13 research outputs found

    The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance

    Get PDF
    SARS-CoV-2ラムダ株のウイルス学的・免疫学的性状の解明. 京都大学プレスリリース. 2021-12-23.SARS-CoV-2 Lambda, a variant of interest, has spread in some South American countries; however, its virological features and evolutionary traits remain unknown. In this study, we use pseudoviruses and reveal that the spike protein of the Lambda variant is more infectious than that of other variants due to the T76I and L452Q mutations. The RSYLTPGD246-253N mutation, a unique 7-amino-acid deletion in the N-terminal domain of the Lambda spike protein, is responsible for evasion from neutralizing antibodies and further augments antibody-mediated enhancement of infection. Although this mutation generates a nascent N-linked glycosylation site, the additional N-linked glycan is dispensable for the virological property conferred by this mutation. Since the Lambda variant has dominantly spread according to the increasing frequency of the isolates harboring the RSYLTPGD246-253N mutation, our data suggest that the RSYLTPGD246-253N mutation is closely associated with the substantial spread of the Lambda variant in South America

    Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant

    Get PDF
    SARS-CoV-2オミクロンBA.2.75株(通称ケンタウロス)のウイルス学的性状の解明. 京都大学プレスリリース. 2022-10-12.The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5

    N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation

    Get PDF
    宿主がHIV-1感染を抑制する新たなメカニズムの解明 --N4BP1によるRNA分解とその調節がウイルス再活性化を調節する--. 京都大学プレスリリース. 2019-05-29.RNA-modulating factors not only regulate multiple steps of cellular RNA metabolism, but also emerge as key effectors of the immune response against invading viral pathogens including human immunodeficiency virus type-1 (HIV-1). However, the cellular RNA-binding proteins involved in the establishment and maintenance of latent HIV-1 reservoirs have not been extensively studied. Here, we screened a panel of 62 cellular RNA-binding proteins and identified NEDD4-binding protein 1 (N4BP1) as a potent interferon-inducible inhibitor of HIV-1 in primary T cells and macrophages. N4BP1 harbours a prototypical PilT N terminus-like RNase domain and inhibits HIV-1 replication by interacting with and degrading viral mRNA species. Following activation of CD4+ T cells, however, N4BP1 undergoes rapid cleavage at Arg 509 by the paracaspase named mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1). Mutational analyses and knockout studies revealed that MALT1-mediated inactivation of N4BP1 facilitates the reactivation of latent HIV-1 proviruses. Taken together, our findings demonstrate that the RNase N4BP1 is an efficient restriction factor of HIV-1 and suggest that inactivation of N4BP1 by induction of MALT1 activation might facilitate elimination of latent HIV-1 reservoirs

    Structural Insight into the Resistance of the SARS-CoV-2 Omicron BA.4 and BA.5 Variants to Cilgavimab

    No full text
    We have recently revealed that the new SARS-CoV-2 Omicron sublineages BA.4 and BA.5 exhibit increased resistance to cilgavimab, a therapeutic monoclonal antibody, and the resistance to cilgavimab is attributed to the spike L452R substitution. However, it remains unclear how the spike L452R substitution renders resistance to cilgavimab. Here, we demonstrated that the increased resistance to cilgavimab of the spike L452R is possibly caused by the steric hindrance between cilgavimab and its binding interface on the spike. Our results suggest the importance of developing therapeutic antibodies that target SARS-CoV-2 variants harboring the spike L452R substitution

    The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant

    No full text
    Summary: Recent studies have revealed the unique virological characteristics of Omicron, particularly those of its spike protein, such as less cleavage efficacy in cells, reduced ACE2 binding affinity, and poor fusogenicity. However, it remains unclear which mutation(s) determine these three virological characteristics of Omicron spike. Here, we show that these characteristics of the Omicron spike protein are determined by its receptor-binding domain. Of interest, molecular phylogenetic analysis revealed that acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidated that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue of another protomer in the spike trimer, conferring the attenuated cleavage efficiency and fusogenicity of Omicron spike. Our data shed light on the evolutionary events underlying the emergence of Omicron at the molecular level

    Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant

    No full text
    The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern(1). In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2.Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion(2,3), the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity

    Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5

    No full text
    Abstract The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants
    corecore