal electric field:

E t x B 
?2

V x,s$  x B z

45

U x,y -  B2

= V X,y +
B 2

Note that U Xi!/ =  0 in the steady state.
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Inclusion of (2-26) enables us to study the field-aligned current generation that 

is cause by the temporal change of the geomagnetic field. Otherwise, however, we 

may neglect this effect and we assume the mapping relation is time independent.

2 - 4 .  A  S i m p l i f i e d  M a p p i n g  M o d e l

In the above (rather strict) formulation, Jz(z =  h) is obtained by solving the cur­

rent continuity equation in the ionosphere. This procedure is inevitable if a global 

model is considered by using rather realistic model magnetic fields for mapping 

between the ionosphere and the magnetosphere. However, we may remove this 

geometrical complication if we axe to extract some essential physical processes of 

the M-I coupling system. For example, when the mapping is conformal (preserves 

angles), we may ‘map’ the ionospheric Ohm’s law to the magnetosphere as a whole 

equation if we use “mapped” ionospheric conductivity to the magnetosphere.

Figure 2-5 shows area elements in the ionosphere and corresponding axea ele­

ments in the magnetosphere. Figure 2-5a (left) shows a general case, and 2-56 

(right) shows a simplified conformal case. Unless we consider the cases when the 

complicated mapping geometry is important in generating the field-aligned cur­

rents, we simplify the mapping to be conformal as is given as (2-21); i.e., dxi/dy 

=  0, dyi/dx =  0, and

dxi =  £x(x ,y , t )dx

46
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dyi =  £y(x,y. t)dy  (2 -2 8 )

where the mapping factors £x, £v are assumed to be uniform for the same reason.

These factors are subject to change as time proceeds because of the plasma 

convection in the magnetosphere. Thus, we finally have

Qx $*, Qy Sv)

-  ^ x d x [B 2 9 x i ,^ d y [B 2 9 y i} [~ }

As discussed above, we do not use this equation in the most of the study and 

set £ constant unless we specifically study the effect of the geometrical change on 

the generation of the field-aligned current. With these factors, we have d [ d x l =  

(dx/dxi)d[dx  =  ( l /£ x)d /3 x , etc., and the Jacobian (2-18) is expressed also as

d(xj ,y j )  
d (x ,y )  ^ y

Under this simple mapping relation, the ionospheric current and the magneto­

spheric convection have more direct relationship as shown below.

Let us restrict consideration to the $ , = $ m case. The current continuity equa­

tion (2-20) becomes

9  9Q 9  5 $  dH is 9 $  911 w 5 $
M ' - V  =  +  ^ ( S p g j ) !  +  t e . l - s 2 W t  -  f ^ l

=  . , a s (» 13 *  _  d s ^ d i
£x 9x p 9x  £y dy p dy 9x dy dy 9x
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F igure 2—5. Mapping relations. Between the ionosphere and 
the magnetosphere, (a) a conformal mapping is assumed in the 
present model, which is simplified from (b) the complicated real 
mapping.
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where E(rTd is the ionospheric height-integrated conductivity mapped to the plasma 

sheet, and we used B i/Bi =  B Z/BZ =  z. The first two terms axe related to the 

divergence of the Pedersen current, while the last term is related to the inhomo­

geneity of the Hall conductivity. Let us take x, northward (take x tailward) in 

which direction the convection is flowing. Since is normally smaller than 

( < 1), the first bracket is usually larger than the second bracket. The last term 

could be important in generating the field-aligned current when the flow experi­

ences the gradient of Eh- Note that the time dependence of the mapping relation 

also reflects the mapped values of the ionospheric conductivities.

The ionospheric part of the magnetospheric current (2-22) becomes

+  +  s h ’ ( f j -  +  'V 5- ®  <2 ' 31 >

E\en though the energy dissipation should come only from the Pedersen current, 

we still have the contribution from the Hall conductivity in (2-31).
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In both (2-30) and (2-31), the geometrical difference between the coupled iono­

sphere and the magnetosphere is condensed into £, and all the ionospheric quanti­

ties are expressed in terms of the mapped quantities. In this way, we have a simple

2-D equation set for the M-I coupling system. One can easily see that (2-30) and 

(2-31) satisfies

U z  =  h) =  - V Xty. I ’ ,9 (2 -3 2 )

50

and hence it is consistent with V IiS-I™y =  0 too.

2 -5 . S u m m a r y  o f  t h e  B a s i c  E q u a t i o n s

As shown above, we have obtained basic equations for the height-integrated 

plasma sheet which is coupled with the ionosphere.

m — V I)S, =  » )V XiJ/ — V x^ tt

I = 1* + I mXx,y ~  x x,y T- Ax,y
Q

— m =  - V Xty { m \  Xty) +  Tzp(z =  h)

(2 -5 ')

(2 - 12)

(2 -4 )

or

—  7T =  -Vx,j,-(7rVx,j,) +  TzP (z  =  h) -  (7 -  l)7rVx,j/ -Vx,j( (2 ■ 11') 
Q

~0lBz =  ~ ^ x , y { B zW x y) (2 • 16)

d x  s «  d y ’  + i ( y  p  d y +  E "  d x ’ y  

=  +  E<»
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+  [ - i i s (pm)( | |  +  VXB Z) +  S (t f +  VyB z)\y (2 • 31)

v 21>y$  -  [VXi,  X ( V x,yB x)]x (2-23)

or V l <y*  =  - V x,y( V x,yB 2) (2-24)

J*U =  /i) =  - V x^ l i i,  (2-32)

= > + [ y s «  ’ x v * J -

-  =  + v ' B - » + + v *B - »

-  V , ,yS (Hm) • (■V x,yB z +  V x,y * )  (2 • 30)

V7 ,T m  —  0v x,y*-T,y ~  u

where Eh is positive, and Tz (unit mass transfer across z=h  boundary as defined 

in (2-3)) is to be given externally so that the plasma sheet thinning or expansion 

near the plasmapause can be included as well as the compression by the equa­

torial convection. The magnetospheric part of current I™y is given as the initial 

conditions. The height of the plasma sheet h has to satisfy

*  = 0 ( h )  (2-9)

51

B l y(z =  h)/2fi0

after the end of the calculation. Unless we stress the effect of the geometrical 

change on the field-aligned current generation, we assume £ constant, and we do 

not employ equation (2-29), which is

c \ — re c (2 -29)
d t t t* ’ S v ) - U * d x lB 2 d x l ' t * d y lB 2 dyl )  ^  **)

Note that ^  =  0 for the steady state.
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C h a p t e r  3. St e a d y -St a t e  So l u t io n s

Based on the two layer model summarized in section 2-5, we obtain steady-state 

analytical solutions under simplified assumptions. These solutions can be used as 

the initial configurations for the simulation as well as the O’th order configuration 

for the linear perturbation analysis. Since more complicated (e.g., time dependent, 

etc.) solutions will be studied in terms of the linear analysis or the numerical 

simulation, we concentrate on simple situations.

Four types of flows are presented in this chapter. They are: 1. static equilibrium 

(V Ii5, =  0); 2. incompressible parallel flow in the x direction; S. compressible 

parallel 1-D (d/dy =  0) flow in the x direction; 4- incompressible circular flow (Vr =  

0, and d/d(f> =  0). We do not add any complicated r , y dependence on these flows. 

The common assumptions for these flows are: 1. d/dt =  0 (steady-state flow) ; 2. 

Tz =  0 (no thinning nor expansion of the plasma sheet); S. S #  oc S p  =  uniform  

(uniform conductivities); 4■ £z/£y =  uniform  (uniform mapping); and 5. Jz =  0 

(no field-aligned current). As a direct consequence of the steady-state assumption, 

we have =  0 according to equations (2-16) and (2-24) o f chapter 2.

To begin with, let us express the electric currents in terms of the convection 

velocity and the pressure. The momentum equation provides an expression for 

total plasma sheet current ( I r,y) in terms of the height averaged velocity ( V x y), 

the height integrated density (?n), and the height integrated pressure ( i t ) .  The

52
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ionospheric part (IXi!,) is also expressed directly in terms of "Vx,9 and 7r (we now 

have ^  =  0) through the ionospheric Ohm’s law. Therefore, we may also determine 

the magnetospheric part (I™y) by subtracting these two.

lx,j/ — X "4"

rx =  f -VpVyB;  + s  n vxB z 

i t  — —^ T ,p V xB z +  T,h VvB z

Im
x , V ~I\r  ,Sl

(3 -1 )

(3 -2 )

(3 -3 )

(3 -4 )

Thus, we can obtain the driving force I™y x B z from the assumed values of V I J( 

and 7r, even though \™y is a quantity that is given externally. This force maintains 

the convention flowing against the ionospheric drag force.

The other basic equations of section 2-5 provide the conditions that the con­

vection has to obev.

^  x, y(m V  x,y) — 0

=  — (7 — l ) 7r̂ 7x,»-V i , j

V x , y ( B z V x ,y )  =  0

ex d

v7 t rn   ^ x,yVx -\ d rm V X y • V r j/Vy
d y [ B z 1 d x [ B z

(3 -5 )

(3 -6 )

(3 -7 )

(3 -8 )
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Once the convection velocity satisfies these equations, all the forces axe cancelled, 

so that the djdt  term becomes zero even if we did not assume the steady-state.

3 - 1 .  S t a t i c  E q u i l i b r i u m  w i t h o u t  F l o w

We first assume V r j/ =  0. The ionospheric part of the basic equations provides 

J. — 0 ,  which is consistent with this assumption. The basic equations and a 

condition of £ component momentum balance become:

=  § f X V l,s '7r (3 -1 0 )

V XtyZ?2 x V r ,y7r =  0 ( 3  11)

- P ( z  =  0 )  +  ± B l , { z  =  h) =  - B x,y(z =  h) (3 • 12)

The pressure distribution in the 2 direction is, in general, not uniform. This fact 

reflects the bending of the geomagnetic field. The degree of the non-uniformity 

in the 2 direction is condensed into the factor (  in equation (2-5’ ) o f the previous 

chapter. For example, the least bending case of a dipole field is achieved when 

dP/dz =  0 , which is represented by (  =  1 as shown below. Let us take the origin
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of the Cartesian coordinate at the center of a dipole moment a — az. The magnetic 

field is expressed as

B z,y =  ^Y-(x ,y )  (3-13)r°

B z =  ^ (  1 - 3 4 )  ( 3 - U )r r l
1 ~2

55

or ^ x ,y B z — —(1 — 5 2 )B X y 2 rz

where r is the distance from the origin. As the expression (3-13) shows, £ has to 

be unity. If we neglect 22/ r 2 -C 1, which is good approximation near the plasma 

sheet, we have

B i.j  — x,yBz

or B x,y2(z =  h) =  ± _ Vx yBz , B x,y(z =  h) (3 -1 5 )
Z/i0 Z/Xo

This equation is identical to (3-12). On the other hand, since there is no pressure 

gradient and there is no current in the dipole field, equations (3-10) and (3-11) 

are automatically satisfied. Thus, the two layer interface model includes the case 

of the dipole magnetic field if we neglect h2/ r 2 «C 1. This is the degree of the 

approximation for the basic equations.

3 -2 . I n c o m p r e s s i b l e  P a r a l l e l  F l o w
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Suppose there is an uniform flow which satisfies Vy =  0 and Vx =  V(y )  as shown 

in Figure 3 -la . In this incompressible situation, equations (3-5) -  (3-7) require 

that ?/7, 7T. and B z 0) are also constant along the stream line (in the x direction). 

Therefore, condition (3-9) is automatically satisfied.

The equations for the electric current (3-1) -  (3-4) are simplified to

56

_ 1 dir 
13. dyI x , y  ~  - X  —  —  ( 3 ‘ 16)

rx =  'LHV B z (3 -1 7 )

I ' = - ^ Z PV B z (3 -1 8 )

(3 -1 9 )

and the condition for the self-consistency (3-8) is rewritten as

—  ( V B Z) =  0 (3 -2 0 )
oy

Even though there is no field-aligned current, the ionosphere still consumes the 

energy through Joule heating. It causes an effective drag force working on the

plasma sheet, as discussed in section 2-1. The driving force maintaining the

steady-state convection is the J x B  force supported by the magnetospheric part 

of the plasma sheet current which is externally provided. This J x B  force 

is a different expression of the magnetic tension force B zH x y as discussed in the 

previous chapter (see the explanation for equation (2-7)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

(<*)

flow

(&)

(c)

Figure 3—1. Simple flow patterns without field-aligned cur­
rents. (a) A shear flow where B ZVX is constant in the y direc­
tion; (b) A 1-D compressible flow; and (c) A circular flow where 
r B : V0 is constant in the r direction.
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The present situation is achieved if the J x B  force drives the flow in the x 

direction, while the plasma pressure adjusts its direction so that the ionospheric 

Hall current does not alter the flow direction. The field-aligned current generation 

by the shear flow can be studied in terms of the perturbation method from the 

uniform convection of the O’th order. In this case, B z is also uniform, and hence, 

the ionospheric drag force is uniform too.

3 -3 . C O M P R E S S IO N A L  1-D P A R A L L E L  F L O W

For simplicity, the compressional flow is considered to be one dimensional as 

shown in Figure 3-16. We assume Vy =  0, Vx =  V^-r) and 7r =  7r(x), and the 

rest of the 1-D conditions ( B z =  B z( x ) and m =  m(x))  are obtained from the

above assumptions through the conditions (3-8) and (3-9). This situation is also

applicable to finite amplitude 1-D waves. The equations for the electric current 

(3-1) -  (3-4) are simplified to

Ix '* =  ^ ^ m y2 +  7r) ( 3 - 21)

IT  =

=  - ' Z HV B z (3 -22 )

4  =  (3 -23 )
Sy

I T =  I y - I ' y  (3 -24 )

58
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and the conditions (3-5) -  (3-7) for the self-consistency of the flow become

=  0
Ox

or V oc — (3 • 25)
m

— (In7r +  7 lnV) =  0 
ox

or n oc m 7 (3 ■ 26)

or B z oc m (3 • 27)

With the help of (3-25) and (3-26), the gradient of the total kinetic pressure 

m V 2 +  7r is expressed in terms of the density gradient:

3 ,  „ 2 ,   ̂ 2 t  r 2 5 , 1 ,  , 77T dm+  7r) =  m V - « - (  — ) H------ -x—o r  ox  m m Ox

=  ( - V *  +  C j ) £

where C% =  (3 • 28)

Therefore, (3-21) is rewritten as

^  =  (3 .2 9 )

This equation indicates that the total current direction in the plasma sheet depends 

on the direction of the density gradient as long as the convection is subsonic. Thus, 

the plasma sheet current can flow in both the + y  and —y directions.

59
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Equations (3-21) -  (3-27) represent several situations. If the pressure gradient is 

the primary force that drives the flow in the x direction, the other quantities are 

determined from it according to (3-21) -  (3-27). In this case, the ionospheric Hall 

current drags the plasma in the y direction. This drag force has to be cancelled 

by I ”  x  B j so that straight flow is maintained. Thus, the external quantity I™ 

is determined from the assumed pressure. If the pressure is rather determined 

self consistently (e.g., waves), we may still calculate the other quantities from the 

pressure and vice versa.

Conditions (3-26) and (3-27) are sometimes extended to more general situations 

when we use the analytical method. We assume these extensions for the O’ th order 

quantities when we perform the linear analysis.

3 - 4 .  I n c o m p r e s s i b l e  C i r c u l a r  F l o w

In this section, we show a solution of the flow with curvature and with no field- 

aligned current. The flow does not have to be a circular one. We study the portion 

in which the flow speed is constant along the curving stream line as shown in Figure

3-1 c. Let us assume that Vr — 0 and (=  V)  are constant along the stream line. 

This situation is essentially the same as parallel flow except centripetal force is 

added. We keep the dn/d(j> term so that it can represent viscous-like stress force.

60
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We again have constant m, 7r, and B z along the stream line according to (3-5) 

(3-7). With the help of the general relations

d
d<j)

r =  <f>

d X -

the equations for the electric currents axe rewritten as

1 &TT
Ir = r B z d<f>

m V 2 1 dn
r B z B z dr

I'r =  ^ E  PV B Z 
Kr

/ ;  =  y,h v b z 

( j™ ,/^ )  =  ( / r,j^ )  - ( / * , / ; )

where the centripetal force in (3-31) comes from the convection term:

.V’ 2
( y  x,y' V X)J()V Iiy =

The conditions for the self-consistency (3-8) and (3-9) are rewritten as

Q-r ( r V B z) =  0

d B z dn
=  0

(3 • 30) 

(3 -3 1 ) 

(3 • 32) 

(3 • 33)

(3 • 34) 

(3 • 35)
dr d<j>

If there exists Kelvin-Helmholtz type drag force [Axford and Hines, 1961] repre­

sented by dx/dcf), the last condition requires that B z should be uniform. Oth­

erwise, the last condition is automatically satisfied. Nonzero V  causes nonzero
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Jr =  Jr(r) through nonzero B$. In this case, we need a driven force different 

from the viscous-like stress force {dir/dcp term). There is a singular point of Jz 

at the center of the circular flow, if the convection flows in a closed circle. As we 

take V(r  —» 0) —► 0, no flow can satisfy condition (3-34); i.e., there should be the 

field-aligned current at the center of the vortex. A further study is given later in 

terms of the linear analysis and the numerical simulation.

62
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C h a p t e r  4 .  L i n e a r  A n a l y s i s  o f  t h e  F i e l d - A l i g n e d  C u r r e n t : 1 

—  P e r t u r b a t i o n  f r o m  S t a t i c  E q u i l i b r i u m  —

Once we have the zero-order configuration, we may apply the linear perturbation 

method. This method is commonly used to study the waves [e.g., Southwood and 

Stuart 1980], but not for the plasma sheet dynamics. All variables are divided into 

the zero-order quantities and the 1st order quantities; e.g., m +  k ,  V  +  6V , etc.. 

The second order terms are neglected from the equations. Since zero-order Jz is 

set as zero, the field-aligned current is the perturbed quantity (=8J Z). We express 

the field-aligned current in terms of the the other perturbed quantities. We also 

study the temporal development (or relaxation) of a given initial perturbation to 

a steady state, its relaxation time, and the field-aligned current generation during 

these processes. Even though the basic equations are nonlinear, the linear analysis 

is still useful because it diagnoses the behavior o f the nonlinear solutions that are 

to be obtained in terms of the numerical simulation.

The zero-order configurations are taken from the previous section. There are 

several assumptions for these steady state configurations. Here, we further simplify 

the zero-order configuration. Those assumptions are: 1. d/dt =  0; 2. Tz =  0; 3. 

E a  oc Up] 4- Jz =  0; 5. £x =  £y; 6. n oc m 7; and 7. B~ oc m. The first four 

assumptions are the same as in the previous chapter. The last two assumptions 

have been explained in section 3-3: they replace the equation of the state and the
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£ component induction equation self-consistently. Both assumptions axe not valid 

if the Tz terms are not zero. The assumption for £ is a special case of £x oc £y.

64

That assumption provides £ =  y/Bz/Bt.

The zero-order steady-state equations without the field-aligned currents are even 

more simple than in the previous chapter:

r« — VLx ~  ^ PB zVy +  E h B zVx

I'y =  —T,PB ZVX +  E HB zVy

Tm — T — T* 4- A x,j /  A x ,y  '

V j ,s'(m V  x y ) =  0

-  0

(4 -1 )

(4 -2 )

(4 -3 )

(4 -4 )

(4 -5 )

(4 -6 )

Equation (4-3) provides a relation

—  rn.Vx,y■ Efy y( ) 
m (4 -3 ')

for an arbitrary function A. The function A can be either the zero-order quantity 

(e.g., 7r, m) or the first order quantity (e.g., Stt, 6m, or 6BZ).

To derive the first order equations, it is necessary to make some assumptions 

for the first order quantities too. We totally neglect Tz terms for simplicity. That
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guarantees the consistency of the assumptions of n oc m 7 and B z oc m. We 

also neglect 6£, and hence, neglect the temporal change of the mapping points 

(expressed by (2-29) in section 2-5). Since we concentrate on the internal dynamics 

of the system rather than the response of complicated external conditions, we 

assume that the external driving force is constant in time. Therefore, is

constant.

W ith the help of (4-31), the first order equations are given as

Q

m ~ d t ^ x 'y ~  — — V r)j,<57r

+  6Ii,y x B z +  Ix,y x 6B Z +  h( f̂i()SJilx,y (4 • 7)

61,., =  6I ‘, if +  61™y (4 ■ 8)

x  a: ,y ) ^  x , y x , y )

=  - m V , ) .V , iI( h )  -  (4 . 9)
Q

=  ^ x , y  ' ^ x , y  fc'R 6 V Z iy • V r  5y 7T ' y S ' i r W Xty ■ V x  y  q 7r V X)y 6 V X y

65

($7T
— ^ z ^ x , y '^ x , y {^ - f )  *^x,y • V rij,7T T ^ ^ x .y 'W j^

=  _ B 7 V , ,y V , ,y (| ^ )  -  ^ - W x,yi B z6 V x,y) (4 • 10)
A

- 6 5 ,  =  - V ^ ^ B . V ^ )  -  V x,y-(Bz6 V Xty)

=  - B : V I ,y V I , y ( ^ )  -  V ,^ ( B s6V , >y) (4 • 11)

« i , y  =  S p V , , / *  +  6'£PB zV x,y x 5

+  E //z  x +  6'EHBzV Xty
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or - E pV x^^ ’L x z +

+  6 {V pB sV t ,y) X  z +  8 (^ HB zV x,y) (4 • 12)

6Js{z =  h) =  - V x,y6VXtV

=  - ' Z p V l J *  -  V l!3/E P -V Xt!/<5$ +  \Bz\ T,y x V IiS<5Ep]z 

+  [V x,„S H x V x,„6*]s -  B zV Ity V X}y6XH (4 • 13)

V*,y6I” v =  0 (4 -1 4 )

£ x V tiV64f =  B-6W x<y +  V x,y6Bz +  V x,,5 *  (4 • 15)

=  V Xt9i B zS V riy x £ +  V x,y6Bz x  z) (4 • 16)

or -  - V Xty-(Bz6 V Ity +  V x,y6Bz) (4 • 17)

where S p  > 0. All of £x, £jo and 6$! disappears from the equation for Jz because

of £x =  iy,

The last term of (4-7) is negligible compared to the previous term if

6BZ h A 
>  ~rC

66

8 B  x ̂ y Bq

is satisfied. Since h <C To and £ ~  10_1 (£ =  1/5 for the hyperbolic geomagnetic 

field in the plasma sheet), the above inequality is normally satisfied unless 8B Z — 

0. Therefore, we neglect the last term in (4-7) as an additional assumption.

Since (4-16) and (4-17) are related to 5 .^ V XiJ/ rather than <5VXiS, itself, we 

rewrite (4-7) in terms of B Z8~Vx%y. With the help of the above assumption, (4-7)
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becomes

67

=  f - § L -  h w v ^ ' V . j l v , ,

m ( 8 V  j^ y  ■ V X !y ) V a; !j/ 772 ( V  j; ; y ’ V  X ; y )  6 V  X > y

6B
- V X'y6 n + — L\7Xty7r +  B z6IX' y X z  (4 -1 8 )

where

^ I . y 1  —  V x , y B z (4 • 19)

All the above equations are used through chapters 4 and 5.

In this chapter, we take V r j , =  0 for the zero order: we study the perturbation 

from the static equilibrium that we studied in 3-1. The nonzero V I;j, cases are 

studied in chapter 5. The zero-order equations (4-1) -  (4-6) are reduced to

l T,y =  x V x,y7r (4 -2 0 )

which corresponds to equation (4-10) o f section 3-1. Equation (4-11) of section

3-1 is automatically satisfied because we have assumed 7r oc m oc B z.

Before we write down the first order perturbed equations, let us introduce D  

and R  as the divergence and the rotation of B.S'Vx y\ i.e.,

D =  V x,y- (Bz6 V X} y) (4 -2 1 )

R  =  V I ,y-(B-<5VI)y x z)  (4 • 22)
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These quantities are directly related to the potentials 6$ and <5'5:

V 2X, / *  =  R (4 • 23) 

(4 • 24)

Spatial derivatives of B zt5Vx,y can be rewritten through (4-21) and (4-22). The 

other B Z8 V T<y terms can be rewritten through (4-15): Rewriting the linearized 

perturbed equations (4-8) -  (4-18) in terms of D , R , <!>$, and tf'Jf when there is no 

zero-order convection, we find

B z dt
SB=  - V x,y<57T +  — V x,s77 +  B t(6TXtV +  61™y) x z

a <m =  _  -  D
d t  B ,

l 6 *  =  - % - Ddt B z

P B- - ~ D

=  E p V Xil,$$ -  E HV X)3((5$ x

8 I " y =  V XtySKm x z

(4 -2 5 ) 

(4 • 26) 

(4 -2 7 ) 

(4 • 28) 

(4 • 29)

6JZ =  —T,pR — V x,y£ p - V X)y£$ +  [V XjyEn x V x,y<$<3>]x (4 ■ 30)

(4 -31 )

where 6I\m is the potential for 61™ and constant in time. The existence of such 

a potential is guaranteed by (4-14). Since 8m and 8JZ do not appear in any
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other equations, equations (4-26) and (4-30) can be separated from the rest of the 

equations. By substituting (4-29) and (4-31) into <SIXi!, in equation (4-25), we have

f) 771 3
—̂ z X ^ V x, / $  +  S PB gz x V x,^4> -  S h B :V x> $  -  | 1 —

69

=  - V x, / *  +  ^ V x,y . -  B zS7x,y8 K m (4 • 32)
JJ 2

Equations (4-21) -  (4-24), (4-27), (4-28), and (4-32) are the governing equations 

for this chapter. The field-aligned currents are related to the plasma motion 

through (4-30). Equation (4-32) includes the ionospheric ‘drag’ force as well as 

the magnetospheric pressure gradient force and the J x B force. The second 

term on the left-hand side (with S p ) of (4-32) represents the ionospheric drag 

force with dissipation (Joule heating). The third term represents the ionospheric 

nondissipative J X B force.

The momentum equation (4-32) can be divided into a rotation-free part and a 

divergence-free part. Taking the divergence and the rotation of (4-32), we have 

m dD
B z dt

— E h B ZR — [V X,y(E pB z) X — V Xiy (E / /5 j ) -V Xiy6$

=  +  V x, y - ( ^ V x,y7r) -  V x>yi B zV x,y8 K m) (4 ■ 33)
,8B

B

+  Z PB zR  +  V x,y(E p B z) - V x,y8*  -  [V x,y(S HB Z) x V x,y8$ ]z 

=  - [ V x,y7T x V x, y ( ^ ) ] z -  [V x,yBz x V x,yBA'm]x (4 ■ 34)

The ionospheric effects are collected on the left-hand sides. By picking up the first 

two terms on the left-hand side of (4-34), one notices that the deceleration of R
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is caused by the Joule dissipation. In order to delete 8ir and 8BZ from (4-33) and 

(4-34), we take the time derivatives of these equations:

d2D  Stf 1 dR
dt2 rj dt

=  h x  l * * * 4 * 1* +  ^ ^ 5 7 v - ( E H B ‘ ) i v - w

+  ( 4 ' 3 5 )

d2R ] _ d R  
d t2 T\ dt

=  x  l v - - 4 * 1 - ■

+  (4 - 36)
777 a?  j

where

^  =  <4 ' 37)

is 1 ~  10 minute in the plasma sheet.

Equations (4-23), (4-24), (4-35), and (4-36) construct a closed set for D , /?, <5$, 

and 8 One of the standard methods to solve these equations is Fourier analysis, 

which is adopted later in section 4-4. Before that, we examine special cases 

to extract the contribution of each term. Without solving equations (4-35) and 

(4-36), we may extract two essentially different phenomena: the wave propagation 

and exponential-type decay. Both phenomena are to be generated simultaneously. 

A propagating wave is generated when the steep temporal variation makes the
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second order time derivative term dominant in the equation. Since the balancing 

term is y8n, the wave is the magnetosonic mode. The other type of solution, 

the decay, achieves the redistribution of the plasma toward an asymptotic state. 

Combination of the wave and decay will be found later in the numerical simulation 

(chapter 6).

In order to make things clear, we neglect the gradient of B ,  (and n) and S. 

Equation (4-35) and (4-34) become, respectively,

P D  _  E „  l_dR  r r  2
dt2 £ p  n  dt m x»  K ’

7j7  +  -  =  °  (4 39)dt T\

W ithout the ionospheric current, these two equations are independent of each 

other. Equation (4-38) obeys the wave equation if D  is larger than R. At the 

same time, R,  which is related to Jz, decays from its initial value according to 

(4-39). A steady-state solution is obtained by setting d/dt — 0 for the first or­

der quantities. Details for the wave mode, decaying mode, and the steady-state 

solution are studied in the following sections.

Let us go back to (35) and (36). Equating dR/dt terms, we have

S ? + - 11+ 1 y  *  ! * * . . » ] •

=  -  V , , , . ( £  V ^ tt) +  x V , , , ( £ ) ] ,  (4 • 40)
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If D  (S h /S p )i2 , we may neglect the R  term and the 6$  term; i.e.,

^  -  V , . , ( £ ? , . , * )  +  x V , , ( £ ) l _ -  (4 . 41)

Especially when the zero-order gradient is not very steep (\S7D/D\ >  |V7r/ 7r|), 

this equation is further simplified to

^  =  ^ l . y D  -  x V , , ,D ] ,  (4 ■ 42)
dt m ’* m 2x p m

The first term comes from the pressure gradient force, the second term comes from 

the I X <5B force, and the third term comes from dR/dt through the <51 x  B  force. 

This nonzero R  is excited by Ih  x  6B. Since the effect o f the Hall current comes 

into the system through R, this term is related to field-aligned current generation 

too.

This equation describes many situations according to which term of the right- 

hand side is balanced with the left-hand side. The first term causes the wave 

propagation that will be considered in section 4-4, the second term is considered 

in section 4 -2 -2 , and the third term in section 4-2-3 .

4 - 1 .  S t e a d y - S t a t e  P e r t u r b a t i o n  f r o m  S t a t i c  E q u i l i b r i u m

As a simplest case, we give the steady-state (d/dt =  0) perturbation; we study 

the field-aligned current generation from a maintained perturbed flow. Directly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from (4-26) -  (4-28), we have D — 0. Equation (4-24) leads = 0 too. Now, 

equations (4-27) and (4-28) are not related to each other; i.e., 8v and 6BZ can be 

given independently (i.e., arbitrarily). Since 8BZ can be included in P -, we set 

8B- — 0 and hence, 8n ^  0. The momentum equation (4-25) or (4-32) becomes:

z x 81xx y =  ( —E h +  £ p £ x )V XiJ,<5$

73

B z
=  - - = r V x,y8n - V x,y8I<m (4 -4 3 )

Operating with S / /  +  S p i x ,  we have

(S 2H +  E ^ V * , / *  =  (E h +  S p fx ) ( - ^ -V I ,/7 r  +  V x,y8 K m) (4 • 43')

This equation still holds in 8 K m =  0 cases too. The field-aligned current 8JZ =  

— y is calculated as

W« =  lv * , » ( j ) x V Il, H I (4 -4 4 )

Apparently, the steady-state field-aligned current does not depend on the iono­

spheric conductivities. Since zero-order velocity is zero, the field-aligned current 

generation is related only to V P  x V P  among many terms in the expression by 

Kan [1987]. This term originally comes from the divergence of the V P  drift which 

is expressed as B  x V P /P 2. The solution presented here also satisfies the original 

first order equations that contain d/dt terms.
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Employing the above solution as the initial values for the time-dependent equa­

tions (4-27), (4-28), and (4-32). we find that the time derivatives of 67r, 6Bz, and 

(5VXj!/ at t =  0 axe

d  x  \ 77r n  l

=  0 

=  0

j ^ V X),|1=0 =  B S[(E„ -  S P£x)VXi>« *  -  ^ V x,/ir -  V x,/A ' m] t=0

+  [ V i , !/7r]f=o 

- 0

Therefore, the perturbation does not change for t >  0. In other words, once this 

steady-state is achieved, and if we take 6 K m =  0, the field-aligned currents keep 

flowing without any external maintenance force.

This result is not consistent with the law of the conservation of energy. Let us 

consider the energy budget. Since we have 6JZ oc Sir, there is the energy dissipation 

related to Sir in the ionosphere, while we have the steady-state solution. Therefore, 

the initial perturbation of Sir has to decay. This paradox comes from the linear 

approximation. Since the energy dissipation is the second order quantity (product
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of <5Vx,j, and 8tv), the pressure does not decay. It will be more clear if we retain 

the second order term only in (4-27):

87r - -  — 7 7 - D  -  8 V x,y - V x,y8n -  7 < $ 7 rV x,y 8W
C't

=  x,y^^ 8V r , y ’^x,y^
c

=  - 8 V x,yr V x.y( — ) (4 -45 )7r

where we used the first order solutions; e.g., D — 0, etc.. Since 8 \ x<y is directly 

related to 8$  through (4-15), it is related to <5Ix y or 8n as (4-43) shows; i.e., the 

time derivative of 8n is proportional to (8n)2. A further discussion will follow 

in section 5-1. In the plasma sheet, the energy dissipation can be supported by 

internal heating or plasma sheet thinning that maintains the pressure.

4 -2 . E v o l u t i o n  o f  L i n e a r  P e r t u r b a t i o n s

In this section, we give an initial perturbation to the static equilibrium and study 

the change of the initial configuration and the field-aligned current generation. We 

obtain the relaxation time for this process too. As the asymptotic solution, we 

may also obtain the steady-state solution caused by the initial and/or a maintained 

disturbance. Equations (4-33) and (4-34) are still complicated, and they are further 

simplified.
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Since we consider the redistribution process of the initial disturbances, we ne­

glect the external J x B  force caused by 6 K m. This term causes a different physics 

from the relaxation of the initial perturbation and will be studied in section 4-3. 

Thus, equations (4-33) and (4-34) axe simplified to

-  - § £ - )  -  -  [V*,y(£ p B z) x
B z at i^p

SB
=  +  V x,y- ( ^ V r,y7T) (4 • 46)

+  - )  +  V x, , (X PB z) - V Xtt,S* -  [V x,„ ( £ * £ , )  x V x,y6$ ]z
J j  z  O t  T  x

- K / x V , ^ ) ] ,  (4 -4 7 )

where

R  =  (4 • 23)

p *  =  - % D  (4 -2 7 )
r\

6B, =  - D  (4 -28)

=  ( 4 ' 3 7 )

We still have too many terms to extract the essential physical mechanism that takes 

place in the relaxation process. Since, in many works, the gradient of pressure (and 

hence, B z) and the gradient of the conductivity are considered important in the 

field-aligned current generation [e.g., Kan et al., 1988; Vasyliunas, 1984; Jaggi and
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Wolf, 1973], we categorize the situation by the gradient of the zero order (E p B z) 

or H p7T.

Case 1. When V x^{T,pBz) is significant, we may neglect R  terms in (4-46). 

Since (4-47) is the equation for R, we may not neglect both R  terms. Here, we

assume that the intrinsic scale time Ti is short compared to the time scale o f the

driven term of D.  Therefore, we neglect the dR/dt term instead of the R  term in 

(4-47). Thus, equations (4-46) and (4-47) are simplified as

-  [V x,y( Z PB z) x V x,y6* )z

=  - V l j  7T +  V r, - ( ^ V Ii# tt) (4 • 48)

R +  — —  V Tiy (S p S 2) - [ 7̂X,y{^<HBz) *n p iJ j n p i? 2

=  - n [ — V *,y7r x V x, /B * ]*  (4 • 49)
m

These equations can be further simplified according to whether R  or D  is larger.

Case 2. If V Xiy(Spj5-) is not so significant, we may drop all the second or­

der V x%y(T,pBz) terms from equations (4-46) and (4-47). Since <5$ is another 

expression of R  as of (4-23), and since all <5$ terms in (4-47) are multiplied by

V Xiy (S p B .), these terms provide only the second order of V XjJ/(E p B z) in the

expression of R. Therefore, we neglect <5$ terms in (4-47):

f)Tt Tt 1
-57 +  -  =  x V x,y«5B z\z (4 • 50)ot Ti m

Let us drop the second order V x ŷB z terms from (4-46). Equation (4-50) states that 

7?, and hence 6$, are the first order quantities in terms of “small”
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Thus, all of the <5$ terms axe the second order V  Xty(T,pB~) terms in (4-46) too, 

and we neglect them. We have

dD B-  9 r , 8BZ_  . S h  R-w - +  — V 2Xi/ tt -  V x,„-(— V ^ tt) =  — — (4 • 51)
dt m 'y m n p Tj

which corresponds to (4-41). Each equation has a coupling term.

Case S. If the gradient of B z is exactly zero, (4-50) and (4-51) are further 

simplified to

nn
Ti— + R  =  0 (4 -5 2 )

+  (4 -5 3 )
dt m ,y h p  ti

Equation (4-52) is homogeneous for R, while equation (4-53) has a coupling term 

with R.

Now, we consider the initial conditions. They are determined in terms of the 

set o f 6BZ, D,  and R  at t = 0 ; i.e., 8BZo(x, y), D 0(x,  y), and R0(x,y) .  According to 

equations (4-46) and (4-47), the initial condition of Do =  0, Ro =  0 and 8BZo =  0 

provide D(t )  =  R(t)  =  0 for all t as we have shown in section 4-1. If we specially 

employ (4-52) and (4-53), the initial condition of Ro =  0 provides R(t) — 0 for all 

t.

In subsection 4 -2 -1 , we study the behavior of a shear flow in terms of the 

behavior of R. Since we are not considering the effect of the gradient of B i.e., 

8B zo =  0, and 8ir0 =  0, we use (4-52) and (4-53). A pure shear flow is given as
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Po ^  0, Do =  0. A nonzero Do case is given in 4 -2 -2 , where we study the plasma 

compression by an enhanced convection. Therefore, equations (4-48) and (4-49) 

are employed with the initial conditions of R q =  0 and 6BZo =  0. In subsection

4 -2 -3 , we study the relaxation process of V P  x V P  by means of equations (4-50) 

and (4-51). This initial condition for this case is nonzero 8BZo and D q =  0. As 

shown later, these conditions require Ro ^  0 in order to obtain a meaningful 

solution. These initial conditions are the same as 4-2-1  except 8Bz0. Thus, we 

may have different initial conditions. However, once we have equation (4-47), all 

the solutions for P , and hence for 8JZ, are essentially the same no matter what the 

initial conditions are: it always decays with the time constant t\ =  m /(E p P ^ ).

4 - 2 - 1 .  R e l a x a t i o n  o f  t h e  S h e a r  F l o w

First, we study a shear flow and its relaxation process as shown in Figure 4-1. 

Since we concentrate on the effect of the shear flow, we start with a pure shear flow 

( D 0 =  0) without any perturbation of the magnetic field (8BZo =  0) or pressure 

(8tto =  0) under uniform B z (i.e., uniform n). In this simplified situation, the 

expression for field-aligned current (4-30) is simplified to 8JZ =  —E pP , and we 

may employ (4-52) and (4-53) as the governing equations for P  and D.

As is demonstrated by equation (4-52), the field-aligned current decays from 

its initial value to zero. The decay time rj =  m /(E p P j)  is 1 ~  lOmin. This is
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t  =  0

R <  0 

D  =  0

m
X
Sc

It 1t 1t

R  >  0 

D  =  0

Ip x  B

t  >  0

R  <  0 

D  <  0

a  y

A '

R >  0

D  >  0 ^

Figure 4—1. Evolution of a shear flow. The perturbed flow 
(solid arrow) in the x direction given at < =  0 causes the electric 
field, and hence, the electric current in the ionosphere. Both the 
Pedersen and the Hall currents “drag” the ionospheric neutrals 
by the Ip  x B and the Ip  x B forces. Their reaction forces (open 
arrows) are assumed to be transmitted to the plasma sheet, and 
these forces decelerate and bend the original perturbed flow.
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shorter than the time scale of the large-scale field-aligned currents (~  1 hour) As 

one can see from the expression of rj that includes Ep, the decay is caused by 

the ionospheric Joule dissipation. While the equation for R  is homogeneous, the 

equation for D  contains R  according to (4-53). The governing equation for D  is 

obtained by substituting (4-28) into the time derivative of (4-53).

d*D 2„ 2 S „  1 9R
a e  _  -  e 7  7, aF

^  - P o  t \ f  A VZ A \= -  — - 2- e x p ( - — ) (4 -5 4 )
Ep 7-J

where C% =  —  (4 • 55)
m

Apparently, a propagating wave of D  is excited by P. The initial conditions Do 

and Di =  d D /dt\t-o  for this equation axe

Do = 0  

r> -  pD  i — — PoE P Ti

D\ is directly expressed in terms of P 0.

There is no feedback from D  to P. This is true as long as (4-52) is valid; i.e., as 

long as we may neglect the right-hand side of (4-50) compared to the second term 

of the left-hand side:

P  C%6BZ 
—  »
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where L x and L y are the scale length in the x and y directions, respectively. 

However, once a wave is generated, D  can be much larger than R. Let us estimate 

the duration of how long the R >  D  condition holds: neglecting the Laplacian 

term (by giving a wide-spread initial perturbation), we can approximate (4-53) for 

small D  that

D  ~  - ^ - R o tZ^pT i

The wave is generated more quickly if the field-aligned current (or R)  is very 

localized. Now the condition (4-56) is rewritten as

, f N ^  C%Tit exp( ) »  —
T\ i-ip L XLy

Unless there is a pre-existing wave or a local and intense field-aligned current, this 

relation holds longer than t =  T \ .  After the wave amplitude grows, equation (4-52) 

does not hold any more. Thus, we may not obtain the asymptotic state from this 

equation.

Figure 4-1 illustrates the 1-D  situation (d/dx =  0) for small t before the wave 

mode dominates. Initially, we have a shear flow with R q <  0 for 0 <  y <  y0 and 

Ro >  0 for —j/o <  y <  0. Since D  obeys (4-54) for small f, the plasma is rarefied 

(D >  0) for y <  0 and compressed for y >  0. Meanwhile, R decays; i.e., the shear 

is weakened. Imposing S'Vx ŷ =  0 at y =  ±j/o? the flow is determined as shown 

in Figure 4-1. Deceleration of flow is expressed by the change of R, and hence,
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it is caused by the ionospheric Joule dissipation. Thus, we have the ‘drag’ force 

which is expressed as 61  ̂ x B* as illustrated by the empty axrow in Figure 4-1. 

Distortion of the flow is caused by the ionospheric Hall current through the I ^ x B  

force. This force works on the ionospheric plasma, and its reaction works on the 

plasma sheet. The force is nondissipative; i.e., its direction is perpendicular to the 

flow. If we have enough that can cancel these ‘drag’ forces, the perturbation

becomes steady.

If the background plasma is not uniform, e.g., dm/dx is not zero, the reaction of 

the I / /  X B force causes propagation of the shear. The governing equation for R  is 

obtained from (4-47). For the present purpose, we simply neglect D  compared to 

R  for small t (the initial condition is exactly Dq =  0). If the first order quantities 

depend only on the y, (4-47) becomes

m ,dR R . d . d
~Fr(~Z7 +  — ) =B z dt Tj ox  dy
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Therefore,

0  +  =
dtdy ti dy ^  -

where kg =

T\
1 d B z

B z dx
1 dir

m dx
1

( 4 - 5 8 )  

( 4 ' 5 9 )

Apparently the solution has to be asymmetric between + y  and — y.
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This situation is illustrated in Figure 4-2. As mentioned above, the ionospheric 

Hall current causes the 'drag' force in the y direction as shown in the figure. This 

force has a shear in the x direction because of the change of V S h  through the 

change of I jj or because of the change of B z The convection 8VZ caused by this 

force also has the same shear in the x direction. The sense of the shear is the same 

as R  in the + y  direction and opposite in the — y direction. Thus, the shape of R 

moves toward V m  x B  direction.

4 - 2 - 2 .  P l a s m a  C o m p r e s s i o n  b y  a n  E n h a n c e d  F l o w

Contrary to the previous case, we consider here a compressional flow without 

shear. Therefore, we set R 0 =  0 while we have nonzero D 0. A compressional flow 

experiences a zero-order pressure gradient. We start with (4-48) and (4-49) under 

the assumption of D  R. We neglect <5$ terms compared to 6BZ terms because 

6$  is related to R  while 6BZ is related to D.

Since we do not have V X)S<5$ terms, the flow direction does not affect the equa­

tion. Therefore, we may take an arbitrary direction for V x,yBz. Let us take the 

x axis in the V r>J/7r (or V IiS/i?z) direction as shown in Figure 4-3.

The governing equations for D  and R  are

f  + £ £ ! ; “ *) (4' 60)
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t =  0 

R < 0

R >  0 

t >  0

SJZ > o Q  '
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SJZ < 0  ( g )
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X
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1—1
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Large Bz Y

X

Small Bz

" ■  * 0 o o

6JZ 0 0 0

F igure 4—2. Evolution of a shear flow in V B ^ . The zero- 
order gradient of B z exists in the x direction (same as the flow 
direction). As illustrated in Figure 4-1, the — I #  x B force bends 
the flow. This distortion is different in the x direction because 
B .  is different. Therefore, the field-aligned currents become 
asymmetric.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

High Pressure 
Large B z

- >

D >  0 

a  y

Low Pressure 
Small B z

D < 0

Figure 4—3. A compressible flow. The flow (solid arrow) 
which experiences the zero-order gradient of B~ in the x di­
rection. If the flow is one dimensional, there is no field-aligned 
current.
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With the help of (4-27) and (4-28), (4-60) determines the behavior of D  whereas 

(4-61) indicates that R  is directly determined by D. The first term of the right- 

hand side of (4-60) represents the pressure gradient force while the second term 

comes from the I x B force. This force varies as 6BZ varies in the x direction. 

The right-hand side of (4-61) represents the field-aligned current generation by 

V P  x V f l  term. This term originally comes from divergence o f gradient B  drift: 

Id =  B x V P / B 2. The initial condition of Ro =  0 implies 6BZo =  0 through 

(4-61) and dD/dt|t=o =  0 through (4-60). Note that Rq =  0 means, practically, 

R 0 <C D 0. Otherwise, we have d/dy =  0 and R  is always zero as illustrated in the 

figure.

Taking the time derivative of (4-60), we have

1 d2D  ~ , dD  , „ x
C% dt2 -  v ^yD kB dx (4 ' 62)

where kg  is given as (4-59). Initial conditions are Do ^  0 and D\ =  dD / dt\t—o =  0. 

This equation can be also obtained from (4-42) if we neglect the third term on the 

right-hand side of it. In order to solve (4-62), we also have to specify the boundary 

condition at x =  x Q. The last term comes from the mechanism below. The wave 

with 8VX (or D)  generates the electric field and the ionospheric Pedersen current 

in the y direction. There is the Ip  x B z force onto the ionospheric plasma. The
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reaction force of the Ip  x B -  force works in the x direction onto the magnetospheric 

plasma. Thus, the last term is related to the ionospheric Pedersen conductivity. 

The details are discussed in section 5-4.

4 - 2 - 3 .  F i e l d - A l i g n e d  C u r r e n t s  b y  V P  x  V B

If there is a pressure gradient that is not parallel to the gradient of the total 

magnetic field, the pressure gradient force drives the plasma. This process is 

initiated from nonzero

V P  x  V B

We study the evolution from this initial configuration with the behavior of the 

plasma quantities during this process. Since V r ŷir || V x,yBz is already given, 

we need to give 6BZo =  SBz(t =  0) such that V IjJ/(B z +  6B zq) is not parallel to 

Vx^Ctt +  ̂ tto). This condition is achieved if 6BZo satisfies

Vx,j7r x  V j ^ ^ B jo ^  0

when 8tvq =  0. If 6BZ is maintained somehow, the situation is exactly the same as

4-1.

We extract the most important mechanism in this process. Therefore, we do not 

have to take V X)J,7r very large. We start with equations (4-50) and (4-51), rather
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than (4-48) and (4-49). Let us take the same coordinate as 4-2-2; i.e., x is lying 

in the direction of the gradient of B~ (and V IiV7r) as shown in Figure 4-4.

The governing equations for D  is

^  -  C 2kB^ - 8 B z =  ^ -  (4 • 63)
dt m 'y ox  Ep Ti

wrhere kB is given as (4-58), 8BZ and D  are related through equation (4-28). The 

governing equations for R  comes from (4-50). Since equation (4-50) is essentially 

the decay equation, we approximate it as

-  =  - r lrC 2s kB^ - 8 B z (4 -6 4 )
ri dy

where 0 <  r]r <  1. Strictly speaking, i)T is time dependent; however, we take it 

a constant. For slow phenomena (time scale >  Ti), this is a good approximation 

because of rjr <C 1. Equation (4-64) is the same as (4-61): the field-aligned current 

is related to V P  X  V P .

The difference between (4-63) and (4-60) is the R  term on the left-hand side. 

In order to examine the effect of this term on the wave equation, we neglect the 

third term because it is already studied in the previous subsection:

0- £  + ! f Vb ^  = -C | | a  k , ± S B .  (4.65)

Without the R  term (right-hand side), the equation is symmetric with respect

to the y direction because the zero-order configuration is one dimensional. For
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t =  0

High Pressure 

R <  0 
D  =  0 

R >  0 
D  =  0 

Large B t

X

t >  0

R < 0 1 >A
D < 0 't' 1 

6B
*  '

R > 0 i  11 1

D > 0 f  i

F igure 4—4. Effect o f V P  x V B . A small bumping of B : is 
given in the nonuniform plasma. Zero-order pressure gradient 
already exists in the x direction. There is the zero-order current 
due to the zero-order pressure gradient, and that causes 0 
convection through I x 6B. We may apply the situation of 
Figure 4-1 to the convection. There is the —I //  x B force in the 
y direction. Thus, the distribution of SBz becomes asymmetric.
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example, let us consider a wave propagating in the y direction. The governing 

equation for this wave is given by talcing the time derivative of (4-65):

1 d2D Y72 dD rA=  Y i , vD +  — kB—  (4 -6 6 )

91

C% dt,2 x 'y Ep D dy

Note that this equation can be obtained from (4-42) too by neglecting the second 

term on the right-hand side of it. Without the R  term (kB term), the pressure 

gradient force, i.e., the restore force to the perturbations (e.g., plasma motion) of 

this wave mode, is symmetric for ± j/ directions. Now, we have nonzero R, which 

is originally driven by the I x £B 2 ( I y8B z) force in the x direction. The R  term in 

(4-66) represents the reaction force of the Ih  x B  force on the ionospheric plasma. 

It works in the y direction. That means it reduces or increases the restore force 

accordingly to the propagation direction. This asymmetry is expressed by the y 

derivative, and will be further studied in 5-4. In both (4-63) and (4-64), we do 

not have the ionospheric Joule dissipation associated with the energy dissipation. 

It has the order of magnitude of 82 as is demonstrated in (4-45).

Let us specify the initial conditions. We only specify 8Bz0 ^  0 as the initial con­

dition, so that we can extract the phenomenon of the redistribution of V P  x  V P . 

This condition provides nonzero R 0 through (4-64) and nonzero D\ =  dD/dt|t=o 

through (4-65):

D 1 = - C 2s ^ - k B^ - 6 B t0 Ep dy
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The other independent initial condition, D 0, is set zero in this case. If we specify 

<571-0 /  0 instead of 8Bz0, only the initial conditions are different: D 0 =  Ro — 0 

and D i =  —(B z/m)V^. 8ir. Equations (4-65) or (4-66) do not change in this case. 

We also need the boundary condition for D  at some reference point y =  yo, e.g., 

D(y  — ± oo) - 0.

Figure 4-4  illustrates the effect of the last term of (4-66). As an example, 

8Bzo >  0 is added around y =  0 while Do — 0. In this coordinate, k s  is negative. 

Equation (4-64) gives Ro <  0 for y >  0 and Ro >  0 for y <  0. The vortices 

corresponding to R 0 are indicated with the arrows. According to (4-63), D has 

the same sign as Ro for small t. That means d(8Vy)/dy <  0 for y >  0 and 

d(SVy)/dy >  0 for y < 0. If we set <5Vy(±yo) = 0 as the boundary condition, 

the y component convection should be like the heavy arrows in the figure. The 

behavior of 8B Z is determined by (4-28). It increases for y >  0 and decreases for 

y <  0. This result is consistent with the above physical explanation in terms of 

the reaction force of the 1^ x B  force.

4 -3 . E n h a n c e m e n t  o f  t h e  M a g n e t o s p h e r i c  J x B  F o r c e

Contrary to the previous section, we set 8I\ m /  0, and we set the other initial 

perturbations to be zero. These initial conditions may provide another relaxation 

process. The basic equations are (4-33) for D  and (4-34) for R. Since we consider
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the redistribution process caused by the additional I™y (expressed by 8 K m). the 

V i yP 2 (or term is assumed to be small. We also neglect the dR/dt

term in (4'34) as this term might simply cause the delay of the response of R 

to the external (e.g., D  or 8 K m) change. In other words, we axe looking at the 

redistribution process whose time scale is longer than rj =  m/(T,pB2). The case 

with shorter scale time is studied in the next section. Under these assumptions, 

we may neglect all V X J/7r terms from (4-33) while we may not for (4-34): 

dD
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m- -  X h B I R  =  - B zV i J 7T -  B 2V 2 y8I\m (4 • 67)
dt

1
B z

E PB ZR  =  — jr-tV^Tr x V x,y8Bz]z -  [V x,yP 2 x V x,v6 K m]z (4 • 68)

where 8tz and 8BZ ir are related to D  through (4-27) and (4-28), respectively. 

Equation (4-67) states that the wave of D  is excited by 8I\m and R. We do not 

have to retain V X;J/7r terms at all in this equation. Equation (4-68) states that R  

is essentially determined by 8I\m and is modulated by 8BZ. Both source terms of 

(4-68) are multiplied by V x>y7r (oc V Xi!/J?- through (4-19)). These terms originally 

come from the change of the magnetospheric J x B force (change of I™y and change 

of B z). Since R  is proportional to V XiJ,7r, we may neglect the R  term from (4-67):

¥  +  — V l j *  =  (4 - 69)Ot m m ,v

Taking the time derivative, we obtain a wave equation

d2D  , ,
- C 2V 2XtyD =  0 (4 -7 0 )

dt2
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This wave equation is the same as (4-42) if we retain only the first term on the 

right-hand side of (4-42). The detail o f the wave mode is further studied in 4-4. 

The initial conditions are Do — 0 and

m 'y

Once the solution of D  is obtained in terms of 6 K m, we may also express R in 

terms of 6 K m through (4-68). Let us take x in the direction of the gradient of 7r. 

Equation (4-68) becomes

rt dD . 1 d B z d
I,

1 dir
w h e r e  =  ( 4 ' 5 8 )

Since D  is linear in 6 K m, R  is also linear in 6 K m. The field-aligned current is 

obtained from equation (4-30); i.e., 8JZ ~  —Spi?. The initial value of the field- 

aligned current at t =  0 is

*7 1 dB z d
SJz0 ~  B z dx dy

The effect of 6 K m appears only as the initial conditions for D and R. If 6 K m 

does not depend on y, D  does not depend on y either. This causes R =  0; i.e., no 

field-aligned current. Since the y derivative of 6 K m is <5/™, we may conclude that 

the field-aligned current is caused by <5Im-V 7r.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

The asymptotic state is given by neglecting d/dt terms in ( 4 -6 7 )  and (4 -6 8 ) :

V x, / t t  =  —B zV x y S K m 

D =  0

^ - C 2sSBz - 6 v =  C 2s6Bz0 -  6n0 
B z B z

=  0 

SpJ32zR =  - [ V XfyBz x V I)S(57r]z -  B z[Vx<yB z x V x ŷ6 K m]z 

=  0

The pressure is redistributed such that there is no field-aligned current.

4 - 4 .  W a v e  M o d e s

As we have mentioned in the previous subsections, there are two (forward and 

backward) propagating waves associated with the change of D  as shown in 4 ­

2 - 4 ,  and 4 - 3 .  The characteristic propagation velocity of this mode is Cs- This 

mode is obtained by setting R  =  0 under uniform zero-order configuration. Even 

though this wave mode is not directly associated with the field-aligned current 

generation, it still affects the field-aligned current through the coupling between 

D  and R  through the ionospheric J x B  force. There is another mode; namely the 

R  7̂  0 mode, that is directly related to the field-aligned current generation. As is 

shown in 4 - 2 - 1 ,  this mode does not propagate but decays with the time constant
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of Ti because of the ionospheric Joule dissipation. Both R  =  0 and R ^  0 modes 

were already mentioned in the previous sections.

In this section, these wave modes are compared with the ordinary MHD waves 

in (u>, k) space. For this purpose, we start with a uniform zero-order configuration 

which is described by equations (4-38) and (4-39). In the plane wave approxima­

tion, i.e., D , R  oc exp[zk-x — zW], these equations are rewritten as

- lo2D  +  i ^ - — u R  - - C 2s k2D  (4 • 72)
Ep T\

( - iw  +  — )R =  0 ( 4-73)
Tl

There are three solutions for to. One corresponds to the J ? / 0  mode. The others 

correspond to the R  =  0 mode. If we take R  =  0 in (4-72) or R  ^  0 in (4-73), we

obtain to — ±C sfc for the R — 0 mode, and uj =  —i/ri for the R  /  0 mode. These

results are the same as in previous sections. For the R  / :  0 mode, we also have

(C 2s k2T2 +  l )D  =  - ^ - R  (4-74)
Ep

This relation corresponds to (4-54) in 4-2-1 .

Originally, there were five equations with a time derivative. However, equations 

(4-26) -  (4-28) provide two of the lo =  0 modes:

Sir — C%8m =  const

■Q
8BZ  -8m =  const

m.
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Therefore, only three modes remain. The effect of the ionosphere comes into the 

system through Tj and S. The ionospheric effect can be eliminated if we set 

S h  =  0 and T\ =  oo. In this case, the R ^  0 mode does not decay, while the 

R — 0 mode is not affected by these parameters.

Let us compare these solutions with the ordinary MHD equations. The disper­

sion relation for a nondissipative uniform MHD fluid (cf. Jackson [1975] chap. 10) 

is

u 26 V x,y =  C | (k -6V )k I)!/ +  V j (k X,y-6V x,y)k x,y +  V l k 2zSVx,y (4 • 75)

u 28Vz =  C 2s kz(k -8V)  (4-76)

The above equations can be rewritten in terms of D  =  ikXty- 8"Vx<y, and R =  

i k I  S) X  8 ' V x y . Operating on equation (4-75) with k r  y and k x y x .  we have

uj2D =  (C% +  V\)k2x yD  +  C 2s k2Xty(ikz8Vz) +  V 2AD k 2: (4 ■ 77)

uj2R =  V\k2R  (4-78)

while equation (4-76) can be rewritten directly as

(a;2 -  C 2s k2){ikz8Vz) =  C 2s k2zD  (4 • 79)

Equations (4-77) and (4-79) determine the D  ^  0 mode (i.e., the R  =  0 mode) 

waves. The present height-integrated situation corresponds to a limit of 8VZ =  0 

and kz =  0. In this case, equation (4-77) is the same as (4-72) except that the
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magnetic tension force term (Va term) disappears from (4-72) and the ionospheric 

J x B  term (R  term) comes into (4-72) instead. Thus, the R  =  0 mode of (4-72)

-  (4-73) corresponds to the R — 0 mode of the ordinary MHD.

Let us identify this mode. By eliminating 8VZ terms from (4-77) and (4-79), and 

imposing D  ^  0, we have

u>4 -  u 2k2(C 2s  +  V j)  +  k2k l C 2s V l  -  0 (4 • 80)

These are two modes: the MHD fast wave mode and the MHD slow mode. Equa­

tion (4-72) contains only one mode. Since the slow mode propagates along the 

magnetic field, it disappears on the kz =  0 condition of (4-72). Therefore, the 

R  =  0 solution of (4-72) is the MHD fast mode. The phase velocity oj/k o f the 

R  — 0 mode of (4-72) is Cs,  while it is y/C| +  V j  for the MHD fast mode. Again, 

the magnetic pressure disappears in our model.

The magnetic pressure force originally comes from the J x B force. It appears 

being accompanied by S (and hence, l / iq  in (4-72) and (4-73)). For the R  =  0 

mode, this force is multiplied by V XiyP r. Since we neglect V x yP 2 terms in (4-72), 

we do not have a Va term.

Next, we examine the R  ^  0 mode. This mode comes from equation (4-78), 

which corresponds to (4-73). Its dispersion relation is

u>2 — V j k 2 =  0 (4 -8 1 )
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This is the Alfven mode and corresponds to the decay solution of (4-73). In an 

uniform MHD medium, the Alfven wave propagates along the magnetic field lines. 

The height integrated plasma sheet lies perpendicular to the zero-order magnetic 

field. Therefore, we do not have the propagating wave mode in (4-73). The Alfven 

wave propagates all the way through the magnetic field between the plasma sheet 

and the ionosphere with zero transition time. The ionospheric dissipation is also 

transmitted to the ionosphere immediately. A dissipation term comes into (4-73) 

as the result of the ionospheric Joule heating. This effect introduces the resistivity 

in the uniform MHD. The Alfven mode dispersion relation in the resistive MHD 

equation (cf. Alfven and Falthammar [1963]) is

“  (Va +  ) kl = 0  (4 • 82)fl 0<7

The diffusion length (skin depth) of this mode is 2iiqoV\/uj2, and the decay time 

of the propagating wave is given as 1/w ~  2 o B 2z / p̂ o2. Therefore, it is expressed 

as 1 /ui ~  p/2crB2. Apparently, this expression corresponds to Ti except for the 

difference by a factor of Lo/h0 which appeared in section 2.

Next, we include a small gradient of B z (or 7r). Again, we employ the plane 

wave approximation; i.e., D, R  cx exp[zk-x — iu>t]. “Small” means its scale length 

is longer than the wave length; i.e., k »  V 7r /7r. This assumption also enables us 

to approximate X Xty( B zD) =  B zV x yD, etc.. We also neglect 8 K m terms because 

the wave mode is determined by the homogeneous part o f the equations. The
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basic equations axe given in (4-35) and (4-36). Let us take the x in the direction 

of gradient of ( B z,n,m).  They are rewritten as:

P D _ V H _ } _ d R  _  1 a t S p B , )  1 3 1 a

dt2 S p  tj dt YjpBz dx T\ dt dy S p  dx

=  ( 4 8 3 )  
d ' R  . 1 8 *  1 8( S P B . )  1 8  9  _

' ^ rj .3,. J

100

dt2 t\ dt S p B j 3x t i dt dx  S p  dy
1 37t 5D (4 • 84)
m dx dy

where 6$  is related to R  through (4-23); i.e., R =  — k28 $  in (w ,k) space. There­

fore, (u>, k) space expressions of the above equations axe

-u ,2L> +  t ^ r - - R  +  (kB +  k v ) - ( k y +  =  - C 2s (k2D  +  ikBkxD )S p  T\ T\ Lip k*
1 V' X?

—u)2R  — i— u>R — (kB +  k's)— (kT — -=r~ky) ~  =  iC%kBkyD
Ti T\ h  p K* '

or

[u * _  C 2s(k2 +  ikBkx)]D =  [ »| £  + (* :„  +  ^ k x) * ? - ± - Z ] - R
Z-ip Lip K* T\

[(u;2 +  * - )  +  (kx -  ^JLky) kB^2k-Z - ] R  =  - i C 2skBkyD
T\ Zj p n, T\

where 1 j k B and 1/fcv are the scale lengths of the gradients of B z (or m) and S p  

as is given in (4-58) and (4-59), respectively. The above equations are equivalent 

to (4-72) and (4-73) when kB =  k^ =  0. Here, R  and D  cannot be separated since 

both equations have the coupling term.
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The dispersion relation is

-  c u e  +  ifcBfcx)) V  +  ; - )  +  ( * . - 1 « t , ) ± «  +  * s s iT j  p  A 7 1

- C 2s - [ ( k B  + kz )kx - ^ - k M  
T1 E p
2 ,  u j k B +  kz  E w E p

— iCgk-B *2 L^x(^x ^  * ky\ky ~f" ^x)J
T i K 2s p 2s p

Apparently u> =  0 is one solution, which is previously mentioned. The right-hand 

side is the second order term for kB and k jy, i.e., it is proportional to (cbr/cLr)2. 

We neglect this term because we assume that the gradient of 7r is small, Thus, the 

dispersion relation for the u> ^  0 mode is

[uj2 — C 2s (k2 +  i k B kx)]-(sT i +  z)

=  ( C s  — +  kz )kx +  - ^ [ - j j ( k B - f  fcs ) — C f f c s ] / : , ,  ( 4  ■ 8 5 )

Let us examine the modification of the R  =  0 and the R ^  0 modes by nonzero fcB 

or &£• We adopt a perturbation method for u\ i.e., we keep the first order terms 

in k-% or kB .

For the MHD fast (R  ^  0) mode, we have

w 2 _  C | (fc2 +  ikBkr) =  _ J _ ( C |  -  ^ ) ( k B +  k ^ k ^ c s k
LOT\ +  I KL

+ ” Ti +  k “  C' l feE]fc»|w=Csib

1
7 7 -7  — ^ S ^ r ~ kBkyCskri + 1 Ep 9
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or retaining up to the first order terms of kB or k-p, for both imaginary part and 

the real part,

u;2 =  C|fc2[ l + * ^

102

— i-
. E B 1 kBky E B C BkTi kBk____  JL +  ZJL -1— — ( 4- 86)

E p  C g k 2 T 2  +  1  k 2  S p  C g k 2 r 2  +  1  k 2  ̂ ’

Since an imaginary part is added, either the forward or the backward propagating 

wave diverges. This result is consistent with 4-2—4. For the Alfven (R  =  0) mode,

1 u/2
“ ri +  ‘ =  ^ - c u ^  +  i t Bk , ) { C l  ~  ¥ ){kB +

+  u* - C 2s(k* + i k Bk , ) ^ [ k t {kB +  *S) ~
1

+ r 2C 2 (k2 +  ikBkx)

-  (t 2C 2s  +  ^ ) ( k B +  kE)kr +  +  fcs) +  r 2C 2 k^}ky

or. neglecting the second order terms in kB or k-£,

* ri i • (kB 4" k^)kx .̂ -‘H/ksky  1 kBky .(
“ = - - | 1 + !  P  ' S 7 ( —  + C | ^ r f  +  1 t ’  )] ( 4 ' S7)

Thus, this mode begins to propagate because it has a real part. The mechanism 

of this propagation is already mentioned in 4 -2-1 . Note that the main correction 

terms (the terms inside the parenthesis) have the same form in both (4-86) and 

(4-87). This correction is larger as k is smaller, i.e., for longer wave length.
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C h a p t e r  5 .  L i n e a r  A n a l y s i s  o f  t h e  F i e l d - A l i g n e d  C u r r e n t : 2 

—  P e r t u r b a t i o n s  f r o m  S t e a d y - S t a t e  F l o w s  —

We apply the linear analysis to a steady-state flow instead of to a static equi­

librium. The assumptions and the basic equations are already given in chapter 4. 

Here, we further assume uniform zero-order conductivities. We also neglect 8Vffy 

terms. These terms are already assumed constant in chapter 4.

For the zero-order equations, the assumptions are the same as those in chapter 

4. As an additional assumption, we assume uniform conductivity. 1. dfdt — 0; 2. 

Tz =  0; 3. Ep oc E p  =  uni form ; 4■ £x =  =  \fBz/B{\ 5. Jz =  0; 6 . n oc m 7; and

7. B z oc m. The zero-order equations are the same as (4-1) -  (4-6). Because the 

conductivity is uniform, the V Ii9T^ y =  0 condition gives X  x y (B  z\ x<y x z ) — 0. 

Thus, the zero-order equations are,

=  - V r,„7r +  B zI x,y x z ( 5 -1 )

Vi,y(BjVIiS x z) =  0 (5-2)

V x,y(BzV x,y) =  0 (5 -3 )

I x,y =  S p B -V I)y x 2 +  E p B 2V Ii!( ( 5 -4 )

Y x,y (Ix,s — I*,;/) =  0 (5 • 5)

The assumptions for the first order equations are: 1 . 6B ./ 6B X}y >  (h/Lo', 2. 

Tz terms are totally neglected; S. the temporal change of the mapping points is
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neglected (i.e., 8£ =  0); and 4• is neglected. The first three assumptions axe

the same as in chapter 4. The first order equations axe:

771— 8~V xy — —8m.(V x,y'^  i , j ) V x,y — r77(<5VXi!, • V XiB) V XJ/ m ( V xy • V Xiy)<5VX!j/
dt

— V x,y8n + IXi!, x £8B Z +  B Z8VX y x z

M i,, =  E +  SEPB , V „  x i

+  SffZ X V x>y6$  +

<5J, =  - V Xiy-^I’IiS

x =  B Z8V Xty +  V Xy8B z +  V Xiy6'k

=  R  -  x  V . , , ( ^ ) I .

V 2, , , 6 *  =  —D — B , V , , , . V „ ( ^ i )

where D and i? are defined as (4-21) and (4-22) of chapter 4; i.e.,

( 5 -6 )

(5 -7 )

(5 -8 )

(5 -9 )

(5 -10)  

(5-11)  

(5-12)  

(5-13)  

(5 • 14)

D =  V x,y-(Bz8V x,y) 

R  =  ^ x ,y {B z8V Xty X z)

(5-15)

(5-16)

In this chapter, we study the perturbation from an 1-D flow or a pure circular 

flow.
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5-1 . P e r t u r b a t i o n  f r o m  1-D  F l o w

For the next four sections (5-1 to 5-4), we take the zero-order flow as one

dimensional in the x direction, i.e., V Xi3, =  Vx{x)x.  The uniform flow is a special

case. The zero-order equations axe

mVx =  const (5 -17 )

h  =  0 (5 ■ IS)

dn „  dVt
IyB z — —  +  mVj

dx dx
dm 
dx( C j - v ; 2) ? ?  (5 -19)

where C| =  yn/m as was already introduced in the previous chapter. The first 

order equations are

m I t  1 =  - v *s (m f c v ^  ~  m ~d^6V* ~  T x ^  +  8 B J y  +  Bz6Iy
d 6VX _  6 (m V ?)d V t d  6VX 9  Sir

OV dt Vx mV ._2 dx x d x [ Vx } dx mVx

+  +  ( 5 ' 2 0 )

d 8VX 8n 1 (5(mV2 +  n)—  \ / __ ( ___f. j   ̂ _i_____ v
z d x y Vx m l)2 ; r2 m l)2

+ 7& sb‘ + & ,‘1’ ( 5 ' 20'>
A A 4 A t j

=  - V x —  W *  -  (5  • 21)
dt dx  m dy m

| f c „  =  - m [ y , £ ( £ )  +  £ ]  ( 5 . 2 2 )
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| 4 l , + t £ ,  (5 -23)

t t-2 rt r d f 6lV C 2S D y +  I 6*
=  — m V [Vx— ( —77? ) +  77717 t72 (5 -23  )

o x  m V ‘  \ x B z t 2 mV*

S “ — W - S < T > * E ,  « “ >

=  *U ,,

=  E PV X, / S  +  S „ i x  V x,y6$  -  yB zVx8'£.P +  x B zVx8Y.H (5 • 25)

106

6 J, =  - V xj 8l i t,  (5-26)

d_
*,!T ‘  "  ' * 0^

A
(5 - 27)

where

-  =  - ^ r  ( 5 ' 2 8 )r2 ax 
_  Vx dm 

m dx

=  VxkB

and kB is given as (4-58) of chapter 4. Taking the divergence and the rotation of 

(5-20) and (5-21) after multiplying by B~, we have the equations for D  and R:

l D  -  + 1 : 1 ^ 1 + B - v * £ £ ( £ +

£  _ v “  + B.v  «  [ l ( « 2i + 2 ^ ) ]  -  5 iV „«x  +r2 ox  ax r2 m Vx m ,y m dx
1 _ 2  B ZVX d <5Sp d 8HB . 1 8I Vj  —— v  <5$------ — -f ----------- A ----------- —) a---------------- -  (5-^91

E p q  *-» n  l 3 x  E p  E p  j +  VXT1T2 E p 1 ’
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1 r  =  ! L - . v M  +  -  b 2v x - 4 - ( —  +  t £ )  -  - I , - i - 6 B 'dt t 2 dx dx r2 Vx t 2 dy m Vx m dy
1 ^ 2  «■* „  , d <5S„ d 1 £JX , c on,

 < 5 $ - i B xV xr 1( - —  ----------- - £ - - = — ) - --— -----------—  ( 5 - 3 0 )
T! 1,9 dx S p  dy S p  Vxt-it2 ^ p

.vhere

J_ =  SpB^ 
t i m

(5-31)

is already determined in (4-37) of chapter 4. These are the basic equations for 

sections 5-2 and 5-3.

5 - 2 .  P e r t u r b a t i o n  f r o m  P a r a l l e l  U n i f o r m  F l o w

As the simplest case, we assume a uniform flow; i.e., the zero-order V x , m , n  and 

B z are uniform. All o f the zero-order equations ( 5 1 7 )  -  (5 -19) axe automatically 

satisfied and we have I X)J/ =  0. Since the uniform condition means l / r 2 =  0, the 

first order equations are simplified to:

i 6m = - K D  ( 5 ' 3 2 )

& — T . D <5 ' 33>

4 - 6 B :  =  - D  (5  ■ 34)
dt

i t =  - — V ^v6n +  r ~ ~ ( R  -  v * - f 6Bz)a t  m  L p  q  d y

B ZV X . d 8Hp d 8T.p. , x
T\ dx S  p dy S  p
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where d./dt is the zero-order full time derivative:

( 5 ' s s )

and <5Sp and Slip are given externally.

The first three equations (5-32) -  (5-34) are exactly the same as the correspond­

ing equations (4-26) -  (4-28) of chapter 4 except for the difference in the time 

derivatives (partial or total) caused by Lorentz transformation. The advantage of 

the present expression (with nonzero Vx) is that we may also consider the energy 

dissipation because it is no more the second order quantity of 8 . The last two 

equations (5-35) and (5-36) also correspond to Lorentz transformation of (4-33) 

and (4-34) of chapter 4. The additional terms (i.e., the zero-order V r)J, terms) 

here come from 8VX y. The field-aligned current is directly expressed by dR/dt 

instead of R  itself (cf. (4-30) in chapter 4). The left-hand side of (5-36) causes 

exponential-type decay of R  by Joule dissipation in the ionosphere, while the 

right-hand side excites nonzero R. Since the response of R  to the source term is 

exponential, 8J~ also decays with a time constant Tj too. The behavior o f 8 JZ is 

the same as the V I)S/ =  0 case in chapter 4. If we assume <51̂ 0 =  0, and d/dx =  0
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for the first order quantities also, we have a shear flow; i.e., D o =  0. This case 

was already studied in section 4-2, and we do not discuss it here again.

We study two extreme cases: when 6S P and 8T,h are the most important, and 

when they are negligible. Let us extract the effect of the conductivity gradient first, 

for the conductivity gradient is believed to play an important role in generating 

the region 2 field-aligned current [e.g., Kan, 1987]. In order to formulate this 

situation, we neglect 8B Z terms and the 8ir term compared to <5£P terms or 8 

terms in equations (5-35) and (5-36):

dD =  | «  R _  B M { d_{ SZp +  | . ( ^ «  )] (5 ■ 39)
dt L P Ti ti ox  L P dy L P

dR R B zVx d 6 Y,P d 8 E H , }
d r + ; :  =  — ( 5 ' 4 0 )

Immediately from (5-40), R  is

R  =  H o e - 'O  +  [ ‘ e1' ^  (5-41)S p 7"i Jq oy  ox

The field-aligned current generation by the nonuniform conductivity is given as

W . - E ,  n f

-  + B ^ " , n  / e , 7 n  (s  ■42)

where Rq and Jzo are related as 8 Jzq =  — S p 72q. We can extract two effects 

from this equation: one is the simple decay of R  from its initial value, and the
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other is the modulation, by the conductivity gradient. The response of the field- 

aligned current to the conductivity perturbations is delayed by a time constant 

rj. If 6Hp and <5Sp are time independent, the second term of (5-41) disappears. 

Only the x gradient (corresponds to north-south direction at midnight) of the Hall 

conductivity contributes to the field-aligned current generation.

Since the decay is associated with Joule dissipation in the ionosphere, this decay 

time has to be the same as the energy dissipation time. Suppose we have <5Vi y ^  0 

at t =  0. The initial extra kinetic energy is given as m ( V I y +  <5VXiJ,)2 — mVx =  

2mVx8Vx in the first order approximation. Note that the energy becomes the 

second order quantity for the V XiS =  0 cases of chapter 4, and hence, we did 

not discuss the energy dissipation time there. The energy is consumed in the 

ionosphere with a rate of £ p B \ ( \ T,y +  8'Vx.y)2, while we have the energy supply 

in the magnetosphere through the I™y x B force with a rate of S p B 2Vx . Net 

dissipation rate of the energy is 2EpI?2Vx<!>Vx to the first order. Therefore, the 

energy dissipation time is given as

2 mVx8Vx

110

T\ = 2E PB\VX8VXZ

m
£ PB 2

Next, we neglect the conductivity gradient. Equations (5-35) for D  and (5-36) 

for R  are simplified to

dD r HH VX d S H R
-7 T +  — ^ l ,y 8n +  ~  —  ^ - 8B z =  - ^ - —  (5 -43)
dt m ,y S p  T\ dy S p  ti
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The second term of (5-43) comes from the pressure gradient force, and both of 

the S #  terms come from the Sip  x B drag force as is discussed in sections 4-2-1 

and 4-2-3. However, the driving mechanisms for such ionospheric currents are 

different between the present case and the previous case (section 4-2). Here, the 

y component electric field is given as VX6B Z. However, the zero-order convection 

is zero in section 4: the electric field has to be given as B Z8VX, and this 6VX is 

driven by the J x B force (I ySBz term). Both the R  term and the 8B Z term in 

(5-44) come from the 61 p x B force. According to the second equation, response 

of R  to the change of 8B Z is delayed. In order to simplify (5-43), we approximate 

(5-44) as

R Vz d— =  rjr— -z~f>Bz (5-45)
r i Ti dy

where 0 <  r]r <  1- Strictly speaking, r)r is time dependent; however, we take it to 

be a constant. For slow phenomena (scale time >  ti ) ,  this is a good approximation

because of T]r <C 1. Taking the full time derivative (d/dt) of (5-43), we have a

second order differential equation for D :

y § -  =  C K , D  +  1 % V rH v § - D  (5 -46)

where ky =  VrTj  (5 • 47)

This equation has the same structure as (4-66) o f section 4-2-4 . Both equations 

have the dispersive terms (last terms). As mentioned above, these terms come
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from the — <5)1# x B force. The solution for this equation is discussed later in 

section 5-4.

The wave of D  also generates a significant amount of the field-aligned current. 

Combining (5-37), (5-44) and (5-34), the field-aligned current is approximately 

expressed as:

S J ^ - r i r X p V ^  (5 -48)

Apparently, the senses of the field-aligned currents are opposite for the + 3/ prop­

agation and the —y propagation; it is consistent with both region 1 and region 2 

field-aligned currents.

5 -3 . I n c l u s i o n  o f  t h e  S e c o n d  D i m e n s i o n

In this section, we employ the 1-D  parallel compressional flow (cf. section 3-3) 

for the zero order. This flow includes the 1-D  standing wave without the field- 

aligned currents. The gradient of the zero-order n is parallel to the gradient of 

B z, as is automatically guaranteed by the 1-D assumption. This property and the 

Jz =  0 condition imply that the wave, if it exists, is a nonlinear extension of the 

linear R  =  0 mode wave. We now add the linear perturbation which varies in the 

perpendicular direction of the flow as is shown in Figure 5-1.
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Pressure

F igu re  5—1. Electric current in a finite amplitude wave. 
Wave reference frame coordinates (A”: propagation direction) 
are adopted. Pressure profile is indicated by solid lines. Since 
the inflow velocity (solid arrow) is expected to exceed C5, the 
electric current (open arrow) flows in + Y  direction. The wave 
amplitude, and hence, the current intensity change in the y di­
rection.
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The basic equations are (5-20) -  (5-27). According to the discussion in section 4­

2, nonzero I y causes y asymmetry through the dispersive term (last term of (4-66) 

of chapter 4) in the equation for D. The perturbation of 6 B Z causes x component 

convection 8VX through the magnetospheric I x  B force because the zero-order 

Iy is not zero. As shown in Figure 2-3, the convection electric field produces 

the x component Hall current in the ionosphere, and the Ip  x  B  force acts on 

the ionospheric plasma in the y direction. Its reaction force, which is represented 

by the last term (B Z8 IX term) in equation (5-21), causes the y  asymmetry. We 

concentrate on this mechanism under some simplified assumptions.

Since we study the wave, we do not include the conductivity gradient; we assume 

8T, =  0. We also assume that r2 is uniform too. Now, let us examine if we 

may assume that the first order quantities depend only on y. That does not 

necessarily mean (d/dx)8 B z =  0; i.e., (d/dx)(8B z/Bz) =  0 is also possible. Here, 

we take dR/dx =  0. In this sense, we assume that 8B Z/BZ and 8V x ŷ/Vx are x 

independent. Under these assumptions, equations for <5$ and 8 become

r\ r\
—  8 *  +  —  6 *  =  —B Z8VX -  VX8 B Z 
ay ox

£ »  -  =  B . 6 V ,

114

r\ r\
V * , / *  =  —B Z— 8 VX -  VX— 8B Z 

72 -  dV 2 8 ^  =  —B — 8V  *>:/ dy y
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and hence,

=  —y (B z8Vx +  VX8B Z) (5 - 49)

V Xyy6 V =  —y B z8 Vy

Equation (5-25) for <51*,y is rewritten as

6I X,„ =  ( f S H -  y S p )B ,V t ( ^  +  ^ )  (5 • 50)

Since we consider the mechanism mentioned above, we neglect the kinetic terms 

in (5-20); i.e., the deviation satisfies

«<” rt,- f r  +  £ >  =  °

We also assume, as we did in the previous chapter, that l / iq  d/dt I/T 2; i.e., 

the zero-order gradient is small, and the decay of R  is quick compared to the time 

scale of the field-aligned current. Under the above assumptions and with the help 

of (5-49) and (5-50), equations (5-20), (5-21) and (5-24) are simplified to

9 8 VX Iy 1 8VX 8B Z
=  z z r r 6B* ~  ~ ( " t -  +  - 5 - )

or

dt Vx mVx T jv Vx B z
Iv 1 , 8VX 8B Z

m fe 6B * = n ( - ^ +  b T ’ < S ' 5 1 )

d 8Vy 1 8 Vy 7T d 87T 1 8VX 8 B Z
dt Vx ~  r2 Vx mVx dy 7T E f  ra ( Vx +  B z }

T t6Vy =  - 7 T — -  (5- 52)dt dy m Ep m

—  8B Z — —D  (5 • 53)
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By taking the y derivative after multiplication by the second equation is further 

rewritten as

(5 -54)
dt dy 1 m S p  m dy

This equation is the same as (4-65) in chapter 4 in which the zero-order I y is 

expressed as B - I y =  dirjdx. Thus, equation (5-54) is a generalized form of (4-65) 

in chapter 4. As is expected, the last term comes from the Sip  x B  force, and this 

Hall current is driven by 8VX through the convection electric field.

Taking the time derivative of (5-54), we have

+  (5 -55)
dt dy 1 Ep m dy

where we used

d 8 n ~ D  . .

d i m = ~ C s T x ( 5 ' 56)

This equation is obtained if we also assume (d/dx)(8n/n) =  0. In this case, we 

may not assume the x independence for 8m/m because of the condition (5-51).

Equation (5-55) is the governing equation for the longitudinal wave ( D  mode) 

propagating perpendicular to the zero-order gradient. This form is more general 

than the final form of section 4-2-3 . According to (5-19), the current flows in the

-fy  direction if the inflow velocity exceeds Cs  as is the case with the nonlinear

fast mode wave. This situation is demonstrated in Figure 5-1. Otherwise, it is
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in the — y direction, which is the same as in section 4-2-3 . Thus, the sign of the 

coefficient of (5-55) is opposite from the previous cases.

5 - 4 .  A m p l i t u d e  M o d u l a t i o n  o f  W a v e s

The final equations of section 4-2-2 (equation (4-59) o f chapter 4), section 4­

2-3 (equation (4-65) of chapter 4), section 5-2 (equation (5-46)), and section 5-3 

(equation (5-55)) have the same form. Only the initial conditions and the signs of 

the coefficient for the last terms are different. Here, we consider a general form:

d2D „ 2 t d2D d D .
dt2 ~  ^  dz 2 + a  dz^  ( ^

where C% —
m

We set z =  x and a =  —kg >  Oin order to apply to 4 -2 -2 , while we set z =  y 

and a =  (E w/ E P)kB <  0 for 4-2-3, a  =  (S H/^P) {V 2/C2s )kg  <  0 for 5-2, and 

a  =  (E h /'Ep)(BzI y/mCg)  for 5-3. For simplicity, Cs  and a  are assumed to 

be constants. The coefficient a can be either positive or negative. The initial

conditions are given by D q =  D |t=o and D\ =  dD/dt\t=o- The solution of (5-57)

has to be different from the ordinary wave because of the effect of a. We examine 

the effect of a  on the original wave equation.
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Let us adopt the Fourier transform for the 2 which is defined as

/ oo
D (t , z ) e ~ ,kzdz (5 -58)

-OO
1 r°°

D(t,  z) — —  I D k(t)e'kzdk (5 -59)
^  J  — OO

If £>(2 =  ± 00) =  0, we may apply (5-58) to equation (5-57):

+  C f(fc2 -  ik a )D k =  0 (5 ■ 60)

118

d2D k , „ 2n2
d t 2

The general solution of this equation is

D k — c f ( k )  exp ( - iw t)  +  C f , ( k ) exp(iwt) (5 • 61)

)here u>2 =  C%{k2 — ika)  (5 ■ 62)wf

We consider modifications of the wave equation by a, and we can talce a  small. 

Therefore, u  is approximated as

u> =  Cs k -  — (5 ■ 63)
T~2

2
where r2 =  ——  (5 • 64)

C s<*

and D (t ,z )  is expressed as

t 1t  1  f
D ( t , z ) =  exp(------ )—  I Cf(k.)exp[ik(z — Cst)]dk

t 2 2tt J_ 00

t 1 r°°+  exp( — ) —  I Cb(k) exp[ik(z +  Cst)]dk (5-65)
r 2 27r J - 00

The first term corresponds to a forward propagating wave, and the second term 

corresponds to a backward propagating wave. The coefficients (Cf and cj) are
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determined from the initial conditions:
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/ oo
D 0( z ) e " k:dz

“OO

/ OO

D 1( z ) e~ tk2dz

-oo
or

1 ,00 1 ,00
Cf(k)  =  i  j  ^ D , ( z ' ) e - ik-'dz' -  —  j ^ D , ( z ' ) e - - l - dz’

1 r 00 1 fOO
C6 ( k ) = 2 j _  D o { z ' ) e ~ i k Z ' d z ' + 2 i k J _  D ^ z ' ) e ~ ikZ> d z '

Substituting C f ( k ) into the first terms on the left side of (5-65), the forward prop­

agating wave is calculated as

1 f 1 A°° roo
D f ( t ,z )  =  - e x p (  )[—  D 0(z')dz' e ^ - ^ - ^ d k

w *̂ 2 — — o o  J  — oo

1 /*°° r°° 1
/  D\{z')dz' - e ^ - 05* -2' ^ ]

2ttz y_oo fc
1 t y00

=  — exp( )[ I D 0(z')8 (z — Cst — z')dz'
2 t 2 J_ 00

- j  J  Z)1(2,,)(fr” 6(z — C s t — z')dz']

=  \ e xl? ( -  — )[Do(z ~  C s t) -  f  D 1(z,,)dzv]
2 t2 J

The backward propagating wave is calculated similarly. Combining both, the 

solution for D (t , z) is obtained as

D{t,2) =  ̂exP (—~ W C  = 2 -  cst)1 r2
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+  1 e x p ( -)W (C  =  * +  Cs t ) (5 • 66)
2 t~2

where W ( Q  =  A>(C) -  j  D ^z^dz '  (5 -67)

The first term of (5-66) represents a forward propagating wave while the second 

term represents a backward propagating wave. The sign of t 2 depends on the sign 

of a , and it determines whether the propagating wave grows or decays. In other 

words, the wave propagation is asymmetric along the y direction even though the 

zero-order configuration is symmetric.

Let us apply this result to the more general case (5-55). Since a — (E / / /E p )

(B zI y/mC%), sign(r2) =  sign(Iy) where I y is the zero-order current direction. 

Apparently, the wave is amplified in the — I y direction. For the case of section 4­

2—3, we have I y <  0, and hence, the wave is amplified in the + y  direction. Now, we 

consider a nonlinear wave in the plasma sheet travelling toward the tail (cf. section 

5-3). On the front side of the wave, the current flows dawnward. It is caused by 

the dynamo mechanism of the finite amplitude wave; i.e., the flow is decelerated 

losing its kinetic energy, and the current flows in the opposite direction to the 

convection electric field. That dynamo current has to connect with the region 1 

field-aligned current. Thus, the macroscopic wave on the region 1 field-aligned 

current system is amplified as it travels westward. However, on the other places, 

the wave is amplified as it travels eastward. Further discussions are presented in 

chapter 6 based on the numerical results.
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As mentioned in the previous sections, the a term comes from the y asymmetry 

of the I p  X B force. This force is responsible for the wave amplification or decay 

in the y direction. The longitudinal wave (6Vy ^  0) causes increase of B : VX 

by VX6B Z or by B Z8VX (in this case, I y8B z causes 8VX because I y ^  0). The 

additional convection electric field causes the ionospheric current, and hence, the 

J x B  force on the ionospheric plasma. The force caused by the Pedersen current 

is symmetric, while the part caused by the Hall current is asymmetric in the ± y  

directions. Therefore, its reaction force on the plasma sheet is asymmetric too; 

i.e., the reaction force enforces or decreases the pressure gradient restoring force 

of the wave.

Let us consider the energy. We have to consider the ultimate force that causes 

the asymmetry. For the case of section 5-3 or 4-2-3, I y8B t drives the convection 

8VX. Thus, the energy change by this force is I y8B Z8 VX, which is a second order 

quantity.

5 -5 . P e r t u r b a t i o n  f r o m  a  C i r c u l a r  F l o w

As it is one of the typical convection patterns observed in space [Hones et al., 

1983], we consider a circular flow. The zero-order equations axe given in section 3­

4 in which incompressible circular flow with Vr =  0 is assumed. Since our interest 

is the effect of the circular configuration, we assume d/d<f> =  0 for the first order
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quantities too. Therefore, for an arbitrary vector A XiJ/ and an arbitrary function 

/ ,  we have

=  f  J : « /

v . y « A , , ,  =  i | : ( r O r)

We assume that <5Ep =  8T,h — 0 because we have already studied this effect in

5-2. For the same reason, we also assume uniform B z (and hence, uniform n) as 

the zero order. This assumption provides rV^ oc 1 /r  from the zero-order Jz — 0 

condition. In this case, the centripetal force m V j j r  is to be balanced with the 

J x B force instead of the pressure gradient force. Under these assumptions, the 

field-aligned current is expressed as

(5 .68 )

Apparently, the change of V</, (which might be caused by the viscous-like inter­

action) causes the field-aligned current generation. The other first order basic 

equations (5-6) -  (5-10) are rewritten in (r, 6 ) cylindrical coordinates as:

6I'r =  Z PB ,V t ( 6- ^  +  6- ^ )  (5 -69)
V<t> &Z

81 ' =  | iLsrr (5 • 70)

m Wt8Wx'y =  “  T̂ j - L ^ rV^ f  ~  v *>yS7r

+  I ^ B ^ f  +  B z8Vt y x z
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d „ r 8 (m V 2) d c , r £D
or m.— 6Vr = --------------- “̂ “ ^7r +  l&vB zat r Or

+ S +  (5-71)

m| ^ = - S pB; V V ^  + ^ )  (5-72)

h 6m = ~ l t , D  ( 5 ' ? 3 )

L ( , =  - ? L d  (5 -74)
dt B z v '

£ - 6B z =  - D  (5 • 75)
dt

where D  =  —-Tr~(r^^r) (5 -76)r dr

R =  — %~(r8V+) (5 -77)
r or

From (5-77) and (5*72), the equation for R  is given as

j i | a  =  - E r f l . ( J l  +  V ^ W , )  (5 -78)

Therefore, the field-aligned current is also expressed as 8 J~ =  E pr^dR/dt,.

We study two cases: (1) nonzero 8V4, is given in the steady state; and (2) nonzero 

8 Vr is given in the steady state.

5 -5 -1 . P ure C ircular  F low

We consider a situation in which SV  ̂ 0 is given initially. This perturbation

can be caused by the viscous-like interaction. The initial value problem with

nonzero 8 V$ is essentially the same as 4-2-1 . We may simplify the basic equations
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with the assumption of SV# >  6 Vr. Since i l  >  D  according to (5-76) and (5-77), 

the main equation is (5-78). As is expected from the result of section 4 -2 -1 , we 

have a decay equation. However, this equation is modified by 6 B Z (and hence, D)  

because of the nonzero V$.

The effect of D ^  0 on the behavior of R  cannot be neglected if the SBz term 

becomes as large as the R  term in the equation for R. The equation for SVr is 

approximated as

J h y r ~  (5 ■ 79)
at r u p  T\

Substituting (5-79) and (5-76) into (5-75), we have

5 2 xn o n  n r  9  ^  ^  i  3W l SB, =  - 2 B , 6V ^ { -  -  T ( —  +  — - ) - ( r « U )

4 BzSV^V  ̂ 2 V<t, Ep 1
=  — p  ( T + e J T T 1

Since we have nonzero V^, we may set B zSV^jr smaller than R. Therefore,

2
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6B Z ~  —f l i Rt

where f lj  =  — -  +  ——̂— (5 • 80)
r u p  Ti

The decay equation (5-78) is rewritten as

=  +  (5 - s i )

This result is valid for small t when / ? > ■ £ ) ;  i.e., t has to be smaller than r jV^ 

and Tj.
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5 - 5 - 2 .  C y c l o n e - T y p e  F l o w

Circular flows with nonzero VT are typical phenomena both in space and on the 

earth. Even on the solar surface, some of the sunspots show this spiral flow. Here, 

we consider the vacuuming effect on the circular flow. We assume 8 V  ̂ — 0 instead 

of 6 Vr =  0 at (t =  0); i.e., we consider the effect of 8 Vr. Immediately following this 

assumption, we have R 0 =  0. Therefore, R  <C D  is assumed in the basic equations.

The basic equations for R  and D  under R  <C D  are

+  (5-82)

R  =  — e_t/,Tl T  e*'/n - i - 6B zdt‘ (5 ■ 83)
T\ Jo dr

where the field-aligned current is expressed as

6 Jz =  - 'L PV<i>— 6B z (5 -84)

The vacuuming in the circular flow (nonzero <5V'r) causes the field-aligned current 

generation. In other words, a cyclone-type structure in space [e.g., Hones et al, 

1983] is generating the field-aligned current. Note that 8Vr can be related to 6TZ; 

i.e., if we first have a <5Tz-like meteorological cyclone, that causes nonzero 8 Vr, St: 

and 6m.
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Let us examine the behavior of D.  Taking the time derivative of (5-82), we have 

d2D  „ , 1 3 ,  9 D S „ „  9 D
“ • a r  =  c | 7 a ; ( r a r ) - s ; v*T‘ a r  ( 5 ' 8 5 )

This equation has the same form as (5-47) of section 5-2, and the solution is to 

be given in the same manner as 5-4.
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C h a p t e r  6 .  N u m e r i c a l  S t u d y

The field-aligned current generation in the plasma sheet, coupled with the iono­

sphere, is studied by means of numerical simulations. The time evolutional equa­

tions axe integrated by the Two Step Lax Wendroff method [MacCormack, 1969], 

and a Poisson’s equation is solved by the method of Boisvert [1984], We specifi­

cally consider the situation when an enhanced convection (uniform) hits the inner 

edge of the plasma sheet [e.g., Jaggi and Wolf, 1973], i.e., the plasmapause. The 

resultant compression causes the increase of pressure there. We study the response 

of the M -I coupling system to this situation. For example, the redistribution of 

the pressure (that moves the plasma) and the field-aligned currents are studied. 

Therefore, our simulation box is located tailward of the inner edge of the plasma 

sheet. The meshes of the simulation box are 0.04 Lq x  0.04 Lq, and the box size 

is 1.6 l o  x 1-6 To- Note that L 0 h0 and hence, Lq »  1 Re (earth radius).

Since we consider the dynamics caused by the two-dimensional flow, we do not 

consider the effect o f Tz (unit mass transfer from z — h boundary). Therefore, we 

set u z =  0 and h — ho =  uniform.  We also neglect the change of the mapping 

point which is expressed by equation (2-29). In order to examine the validity of 

the numerical result, including the numerical instability, we perform a comparative 

study for different parameters, and also we compare the result with the analytical 

results.
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6 - 1 .  D i m e n s i o n l e s s  E q u a t i o n s

First, we obtain dimensionless basic equations. Let Vo, Bo, po, Po, and So be 

the initial values of B z, p, P,  and Ep at the inflow boundary. We normalize

the basic equations of chapter 2 by these reference values. The dimensionless time 

is defined as r =  (Vo/Lo)t where Lq is the length of the area under consideration. 

The dimensionless basic equations under the above assumptions are

=  x I) +  i ; , ,  (6 • i )
n o

+ 1" ;  («• 2)

J t m -  +  =  0 ( 6 -3 )

J U *  +  =  - ( 7  -  i k v ; „ - v ; iS, (6 • 4)

| : b ;  +  v ; i„-(b ; v ; i, )  =  o ( 6 -5 )

n r : =  +  W )  +  ’ ’ ( g p * *  +  W )  (6  • 6 )

<  =  +  v ; b : )  +  s<«  +  v »‘ ■®: )  ( 6 ' 7)

=  (6 - 8) 

=  - v ; iS. ( v ; , „ b ; )  ( 6 - 9 )

where x* =  x / L 0, y* =  y / L 0, =  V x,y/V0, B* =  B z/B0, p* =  p /p 0, P* =

P /P 0, £ (p ^  =  S (pm)/S o , =  S ^ / S o ,  m* =  m/(p0ho), tt* =  tt/(P 0fc0), **
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=  <a/{L0V0B 0), l*x,y =  I * , » / (B 0//io), Jt =  Jz/(Bo/noL0), M A =  V0/(B0/y/iim), 

M s  =  Vq/y/Po/po, 0  =  P0/{Bl/2no) =  2M\/M\, and 17 =  l / ( / i 0£ 0Vo). In order 

to see the effect of the Hall conductivity, we simulate for different T,*H values; i.e., 

T,*h is treated as a parameter, like 77 and £x/£y 

The condition (2-9’ ) becomes

0  =  0 ( 1)

The magnetospheric part o f the plasma sheet current I™* is given externally, and 

has to satisfy =  0. Also, £*/£„, £ p ,  and are given externally.

Since we apply the Two Step Lax Wendroff method [MacCormack, 1969], we 

rewrite the time evolutional equations in conservative forms. The continuity equa­

tion (6-3), energy equation (6-4), and the induction equation (6-5) are already in 

the conservative forms. The momentum equation is rewritten as

=  - M s 2j p  +  (6 • 10)

|r(m-v;) + v;,,-(m*v;v;,,)

=  - M s 2-d£  -  r , M ^ l ;B t  +  ( « • n )

The equation set (6-2) -  (6-11) is simpler than the ordinary 2-D MHD equations 

because the (r , y) components of the induction equation are replaced by the iono­

spheric Ohm’s law. In this sense, Ampere’s law is not included, which is the
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same assumption as in the convection model [Harel et al., 1981; Wolf and Spiro, 

1985]. The numerical stability of these basic equations must be better because we 

have the resistive terms in the momentum equations because of the ionospheric 

conductivity.

6 -2 . E n h a n c e m e n t  o f  P l a s m a  S h e e t  C o n v e c t i o n

As mentioned above, we consider the situation when an enhanced earthward 

convection hits the inner edge of the plasma sheet, and compresses the plasma. 

Since our simulation box is located tailward o f the inner edge of the plasma sheet, 

the effect o f the compression does not exist inside the box. In this way, we may 

assume the initial flow uniform inside the simulation box at r =  0. We set the 

simplest initial condition: 'P* =  0, V* =  0, J* =  0, and uniform V*, B*, m*, 

and 7r*. Since all the above quantities are uniform in the present case, we have 

V* =  1, m* — 1, B* =  1, 7r* =  1, and Ep =  1 as the initial conditions. Accord­

ing to the momentum equation, we immediately have I* =  0. Therefore, the 

magnetospheric part of the plasma sheet current is

r m *    t *    j i *
1 X  X
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This I™* is assumed to be constant throughout the simulation; i.e., we do not 

study the effect of the temporal change of the J x B  driving force. For the same 

reason, we can assume the boundary values of I'c*y to be constant throughout the 

simulation too.

Next, we consider the boundary conditions associated with the compression 

by enhanced convection at the inner edge of the plasma sheet. We increase the 

pressure at the outflow boundary. This condition is common for several different 

physical situations. For example, if we set p =  const at the same boundary, 

the situation is simply an increase of the temperature. In this case, the plasma 

heating takes place on the downstream boundary. If the density also increases 

such that it satisfies p oc at that boundary, the density increase takes place

downstream, obeying the polytropic law. However, unless the magnetic field on 

that boundary is specified, we may not distinguish if the density increase is caused 

by the compression of the convection, or the injection of the plasma from the 

z =  h boundary (Tz =  0 assumption is not imposed at the boundary). If B z also 

increases accordingly, we may consider that the situation represents the plasma 

compression. We consider this case. Practically, we set the outflow p and B z
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conditions according to

dm* 1 dn*
dr 7 dr

_  dB* 
dr

where d[dr  is the Lagrange derivative.

Let us describe this condition explicitly in terms of the mesh points (i, j ) .  We 

take a fluid element on the outflow boundary at r  =  t „ ,  where n is the time step. 

Since the quantities at the outflow boundary are the results of the convection, the 

boundary values at t — rn can be determined in terms of the previous (r  =  

values of the same fluid element at the previous position of this fluid element. In 

this procedure, we just need to know the total time (Lagrange) derivative, or the 

compressibility V x,y-Vx,y, instead. Thus, V x^ -V ^ j, is the only quantity that we 

may specify; i.e., we may not specify more than two quantities at the same time 

on the outflow boundary. Note that we presumed Tz =  0 also at the boundary. 

Otherwise, we may specify m* and tt* independently. In this case, we may consider 

the temperature increase as mentioned above.

Here, we specify the pressure instead of V IiS- V Ii } , and the other quantities are 

determined in terms of V tiS' V I ir  This method is essentially the same as Leith's 

method [1965] by which we may avoid the mismatch of the outflow boundary con­

ditions caused by the over-determination. We specify the pressure in the present
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situation. The other quantities, not only m* and J9*, but also m*V* y, are de­

termined in terms of this Leith’s method as they are written in the conservative 

forms. Note that there are additional terms in the momentum equation caused by 

the pressure gradient force and the J x B  force.

Now, we impose the pressure increase at the outflow (i =  1) boundary:

,j(n ) =  C1 +  ^rn)7ri, j(0) f or n <  no

*1 ,j(n ) =  f o r  n <  n 0

where n is the time step and A is a constant factor. The compression is expressed 

as

133

V* -V* -
x'y x'y 77r* A r

where A r*  is the change of the pressure of the same fluid element from r „ _ j  to r„, 

and 7f* is the average of the pressure of these two points. The pressure increase 

on the outflow boundary is the greatest in the center and smoothly diminishes 

towards the dusk or dawn side edge. Eventually, the degree of the pressure increase 

is linearly interpolated between the center and the dawn or dusk side edge on the 

outflow boundary. The pressure increase continues constantly from n =  0 to no. 

We increase the pressure up to twice its initial value in r =  2. According to the 

linear analysis, this condition can excite the waves because of not only D  ^  0
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but also of d D / d t  0 at the outflow boundary. In the present simulation, A t  is 

determined for each time step according to the velocity as

A 1 M in (A r , Ay)
T _  4 Umax +  Cs

Let us move to the other boundaries (upstream and sides). The boundary values 

may not be determined externally because the change of these boundary values 

should be the result of the propagation (or conduction) of the change of the pres­

sure from the outflow boundary. Practically, we set a ‘free’ boundary condition for 

the inflow boundary and side boundaries. That ‘free1 condition provides constant 

values until the effect of the pressure change arrives there, and also provides an 

inelastic boundary for waves; i.e., any deviations that belong to the wave propa­

gating normal to the boundary are all transmitted through those boundaries, and 

the amplitudes of the reflected waves are negligibly small. This ‘free1 boundary 

condition is achieved by setting the first spatial derivative in the normal direction 

as zero. In fact, the wave is reflected at these boundaries if we do not employ the 

‘free1 boundary condition.

6 -3 . N u m e r i c a l  R e s u l t s

There are several parameters that are given externally. We do not study all 

combinations of these parameters. We first choose a basic set of parameters, and
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later, we change these parameters one by one so that we may compare and study 

the different value of each parameter. The examined parameter sets are listed in 

Table 6-1.

6 -3 -1 . W a v e  F o r m a t i o n

Figures 6- l a  to 6-1 d show the numerical results (nonlinear) at 100, 250, 500 

and 1500 time steps, respectively, when rj =  1, £x/£y — 1, £ #  =  0.5, M \ — 0.2, 

j\f| =  0.5 (i.e., /? =  0.8), 7 =  1 (isothermal), and T* =  0. The top left panels 

show the pressure 7r*, the top right panels show the velocity V * y, the bottom left 

panels show the field-aligned current J*, and the bottom  right panels show the 

magnetospheric current I x,y The distributions of B z and p are similar to that of 

the pressure, and hence, we do not show them here. Since we set the background 

pressure uniform at r  =  0, there is no background current such as the dawn to 

dusk current. In the real magnetosphere, we have to add such currents to the 

‘ total’ current in the figure.

As one can recognize from Figure 6- l a  (r  =  0.41), the increased pressure at the 

outflow boundary propagates in the form of a wave. As is shown in section 4-4, we 

have only one mode o f propagating a wave in the (x , y) direction (perpendicular to 

B ). The wave front is characterized by a dusk to dawn current as well as the steep 

pressure increase. This is followed by a gradual increase of the pressure. Since the
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Table 6—1. Parameters o f Numerical Models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

PRESSURE VELOCITY

MAX *  1.21E+00 MAX «  1 .00E +00

DC . IY

(a )
Figure 6—1. Numerical results for basic parameters. They 
are rj =  1, £x/£y =  T *̂h =  0-5, =  0.2, A/J - 0.5 (i.e.,
f3 =  0.8), 7 =  1 (isothermal), and T* =  0. Results at (a) 100 
time steps, (b) 250 time steps, (c) 500 time steps, and (d) 1500 
time steps are listed. The top left panels show the pressure tt*, 
the top right panels show the velocity V* , the bottom  left 
panels show the field-aligned current J*, and the bottom  right 
panels show the magnetospheric current I* . The distributions 
of B * and p are similar to that of the pressure, and hence, we 
do not show them here.
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PRESSURE VELOCITY

FAC

MAX =  1 .0 1 E + 0 0  

DC , IY

Figure 6—1 (b) 250 time steps (r  =  1.03)
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PRESSURE VELOCITY

FAC

UAX =  1 .0 1 E + 0 0  

IX . IY

F igure 6 -1  (c) 500 time steps (r  =  2.05)
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VELOCITY

t r r r r r r r r ~ r :
MAX =  1 .0 0 E + 0 0  

IX . IY

MAX =  1 .4 2 E -0 1

Figure 6—1 (d) 1500 time steps (r  =  6.12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRESSURE

FAC



convection electric field is duskward, the current satisfies the dynamo condition:

I • E < 0. The kinetic energy of the convection changes to electromagnetic energy 

because of this wave. The divergence of the dusk to dawn current produces a pair 

of field-aligned currents. Its sense is of the region 1 field-aligned current’ s; i.e., 

the field-aligned current flows into the ionosphere on the dawn side, and flows out 

of the ionosphere on the dusk side. The intensity of the field-aligned current is 

0.3 on the normalized scale, that is, the order of 10- 7 A /m 2 in the ionosphere. 

It agrees with the observation [e.g., Kamide et al., 1986]. Since the inner edge 

of the plasma sheet is located outside (downstream) of the simulation box, the 

region 2 field-aligned current does not necessarily exist in the present result. An 

asymmetry is found between dawn and dusk in the pressure. This asymmetry 

comes from the Hall conductivity as is examined later.

The simulation code is examined for the linear case; i.e., when the pressure 

increase is as small as 10%. The qualitative feature is the same as Figure 6-1, and 

is consistent with the linear analysis for waves as is shown below.

Now, let us compare 100 time steps (r  =  0.41) and 250 time steps (r  =  1.03). 

The thickness of the wave in terms of the field-aligned currents decreases: the wave 

is steepening as it propagates. The field-aligned current distribution at 250 time 

steps is more complicated; a new pair of intense field-aligned currents is found 

at the downstream side of the first pair. The flow directions of the field-aligned
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currents axe opposite between this pair and the first pair; i.e., the second pair flows 

with the region 2 field-aligned current’s sense.

A more complicated feature is found at 500 time steps (r  =  2.05). The wave 

propagation is faster on the dawn side than the dusk side. The intensities of the 

field-aligned currents are much stronger in the dusk side than in the dawn side for 

both pairs. This result is consistent with the analytical result of sections 5-3 and

5-4 because the current is flowing from dusk to dawn. The asymmetry has been 

attributed to the ionospheric Hall current in these sections. We study the effect 

of the ionospheric Hall conductivity later in this chapter too.

We also observe a wake-like structure behind the intense field-aligned currents. 

However, it is not certain whether this wake-like structure is actual or merely 

numerical noise, especially in the vicinity of the side boundaries. These (artificial 

or real) wakes first appear on the dawn side (250 time steps). Pressure decrease 

behind the wave contributes to the formation of the wakes. Later, at 500 time 

steps, they appear on the dusk side too and the dusk side wakes remains longer 

after the dawn side wakes propagate out of the upstream boundary. At 1500 time 

steps (t =  6.12), only the dusk side wakes exist. In order to find out whether 

the wake structure behind the wave is actual or artificial, we have to simulate for 

different parameters and compare the results. Therefore, we do not claim it is 

the wake structure. Note that the small structure at the vicinity of the outflow
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boundary is an artificial one caused by the solid boundary condition. Other than 

the wake-like structure, the distributions at 1500 time steps can be considered 

as the asymptotic states; the pressure distribution of the convection is such that 

there is no field-aligned current. This is consistent with the analytical result. In 

fact, the convection is divergence-free and rotation-free, and the B z distribution 

is very similar to the pressure distribution so that V P  is parallel to V|B|. The 

y component of the plasma sheet current is dawn to dusk on the noon-midnight 

meridian and is divergence-free.

According to section 3-3, the resultant current direction (dusk to dawn) implies 

| VT | > Cs  on the wave reference frame. This is also verified directly from the figure. 

The wave propagates 1.3 L0 in 500 time steps (r  =  2.05); i.e., the propagation 

speed is 0.68 on the simulation box. Adding the flow velocities on the upstream 

side (=1.0) and on the downstream side (=0.75), the convection velocities with 

respect to the wave are given as 1.7 and 1.4 on the upstream and the downstream 

sides, respectively. It is a few hundred km/sec in the real space. On the other 

hand, the normalized sound speed can be calculated as M =  1.4, which is the 

same as the downstream side convection velocity. The Mach number is nearly 1.2 

at the upstream side whereas it is nearly unity at the downstream side. Note that 

the sound speed does not change through the wave because 7 =  1.
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Let us identify the wave mode. As is studied in section 4-4, there exists only one 

propagating wave mode (the MHD fast mode wave) on the convection reference 

frame. The MHD fast wave propagates with the local sound speed in the present 

system. If the wave is nonlinear, the convection velocities on the upstream side 

have to be larger than the sound speed. Also, the changes of the pressure and the 

magnetic field are in phase for the feist mode wave. Both features are observed for 

the simulated wave. We may conclude that it corresponds to the MHD fast mode 

wave.

The MHD fast wave does not generate field-aligned currents in the linear ap­

proximation. Even the nonlinear wave does not generate field-aligned currents if 

the wave is one dimensional as shown in section 3-3. In fact, on the meridian fine in 

the simulation box (y =  0), we do not observe the field-aligned currents. However, 

the wave amplitude changes in the y direction because of the outflow boundary 

condition. As the result, the wave front carries the finite pressure change, and 

it provides the background pressure gradient in the y direction while the wave 

propagates in the x direction. In this case, the R  (Alfven ) mode and the D  (fast) 

mode are coupled through the ionospheric Hall current as shown in section 4-4.

The dynamo mechanism is strong in the center and weak on the dawn/dusk 

sides. That causes the divergence of the dynamo current to generate the second
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pair of field-aligned currents. Figure 6-16 also shows that the second pair of field- 

aligned currents is the result o f the divergence o f the x component current. The 

divergence of Iz contributes both pairs of the field-aligned currents. Therefore, 

the first pair is always stronger than the second pair.

According to section 4-4, the field-aligned current (R mode) is excited by the 

MHD fast mode (D  mode), which is essentially independent of the field-aligned 

current generation. The simulated wave in the simulation keeps the features of 

the MHD fast mode (propagation direction, propagation speed, change of B  and 

7r axe in phase, and compression at the wave front) except that it is accompanied 

by the field-aligned currents. If the R  mode becomes separated from the D  mode, 

it is possible that smaller field-aligned current systems are convected downstream 

as the decaying Alfven mode.

Let us apply this result to the substorm. The simulated wave might correspond 

to the poleward expansion after the substorm onset. According to Figure 2-1, the 

poleward corresponds to the tailwaxd. The expansion is slightly faster on the dawn 

side, and it generates the region 1 field-aligned currents according to the present 

result. The more intense field-aligned currents on the dusk side is also observed. It 

might contribute to the westward travelling surge, though it is not very clear. Both 

phenomena are considered large-scale, as is the present model. The complicated 

field-aligned current patterns associated with the wake-like structure, if it is not
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numerical noise, can explain the complicated field-aligned current patterns around 

local midnight.

6 -3 -2 . E f f e c t  o f  C o n v e c t i o n  V e l o c i t y

Figures 6-2a and 6 -2b (200 and 400 time steps, respectively) show the results 

when we set M\  =  0.4 instead of 0.2. All the other parameters are the same as 

in the previous case except the same /? value implies AIg  =  1.0 instead of 0.5. 

M s  =  1.0 means that a linear D  mode wave does not move in the simulation box 

reference frame. However, the propagation speed of the finite amplitude wave is 

faster than the sound (the MHD fast mode) speed as is seen in Figure 6-1. Thus, 

the wave is still propagating upstream.

The features at 200 time steps (r  =  1.00) are essentially the same as the previous 

case, with some minor differences. The dawn-dusk asymmetry is more clear in the 

present case according to the pressure. Since the propagation velocity is slower in 

Figure 6-2 than Figure 6-1, quantities such as the pressure and the field-aligned 

current have steeper gradients. Thus, we can see the intense plasma sheet currents 

and field-aligned currents near the wave. Their amplitudes are more than twice 

those of Figure 6-1. The steeper gradient introduces a numerical instability on the 

wake-like structure (or numerical noise). Especially, a severe instability appears 

on the dawn side near the outflow boundary at 400 time steps (r  =  1.96). It is
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F igure 6—2. Numerical results when M\  =  0.4 instead of 0.2. 
All the other parameters are the same as in the previous case 
except the same /? value implies iV/J =  1.0 instead of the 0.5 
of Figure 6-1. Results at (a) 200 time steps and (b) 400 time 
steps are listed.
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F igure 6 -2  (b) 400 time steps (r  =  1.96)
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a crucial one so that the simulation breaks down at 400 time steps. Even though 

we have the crucial instability near the boundary, the wave itself is outstanding as 

is clearly recognized from the figure, partly because the wave amplitude is much 

larger than the wake. Actually, we may not recognize any clear wakes except the 

one that causes the instability mentioned above. Thus, only one pair of intense 

field-aligned currents exists near the wave front, and we cannot recognize any other 

field-aligned currents associated with the wake.

These results are the same if we set M \  =  0.3 instead of 0.4; i.e., M% =  0.75 

instead of 1. In this case, the amplitude of the numerical instability is still large, 

while the amplitude of the wave is smaller. Therefore, the results are not as clear 

as in the above two cases.

Next, we reduce the convection velocity. Figures 6-3a (300 time steps) and 6-36 

(600 time steps) show the results when we set M \  =  0.1. All the other parameters 

are the same as in Figure 6-1 and Figure 6-2 except the M s  value; i.e., A/| =  0.25 

because f3 values are the same. Since both the sound speed and the Alfven speed 

are doubled compared to the convection velocity, we can expect that the wave 

propagation speed is also doubled, which is the opposite case from Figure 6-2.

The information of “pressure increase” propagates upstream with the expected 

speed. However, according to the results at 300 time steps (r  =  0.99) none of four 

panels shows the formation of a steepened nonlinear wave: the pressure change
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(a)
Figure 6—3. Numerical results when M\ — 0.1. All the other 
parameters are the same as in Figure 6-1 and Figure 6-2 except 
the M s  value; i.e.. M| =  0.25 because 0 values are the same. 
Results at (a)300 time steps and (b) 600 time steps are listed.
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Figure 6—3 (b) 600 time steps (r  =  1.97)
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is smooth; the dusk to dawn current does not exist clearly; and there is no field- 

aligned current system traveling upstream. This is the outstanding difference from 

the previous cases. After the faint wave propagates outside of the boundary, we 

have an asymptotic state. The distributions after 600 time steps (r  =  1.97) are 

very similar to each other, and to Figure 6-1 d.

The difference of the parameters between Figure 6-1 and Figure 6-3 is only 

by a factor o f 2 in the convection velocity. This small change causes a critical 

difference in the resultant field-aligned current distribution. If the convection 

velocity is slower than a certain value, the wave is no longer steepened. The field- 

aligned currents associated with the wave are very weak (much less than half of 

Figure 6-1) for both the region 1 type and the region 2 type. Let us consider 

the enhancement of the plasma sheet convection. The above result implies that 

the field-aligned current system appears suddenly if the convection exceeds some 

critical velocity. In other words, the onset o f the field-aligned current generation 

during the substorm depends on how much the convection is enhanced. This 

critical value is determined in terms of the other physical conditions such as the 

background pressure, magnetic field, ionospheric conductivity, dawn-dusk extent 

of the enhanced convection, etc..

The slower convection velocity suppresses the instabilities: we may expect more 

stable results (as we can expect from the comparison between Figure 6-1 and
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Figure 6-2). This is true for the dawn and dusk boundaries.

6 -3 -3 . E f f e c t  o f  B a c k g r o u n d  M a g n e t i c  F i e l d

Figures 6 -4 a to 6-4c (250, 500 and 1500 time steps, respectively) show the 

results when the magnetic pressure is halved; i.e., we set M \ — 0.4 and f3 — 1.6. 

All the other parameters, including M s, are the same as in Figure 6-1. The 

morphological results at 250 time steps (r  =  1.03) are similar to the results of 

Figure 6-1, e.g., the dawn-dusk asymmetry, existence of the similar wave, and the 

similar pattern of the field-aligned current distribution. Since the wave is the MHD 

fast mode, the difference in the magnetic pressure does not affect the propagation 

speed, which is essentially determined by M g.

However, we can point out some minor difference from Figure 6-1 if we compare 

at 500 time steps (r  =  2.05). The simulated wave propagates slightly slower in 

the present case. Since only the Alfven velocity is different (C s  is the same), 

the MHD fast mode wave simulated here is slightly coupled to the Alfven mode. 

This coupling is already implied from that fact that the wave is accompanied by 

the strong field-aligned currents. The lower Alfven velocity suppresses the wave 

propagation velocity. Another difference is found in the wake like structure. They 

are much weaker in the present case, and hence, the simulation is numerically 

stable near the boundaries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

PRESSURE VELOCITY

MAX =  1 .0 1 E + 0 0

FAC IX . IY

1®
'.1—

iU l /
w i t /

MAX =  8 .9 9 E -0 1 (a)
Figure 6—4. Numerical results when — 0.4 and 0  =  1.6. 
The magnetic pressure is halved. All the other parameters, 
including M s, are the same as in Figure 6-1. Results at (a) 
250 time steps, (b) 500 time steps, and (c) 1500 time steps are 
listed.
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Figure 6—4 (b) 500 time steps (r  =  2.05)
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Figure 6—4 (c) 1500 time steps (r =  6.08)
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Even though the morphologies axe similar between Figure 6-1 and Figure 6­

4, the values of the plasma sheet currents axe different. There is a factor of 2 

difference for the plasma sheet current at 1500 time steps between Figure 6-1 and 

Figure 6-4 (r  =  6.08). The field-aligned current intensity associated with the 

wave shows a factor of \/2 difference as is obtained from result at 100 time steps 

(r  =  0.41). Let us interpret the factor o f 2 by looking at the momentum equation 

(6-1). In the asymptotic state, the first term and the second term on the right 

hand side of (61 )  have to be balanced:

f  v ; . , x -  =  ,  a ;

The normalized pressures in the figures axe the same. Hence, the difference in (3 

has to be the same as the difference in the I x B force. Since B* does not change 

from its original value =  1, the difference in I * compensate the difference of (3 

between Figure 6-1 (/? =  0.8) and Figure 6-4 (/? =  1.6). Therefore, the asymptotic 

plasma sheet current is twice as large in Figure 6-4 as in Figure 6-1.

Figures 6-5a and 6 -5 b (100 and 250 time steps, respectively) show the results 

when the magnetic pressure is doubled from Figure 6-1 instead of halved as in the 

previous case. We set M \  =  0.1 and j3 — 0.4, and keep all other parameters the 

same as in Figure 6-1 and Figure 6-4. Some of the present results are consistent 

with what are expected from the above discussion for the previous results.
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F igure 6—5. Numerical results when M \ =  0.1 and 3 =  0.4. 
The magnetic pressure is doubled from Figure 6-1 instead of 
halved in the previous case. We keep all other parameters the 
same as in Figure 6-1 and Figure 6-4. Results at (a) 100 time 
steps and (b) 250 time steps are listed.
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Figure 6—5 (b) 250 time steps (r =  1.03)
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1 . We have the MHD fast mode wave with a similar but slightly faster propa­

gation velocity compared to Figure 6-1 because of the larger Alfven velocity. 2. 

The current intensity of the accompanied field-aligned currents at 100 time steps 

( t  — 0.41) is smaller in Figure 6-5 than in Figure 6-1 by a factor of \/2. S. 

The wake-like structure (or numerical noise) exist more clearly. 4- The numerical 

instability is more severe, so that the result is not reliable after 250 time steps 

(r  =  1.03). This severe numerical instability is introduced at the wakes of the 

wave, and is amplified at the dawn boundary. It breaks down the simulation it­

self before it reaches the asymptotic state. The wake phenomenon is numerically 

unstable when it hits the boundary.

Let us compare the effect of C s  (or M s)  and the effect of Va (or M a)- The 

present results are similar to Figure 6-1 (the only difference is the Va value) rather 

than Figure 6-3 (the only difference is C s  value) except for the wake structure. If 

we reduce M §  to 0.25, the same as in Figure 6-3, while we keep M \  the same as 

in Figure 6-1 ( — 0.2), again the wave is not well developed as is shown in Figures 

6- 6<x (300 times steps) and 6- 6 b (600 time steps).

Thus, the sound speed, not the Alfven speed, is important for the wave gener­

ation and its propagation. On the other hand, the parameter M a or /3, not the 

sound speed, might be important for the formation of wake behind the wave. This
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Figure 6—6. Numerical results when A/J =  0.25 and 13 =  1.6. 
We keep all other parameters the same as in Figure 6-1. Results 
at (a) 300 time steps and (b) 600 time steps are listed.
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Figure 6—6 (b) 600 time steps (r  =  1.94)
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is also supported from the comparison between Figure 6- 6a and Figure 6 -3 a as 

well as the comparison among Figures 6-1, 6-4, and 6-5.

6 -3 -4 . E f f e c t  o f  A d i a b a t i c  C o m p r e s s i o n

Next, we examine the effect of 7 . Figures 6 -7a (300 time steps) and 6-76 (600 

time steps) show the results when we set 7 =  2.0 instead of unity; i.e., an adiabatic 

case instead of an isothermal case. All the other parameters are the same as in 

Figure 6-1. The morphological result is between those of Figure 6-1 and Figure 

6-3.

At 300 time steps (r  =  0.99), the wave is wide-spread and is barely recognizable; 

it is not well developed, and it smears away as it propagates. The intensity of the 

field-aligned currents at the front of the propagation is less than half that of Figure 

6-1. The other quantities are very similar to those of Figure 6-3. The asymptotic 

state at 20 time steps (r  =  1.97) is also similar to Figure 6-36. Since Figure 6-3 

demonstrates a slow convection case, the ratio of the plasma pressure to the kinetic 

pressure is high compared to Figure 6-1. This is also the case with Figure 6-7 

because the pressure increase rate is more than doubled, which causes substantial 

change in M s  from its initial value. The M s  value decreases as the higher pressure 

moves upstream. Thus, the kinetic and the plasma pressure balance is important 

for the wave formation.
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Figure 6—7. Numerical results when 7 =  2.0 instead of unity. 
This is an adiabatic case instead of an isothermal case. All the 
other parameters are the same as in Figure 6- 1. Results at (a) 
300 time steps and (b) 600 time steps are listed.
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Figure 6—7 (b) 600 time steps (r  =  1.97)
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6 -3 -5 . E f f e c t  o f  I o n o s p h e r i c  C o n d u c t i v i t y

Now, we examine the effect of the ionospheric conductivity; i.e., the effect of 

different (but still uniform) 77. Figures 6- 8a (100 time steps) and 6-86 (250 time 

steps) show the results when the ionospheric conductivity is larger than in Figure 

6-1 by a factor of 5 (77 =  0.2). All the other parameters axe the same as in Figure 

6-1; i.e., M \  =  0.2, M| =  0.5 (/? =  0.8), 7 =  1.0, Y,*H — 0.5, and £x/£y =  1.

Let us compare Figure 6-1 and Figure 6-8 for 50 times steps (r  =  0.41). Even 

though M s  and M a , respectively, axe the same as in Figure 6-1, the wave prop­

agation velocity is apparently faster in the present case. However, the quantities 

associated with the wave are similar; e.g., the dusk to dawn current intensity, and 

the field-aligned current density on the wave. As suggested from the previous cases 

(Figure 6-1 through Figure 6-7) the wave steepens less if its propagation is faster 

in the simulation box’s reference frame. This implication also holds in the present 

case. This result suggests the role o f ionospheric resistance: the wave propagates 

faster if the medium is more rigid and the wave propagates slower if the medium 

is more viscous. Since the conductivity is high, we do not have strong ‘viscosity’ 

in the present case.

The numerical instability originating from the wake-like structure at the outflow 

boundary dominates as early as 250 time steps (r  =  1.03). This instability is 

already recognizable at 100 time steps (r  =  0.41). A larger value of the ionospheric
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F igure 6 -8 . Numerical results when r/ — 0.2 instead of unity. 
The ionospheric conductivity is larger than in Figure 6-1 by a 
factor of 5. All the other parameters are the same as in Figure 
6-1; i.e., M\  =  0.2, M j =  0.5 (/3 =  0.S), 7 =  1.0, =  0.5,
and £x/£j/ =  1- Results at (a) 100 time steps and (b) 250 time 
steps are listed.
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F igure 6—8 (b) 250 time steps (r  =  1.03)
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conductivity means smaller dissipation, which might cause the instability. This 

result suggests the effect of artificial resistivity in the regular MHD simulation 

code [e.g., Miura, 1985].

The opposite case is also examined. Figures 6-9a to 6 -9 c (100, 250, and 500 time 

steps, respectively) show the results when r) — 5.; i.e., the ionospheric conductivity 

is 5 times smaller than in Figure 6-1. All the other parameters are the same as 

in Figure 6-1 and Figure 6-8. The wave propagation speed at 100 time steps 

(r =  0.41) is slightly slower them that of Figure 6-1. This difference is not as 

obvious as in the previous case, i.e., between Figure 6-1 and Figure 6-8, which 

suggests that the result o f Figure 6-9  cannot easily implied from the previous 

results.

The wave-associated current and, especially, field-aligned currents are weaker 

(nearly half) than in Figure 6-1. The ratio o f the field-aligned current intensity 

in Figure 6-9 to in Figure 6-1 is not 5, but nearly 2. Note that the field-aligned 

current intensities are similar between Figure 6-1 and Figure 6-8. The field- 

aligned current intensity at the ionosphere is not proportional to the ionospheric 

conductivity even though the plasma sheet conditions are the same. The plasma 

sheet also regulates the ionospheric current. While the plasma sheet current in 

Figure 6-9a decreases from Figure 6 - l a  by a factor of 1.8, the decrease o f field- 

aligned current intensity near the wave is by a factor of 2.3. The wave-associated
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Figure 6—9. Numerical results when r] =  5.0. The iono­
spheric conductivity is 5 times smaller than in Figure 6-1. All 
the other parameters are the same as in Figure 6-1 and Figure 
6-8. Results at (a) 100 time steps, (b) 250 time steps, and (c) 
500 time steps are listed.
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Figure 6—9 (b) 250 time steps (r  =  1.03)
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Figure 6—9 (c) 500 time steps (r  =  2.02)
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current decreases more than the closed part of the current in the plasma sheet. 

Thus, the ionosphere current decreases more in Figure 6-9.

The wave structure is also different from Figure 6-1. The second pair (region 2 

type) of field-aligned currents is absent at 250 time steps (r  =  1.03). It appears 

at 500 time steps (r  =  2.02). The wave does not have many structures behind it 

as this result indicates. This result also holds for the wake: there is no apparent 

wake-like structure behind the wave.

Let us study the effect of the Hall conductivity by changing the ratio o f the Hall 

conductivity to the Pedersen conductivity. Figures 6-10a (250 time steps) and 

6-106 (1500 time steps) show the results when =  0. All the other parameters 

are the same as in Figure 6-1. Since the ionospheric dissipation is related to the 

Pedersen conductivity, the main feature has to be the same.

At 250 time steps (r  =  1.03), we again see the generation of the MHD fast mode 

wave accompanied by two pairs o f field-aligned currents. The propagation speed 

and the field-aligned current intensities are similar to those of Figure 6-1. Both 

figures contain the wake structures behind the wave. The morphology and values 

at the asymptotic state at 1500 time steps (t =  6.19) are also very similar to the 

case of Figure 6-1. However, all panels are essentially dawn-dusk symmetric in 

Figure 6-10. Thus, the asymmetry in Figure 6-1 is caused by the ionospheric Hall 

current.
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Figure 6—10. Numerical results when =  0. All the other 
parameters are the same as in Figure 6-1. Results at (a) 250 
time steps and (b) 1500 time steps are listed.
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The ionospheric I ^ x B  force is asymmetric in the dawn and the dusk directions 

if the magnetospheric convection is sunward as shown in Figure 2-3. Its reaction 

force is also asymmetric, and it is transmitted to the plasma sheet, causing the 

asymmetry. In fact, the ionospheric Hall current causes the phase shift when the 

incident Alfven wave is reflected at the ionosphere. This phase shift causes the 

rotation of the the electric field, and hence, the rotation of the convection direction 

from its original symmetric direction in the plasma sheet. Since the Alfven wave 

transition time is assumed zero between the ionosphere and the plasma sheet, the 

asymmetric reaction force is transmitted to the plasma sheet simultaneously.

For the MHD fast mode wave in Figure 6-1, the ionospheric Hall current (i.e., its 

closure 1̂ . ) is stronger on the wave. The direction of such a current in the plasma 

sheet is in the -x direction (tail to earth), enhancing the field-aligned currents on 

the dusk side and reducing the field-aligned currents on the dawn side. This is 

why we have more intense field-aligned currents on the dusk side o f the wave. Note 

that this discussion holds where the amplitude change is the greatest, i.e., on the 

wave, but not the wake. If we map this result to the ionosphere, the field-aligned 

current intensity is greater in the premidnight sector, which is is consistent with 

the ionospheric observations.

6 - 3 - 6 .  E f f e c t  o f  G e o m a g n e t i c  F i e l d  C o n f i g u r a t i o n
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Finally, we examine the geometrical effect of the mapping. Among many com­

plicated geometric factors, we only consider the difference between £x — d x t/dx 

and £y =  d y jd y ;  i.e., how much the geomagnetic field converges from the plasma 

sheet to the ionosphere. Since the plasma sheet is stretched in the day-night ( i )  

direction, we normally have a situation that £x <  £y <C 1. However, we study both 

£x/£y — 2 and £x / £ y  =  0.5 cases.

Figures 6-1 la  (100 time steps) and 6-1 lc  (250 time steps) show the results when 

£x/£y =  2. All the other parameters are the same as in Figure 6-1; i.e., T) =  1, 

E ^  =  0.5, 7 - - 1.0, M \  =  0.2, and — 0.5 (0  =  0.8). The distributions at 100 

time steps (r  — 0.41) are very similar to those of Figure 6-1: a similar wave with 

a similar propagation speed, and similar field-aligned currents.

The similarity is also found for 250 time steps (r  =  1.03) with commonly existing 

wake-like structures even though it could be numerical noise. However, we can 

point out some minor differences. The intensity of the field-aligned current at 100 

time steps is different from in Figure 6-1 by a factor of 1.5.

We have a more severe instability in the present case. We can attribute it to 

the increase of the convection velocity; the velocity is doubled if we observe it in 

the ionosphere. Thus, this situation might correspond to a low rj case. In fact, 

the morphological features are similar between Figure 6-11 and Figure 6- 8, even 

though there are still minor differences, especially for the current intensities.
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F igure 6 -1 1 . Numerical results when (x/ty =  2.0 instead of 
unity. All the other parameters are the same as in Figure 6­
1; i.e., 77 =  1, S /, =  0.5, 7 =  1.0, M \ =  0.2, and M% =  0.5 
(i3 =  0.8). Results at (a) 100 time steps and (b) 250 time steps 
are listed.
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Contrary to the previous case, we set £z/£y =  0.5 and keep all the other param­

eters the same as in Figure 6-1 or Figure 6-11. The results are shown in Figures 

6-12a to 6-12c (250, 500, and 1500 time steps). If we apply the above discussion 

of the effective ionospheric conductivity, this case corresponds to a larger rj case 

such as in Figure 6-9. This is true only for the morphology of the wave; e.g., there 

is less wake-like structure behind the wave, slightly slower propagation speed, and 

a similar field-aligned current distribution except its intensity. These features are 

found at both 250 time steps (r  =  1.03) and at 500 time steps (r  =  2.06).

However, as also mentioned above in Figure 6-11, the quantitative details are 

different. This wave steepens more, and carries slightly more intense field-aligned 

currents than the wave of Figure 6-1, while Figure 6-9 shows a weak field-aligned 

current compared to Figure 6-1.

At 1500 time steps (r  =  6.13), the pressure distribution is more stretched toward 

the night side. This is because the same mapping point of the ionosphere maps 

more tailward due to the larger value. Since the pressure gradient in the x 

direction is different, the dawn-dusk component of the plasma sheet current is 

weaker in Figure 6-12 than in Figure 6-1. In this case, V P  x B  has to be smaller.

As we can expected from Figure 6-9, the wake-like structure (or numerical 

noise) is not well developed, and hence the simulation is numerically stable at 

the side boundary. Since the wave is well steepened while a wake does not exist
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Figure 6—12. Numerical results when £r/£y =  0.5. We keep 
all the other parameters the same as in Figure 6-1 or Figure 
6-11. Results at (a) 250 time steps, (b) 500 time steps, and (c) 
1500 time steps are listed.
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clearly, the wave structure can be recognized very clearly at 200 time steps. If we 

increase t°  5.0, the numerical instability appears as early as 250 time steps

(r  =  1.03). Therefore, we do not show this case here.

6 - 4 .  R e g i o n  1 F i e l d - A l i g n e d  C u r r e n t  G e n e r a t i o n

Figure 6-13 shows the field-aligned current generation mechanism from the 

wave. If the wave is one dimensional, there is no field-aligned current as is shown in 

section 4-2-2. However, it is not a plane wave. In this case, the vorticity changes 

across the wave as shown in Figure 6-13. The ionospheric dissipation causes the 

change of the vorticity. Thus, the field-aligned current is generated. The vorticity 

is related to the divergence of the electric field. Through the wave, the kinetic 

energy of the convection is converted to electromagnetic energy; i.e., the current 

flows as a result o f a dynamo mechanism. In fact, the plasma sheet current flows 

in the opposite direction to the convection electric field. Therefore, the direction 

of the field-aligned current is of the region 1 field-aligned current.
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F igure 6—13. Field-aligned current generation from the 
plasma sheet. The field-aligned current is generated from the 
MHD fast mode wave. (a) Because of the curvature of the wave 
front, the magnetospheric current has a divergence. It is related 
to the change of the vorticity. Even though the inflow convec­
tion does not have vorticity, the vorticity is generated in the flow 
because of the ionospheric dissipation, (b) The convection ve­
locity, and hence, the convection electric field, decrease through 
the wave. Since the wave has curvature, the electric field di­
verges. Mapping to the ionosphere, the electric field causes the 
divergence of the Pedersen current also. Both (a) and (b) ex­
plain the field-aligned current generation consistently.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  7. C o n c l u s io n

The generation of the large-scale field-aligned currents due to plasma sheet 

dynamics has been studied. We first formulated the two-layer model, which is 

composed of a height-integrated plasma sheet, a height-integrated ionosphere, and 

a massless magnetosphere between them. The Alfven wave transition time is zero 

in the massless magnetosphere. We may still height integrate the plasma sheet even 

though the geomagnetic field bends if we assume some symmetry. We introduced 

the reaction force of the ionospheric J x B force to the plasma sheet dynamics. We 

call it the ionospheric ‘drag force’ . This force is included in the magnetospheric 

J x B force. We obtained the basic equations in the plasma sheet. The ionospheric 

quantities and the Ohm’s law are mapped to the plasma sheet. The basic equations 

are essentially the same as the MHD equations, while the induction equation of 

the MHD is replaced by the ionospheric Ohm’s law.

Next, we studied the evolution of initial small perturbations in terms o f linear 

analyses. We introduced the quantities

D =  V x<y-{B z6V Xty) (4 -21)

R =  V T,yi B z6V x,y x z)  (4 • 22)

The D  /  0 and R  ^  0 modes correspond to the MHD fast mode and the Alfven 

mode waves (or field-aligned currents), respectively. The behavior o f the D  mode
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and the R  mode is slightly different from the ordinary MHD waves. In the uniform 

and static background plasma, the R  mode decays with a time constant t x —  

m /( S p B ? )  where m is the height-integrated mass density in the plasma sheet 

and Ep is the height-integrated ionospheric Pedersen conductivity mapped to the 

plasma sheet. The R  mode does not propagate on the height-integrated plasma 

sheet, to which the geomagnetic field is perpendicular. Instead, it is transmitted 

back and forth between the plasma sheet and the ionosphere with zero transition 

time, and the ionospheric Joule dissipation causes the decay of this mode. The 

coupling with the ion< >sphere introduces substantial effect of the finite conductivity 

into the ordinary MHD.

If the background plasma has a pressure gradient, the Alfven mode and the fast 

mode are coupled through the ionospheric ‘ drag’ force. Thus, the fast mode wave is 

accompanied by the field-aligned current. This wave, if it propagates perpendicular 

to the zero-order pressure gradient, obeys (d2/dt2 — C$d2/dy2)D  — adD /dy ), 

where C s  is the sound speed. The a  term comes from the ionospheric ‘drag’ force 

due to the ionospheric Hall current. The ionospheric Hall current is caused by 

the secondary convection generated by I  x 6B* where I is the magnetospheric 

zero-order current. The wave is amplified either in the -fiy or the —y direction 

depending on the sign of a, which contributes to the dawn-dusk asymmetry of the 

field-aligned current distribution.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We also numerically simulated the plasma sheet dynamics and the field-aligned 

current generation during the polewaxd expansion of auroral substorms. We con­

sidered a situation in which an enhanced magnetospheric convection hits the inner 

edge of the plasma sheet and increases the pressure there. The results axe sum­

marized as follows and in Table 7-1.

1. A finite amplitude MHD fast mode wave begins to propagate upstream across 

the geomagnetic field as illustrated in Figure 7-1. This wave might correspond 

to the poleward expansion of the aurora substorm. Since it is a finite amplitude 

wave, the propagation speed with respect to the enhanced convection is slightly 

faster than the local sound speed. The wave is accompanied by two pairs of intense 

field-aligned currents as indicated in the figure.

2. The first pair of field-aligned currents on the front side of the wave flows 

out of the plasma sheet on the dawn side and flows into the plasma sheet on the 

dusk side. The flow directions axe the same as those of the region 1 field-aligned 

current. The field-aligned currents are connected to the dusk to dawn current, 

which is generated by the dynamo mechanism (deceleration of the flow) of the 

wave.

S. The second pair of field-aligned currents on the back side of the wave flows 

in the opposite direction to the first pair; i.e., the flow directions are the same 

as those of the region 2 field-aligned current. It is connected to another plasma
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Table 7 -1  Numerical Results

Figure Time Ml Ml P 7 V Jz wake

Default
6-1

>6r 0.2 0.5 0.8 1.0 1.0 +0.5 1.0
E.E+ E

6-2 2 r 0.4 1.0 - - - - - S.S++ E

6-3 - 0.1 0.25 - - - - - - -

6-4 - 0.4 - 1.6 - - - - S.E+ W

6-5 I t 0.1 - 0.4 - - - - E.E s
6-6 - - 0.25 1.6 - - - - -

6-7 - - - - 2.0 - - - W -

6-8 lr - - - - - 0.2 - - E.W s
6-9 - - - - - 5.0 - - E.E+ w

6-10 - - - - - - - 0 - E.E+ E

6 11 - - - - - - - 2.0 E.E s
6-12 - - - - - - - 0.5 E.E++ w

S: strong, E: exist, W: weak or not recognized 
S.W: first pair is strong, second pair is weak 
+  : well steepened

6S
I
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\

Earth \

F igure 7—1. Summary of the numerical results. The MHD 
fast mode wave propagates tailward. This wave might corre­
spond to the poleward expansion of the auroral substorm. The 
wave carries a dusk to dawn current due to the dynamo mech­
anism. It is connected to the region 1 field-aligned currents in 
both the dawn side and the dusk side. The wave is more steep­
ened in the premidnight sector, which is also consistent with 
observations. In some cases, a wake-like structure appears. If it 
is actual (i.e., not numerical noise), it might explain the com­
plicated field-aligned current distribution in the midnight sector 
during substorms.
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sheet current which flows along the wave normal, i.e., in the earth-tail direction. 

Divergence of this current produces both pairs of the field-aligned currents as 

shown in the figure. In other words, the first pair o f the field-aligned currents 

(region 1 sense) comes from both currents (dawn-dusk and earth-tail directions) 

on the plasma sheet, and hence, it is stronger than the second pair. Note that we 

excluded the inner edge of the plasma sheet where the main part of the region 2 

field-aligned currents are believed to originate [Wolf and Spiro, 1985].

4 . The wave propagation speed, and hence, the degree of the steepening are 

asymmetric between the dawn side and the dusk side. The wave propagates faster 

on the dawn side, and it expands more dawnward than duskward. On the other 

hand, the wave is more steepened on the dusk side, and the field-aligned current 

intensity is greater on the dusk side. The asymmetry’’ comes from the ionospheric 

‘drag’ force due to the ionospheric Hall current.

5. The wave has a wake-like structure for some cases; e.g., for larger B z, for 

smaller 7 , and for larger Ep cases. This wake-like structure, however, could be 

artificial caused by numerical noise. If this structure is actual, it can explain 

complicated field-aligned current patterns in the midnight sector. This structure 

has the dawn-dusk asymmetry also.

6 . If the convection velocity (in terms of the sound speed) is large, the wave is 

more intensified and the wave propagation speed is slower. In this case, we have
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a fine structure of the field-aligned current system. If the convection is slower, 

the wave is not well steepened. After the wave propagates out of the upstream 

boundary, a quasi-steady state is achieved without any outstanding field-aligned 

current systems. We obtain very similar asymptotic states even if we change the 

ionospheric Hall conductivity.

7. If the convection is very slow, we do not have a propagating wave, and the 

field-aligned currents do not exist.

8 . A high 7 (adiabatic case) causes a high pressure, and hence, a substantially 

slower convection. In this case, the wake-like structure (or numerical noise) is 

more faint, and the wave propagation is faster.

9. The ionospheric Pedersen conductivity introduces dissipation into the plasma 

sheet. If the conductivity is large (low 7), the wave propagates faster, and hence, 

there is less steepening. If it is small, on the other hand, the wake-like structure is 

less obvious while the wave is well steepened. The field-aligned current intensity 

(for the region 1 type) is not very sensitive to the ionospheric conductivity.

10. The tailward stretch of the geomagnetic field contributes more steepening 

of the wave with less wake-like structure. The field-aligned current is slightly more 

intense in this case.

As we have summarized above, the poleward expansion during the substorm can 

be understood as the tailward propagation of the finite amplitude MHD fast mode
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(D  mode) wave. The region 1 field-aligned current is generated from that wave. It 

is connected to the dusk to dawn plasma sheet current which is generated by the 

dynamo mechanism of the wave. The location of this field-aligned current with 

respect to the poleward expansion agrees with observation. Once a small fraction 

of the field-aligned current is separated from the wave, it might be convected 

downstream as a decaying R  mode. This earthward motion might account for the 

individual aurora arc’s equatorward motion during the substorm. Because of the 

‘drag’ force due to the ionospheric Hall current, the wave is not symmetric with 

respect to the noon-midnight meridian. Thus, the field-aligned currents associated 

with the wave are stronger on the dusk (premidnight) side. This asymmetry also 

matches with the observation of the westward travelling surge on the region 1 

field-aligned current, system.

When the basic equations were formulated, many assumptions were employed for 

the large-scale M -I coupling system. The model now quantitatively explains sev­

eral phenomena simultaneously. That partly provides the rationale of the present 

model, and hence, the present assumptions.
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