京都大学
KYOTO UNIVERSITY

Title	N4BP1 restricts HIV－1 and its inactivation by MALT1 promotes viral reactivation
Author（s）	Y amasoba，Daichi；Sato，Kei；Ichinose，T akuya；Imamura， Tomoko；Koepke，Lennart；Joas，Simone；Reith，Elisabeth； Hotter，Dominik；Misawa，Naoko；A kaki，K otaro；Uehata， Takuya；Mino，T akashi；Miyamoto，Sho；Noda，Takeshi； Y amashita，A kio；Standley，Daron M．；Kirchhoff，Frank； Sauter，Daniel；Koyanagi，Y oshio；Takeuchi，O samu
Citation	Nature Microbiology（2019），4（9）：1532－1544
Issue Date	2019－09
URL	http：／hdl．handle．net／2433／244207
Right	This is the accepted manuscript of the article，which has been published in final form at https：／doi．org／10．1038／s41564－019－ 0460－3．；The full－text file will be made open to the public on 27 November 2019 in accordance with publisher＇s T erms and Conditions for Self－A rchiving＇．；This is not the published version．Please cite only the published version．この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Type	Journal A rticle
Textversion	author

N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation

Daichi Yamasoba ${ }^{1,2,5}$, Kei Sato ${ }^{3,6,7}$, Takuya Ichinose ${ }^{1,2,5}$, Tomoko Imamura ${ }^{2}$, Lennart Koepke ${ }^{8}$, Simone Joas ${ }^{8}$, Elisabeth Reith 8, Dominik Hotter ${ }^{8}$, Naoko Misawa ${ }^{3}$, Kotaro Akaki ${ }^{1,2,5}$, Takuya Uehata ${ }^{1,2}$, Takashi Mino ${ }^{1,2}$, Sho Miyamoto ${ }^{4}$, Takeshi Noda ${ }^{4}$, Akio Yamashita ${ }^{9}$, Daron M. Standley ${ }^{10}$, Frank Kirchhoff ${ }^{8}$, Daniel Sauter ${ }^{8}$, Yoshio Koyanagi ${ }^{3}$ and Osamu Takeuchi ${ }^{1,2^{*}}$
${ }^{1}$ Department of Medical Chemistry, Graduate School of Medicine, ${ }^{2}$ Laboratory of Infection and Prevention, ${ }^{3}$ Laboratory of Systems Virology, ${ }^{4}$ Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, ${ }^{5}$ Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
${ }^{6}$ CREST, Japan Science and Technology Agency, Saitama 322-0012, Japan.
${ }^{7}$ Department of Systems Virology, Institute for Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
${ }^{8}$ Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
${ }^{9}$ Department of Molecular Biology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
${ }^{10}$ Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3 Yamada-oka, Suita, Osaka 565-0871, Japan
*e-mail: otake@mfour.med.kyoto-u.ac.jp.

Abstract

RNA modulating factors not only regulate multiple steps of cellular RNA metabolism, but also emerge as key effectors of the immune response against invading viral pathogens including human immunodeficiency virus type-1 (HIV-1). However, cellular RNA binding proteins involved in the establishment and maintenance of latent HIV-1 reservoirs have not been extensively studied. Here, we screened a panel of 62 cellular RNA binding proteins and identified NEDD4 binding protein 1 (N4BP1) as potent interferon-inducible inhibitor of HIV-1 in primary T cells and macrophages. N4BP1 harbors a prototypical PIN-like RNase domain and inhibits HIV-1 replication by interacting with and degrading viral mRNA species. Upon activation of CD4 ${ }^{+}$T cells, however, N4BP1 undergoes rapid cleavage at Arg509 by the paracaspase MALT1. Mutational analyses and knockout studies revealed that MALT1-mediated inactivation of N4BP1 facilitates the reactivation of latent HIV-1 proviruses. Taken together, our findings demonstrate that the RNase N4BP1 is an efficient restriction factor of HIV-1 and suggest that inactivation of N4BP1 by induction of MALT1 activation might facilitate elimination of latent HIV-1 reservoirs.

Introduction

Host cells are equipped with sophisticated mechanisms to prevent or inhibit viral infection. HIV-1 replication, for example, is targeted by a plethora of restriction factors including APOBEC3, TRIM5 α, Tetherin, SAMHD1, GBP5 and MX2 ${ }^{1-10}$. Although these factors may suppress HIV-1 replication at various steps through multiple independent mechanisms, they are usually counteracted or evaded by the virus. Another characteristic shared by many host restriction factors is their inducibility by type I interferons (IFNs), which play a pivotal role in the host defense against viral infection 11,12.

In search of novel effective antiretroviral mechanisms, nucleic acid binding proteins are of particular interest since they are not only important regulators of antiviral gene expression, but may also act as direct effectors of the antiviral immune response ${ }^{13,14}$. Furthermore, they may modulate sensing of viral infection by binding to and/or degrading viral RNA or DNA species or by directly acting as pattern recognition receptors. One example of a nucleic acid-binding protein with antiviral activity is the zinc-finger antiviral protein (ZAP). Initially, ZAP was shown to degrade mouse leukemia virus (MLV) RNA by recruiting the exosome complex ${ }^{15,16}$. ZAP recognizes RNA sequences enriched in CG dinucleotides, which are suppressed in the genomes of HIV-1 and many other vertebrate viruses ${ }^{17}$. As a result, HIV-1 engineered to contain a higher number of CG dinucleotides is more sensitive to ZAP than the respective parental virus. Another example of an antiviral nucleic acid binding protein is SAMHD1. This dNTP triphosphohydrolase blocks HIV-1 reverse transcription in myeloid cells and resting T cells by depleting cellular dNTP pools ${ }^{9,10,18}$. Finally, the endoribonuclease Regnase-1 (also known as MCPIP1) has been suggested to degrade retroviral mRNAs ${ }^{19}$. Given the large number of human RNA binding proteins identified in recent studies ${ }^{20,21}$, it seems highly likely that additional RNA binding proteins with key roles in antiviral immunity remain to be discovered. As the example of SAMHD1 illustrates ${ }^{22,23}$, some of these
restriction factors might be preferentially active in resting $\mathrm{CD}^{+} \mathrm{T}$ cells and play a role in the establishment and maintenance of latent HIV-1 reservoirs.

To discover novel restriction factors targeting viral RNA, we screened a collection of cellular proteins containing various RNA binding domains for antiretroviral activity.

Results

Identification of N4BP1 as a host factor inhibiting HIV-1

To identify as-yet-unknown host restriction factors suppressing HIV-1 replication by binding to viral RNA, we selected 62 expression plasmids from mammalian gene collection (MGC) clones encoding proteins harboring at least one RNA binding domain, such as CCCH- or CCHC-type Zinc Fingers (ZF), KH domains or RNase folds (see Supplementary Table 1), since proteins harboring these domains may be involved in the suppression of HIV-1 ${ }^{17,19}$. We co-transfected HEK293T cells with the infectious HIV-1 NL4-3 molecular clone and the 62 expression plasmids, and determined infectious HIV-1 yield in the culture supernatants by infecting TZM-bl indicator cells 48 hours post-transfection. Of the 62 proteins analyzed, NEDD4 binding protein 1 (N4BP1) was the most potent inhibitor, decreasing infectious HIV-1 NL4-3 production by >20-fold (Fig. 1a). Immunoblot analysis of cells producing HIV-1 NL4-3 or the primary HIV-1 isolate AD17 revealed that N4BP1 expression decreased the expression of viral Env and Gag proteins in a dose-dependent manner (Fig. 1b). Analyzing a broader panel of primate lentiviruses, including transmitted/founder (TF) and chronic control (CC) HIV-1 strains, we found that N4BP1 reduced infectious yield of all HIV-1, HIV-2 and SIVcpz strains examined (Fig. 1c and Supplementary Fig. 1). Thus, N4BP1 is a broad and potent inhibitor of evolutionarily diverse primate lentiviruses.

N4BP1 is IFN-inducible and restricts HIV-1 infection in human T cells

Since antiretroviral host restriction factors are frequently inducible by IFN and virus infection, we examined if the expression of N4BP1 is IFN-inducible in T cells. IFN- α stimulation of Jurkat T cells increased N4BP1 expression at both the mRNA and protein level (Fig. 2a and 2b). Similarly, N4BP1 expression was induced about 3-fold by IFN- α stimulation in CD^{+}T cells from healthy human donors (Fig. 2c). Notably, all 12 human IFN- α subtypes, but not IL-27, increased N4BP1 protein levels by about 2- to 4-fold in
primary $\mathrm{CD} 4^{+}$T cells (Supplementary Fig. 2a and 2b). Furthermore, HIV-1 NL4-3 infection induced the expression of mRNAs encoding IFN- β, N4BP1 and the IFN-inducible proteins Tetherin/BST-2 and ISG15 in Jurkat cells (Fig. 2d). N4BP1 gene expression was also significantly upregulated in the spleens of HIV-1 infected humanized mice (Fig. 2e). Collectively, these data show that N4BP1 is a type I IFN- and HIV-1-inducible protein with potent anti-HIV-1 activity.

To determine whether endogenous N4BP1 restricts HIV-1 in human T cells, we used the CRISPR/Cas9 system to generate seven Jurkat cell lines lacking N4BP1 expression (Fig. 2f, left panel). HIV-1 replicated with faster kinetics in all seven N4BP1-deficient (KO) cell lines compared to Cas9-expressing control cells in response to HIV-1 infection (MOI 0.01) (Fig. 2f, right panel). Reconstitution of N4BP1 expression via a doxycycline-inducible Tet-on system (Fig. 2g, left panel) rescued inhibition of HIV-1 replication (Fig. 2g, right panel). Noteworthy, growth, apoptosis rates, or global protein synthesis were not altered between control and N4BP1 KO Jurkat cells without HIV-1 infection (Supplementary Fig. 3a-3c). Furthermore, N4BP1 deficiency did not affect the expression of a set of host genes such as IFNB and NFKBIA (Supplementary Fig. 4a). Consistently, the expression of IкB α, Tubulin- α and GAPDH proteins was not different between control and N4BP1 KO Jurkat cells (Supplementary Fig. 4b), suggesting that the anti-HIV-1 effect of N4BP1 is direct and not mediated by the regulation of host genes. In agreement with the results of N4BP1 KO cells, siRNA-mediated knockdown of N4BP1 in Jurkat cells (Supplementary Fig. 5a) resulted in a marked increase in viral RNA expression 72 h after infection with HIV-1 NL4-3, without significantly affecting IFNB expression levels (Supplementary Fig. 5b and 5c).

Conversely, we also generated four Jurkat cell clones stably over-expressing N4BP1 or a control vector (Fig. 2h, left panel). N4BP1 over-expression fully prevented HIV-1 replication at low MOI (0.001) (Fig. 2h, central panel). Even at higher MOI (0.01), N4BP1 over-expression prevented or substantially delayed HIV-1 replication (Fig.
$\mathbf{2 h}$, right panel). Furthermore, the expression of viral RNAs including tet/rev, vif and gag was suppressed in N4BP1 over-expressing Jurkat cells (Supplementary Fig. 5d and 5e). These results demonstrate that N4BP1 restricts HIV-1 replication in human T cells.

Since two out of four N4BP1 overexpressing Jurkat cell clones allowed delayed but detectable replication of HIV-1 (Fig. 2h), we examined whether N4BP1 expression was altered in these cells following HIV-1 infection. To avoid artifacts due to differences in viral replication and spread of infection, we used an env-deficient ($\Delta e n v$) VSV-G-pseudotyped HIV-1 NL4-3 construct (Supplementary Fig. 5f). Consistent with the results obtained with replication-competent HIV-1, production of Gag was suppressed in N4BP1 overexpressing cells compared to control cells in single cycle infection. Notably, however, N4BP1-mediated inhibition of Gag expression was less pronounced at higher MOI, suggesting that high amounts of HIV-1 may saturate the inhibitory effect of N4BP1. Furthermore, HIV-1 infection did not reduce N4BP1 expression levels (Supplementary Fig. 5f).

N4BP1 restricts HIV-1 in primary macrophages

IFN- α induced N4BP1 mRNA and protein expression not only in T cells (Fig. 2a-2c) but also in THP-1-derived macrophage-like cells (Fig. 3a and 3b). In addition, we found that N4BP1 is constitutively expressed in primary human monocyte-derived macrophages (MDMs) and further upregulated by IFN- α stimulation (Fig. 3c-3e). To examine the antiretroviral activity of N4BP1 in primary macrophages, we knocked down N4BP1 using three different siRNAs (Fig. 3f) before infecting the cells with the macrophage-tropic HIV-1 strain AD8. The three N4BP1-specific siRNAs increased infectious HIV-1 AD8 yield by 6.5-, 10.8- and 2.6-fold, respectively, at day 3 and by 16.2-, 14.8- and 4.3 -fold by day 6 post-infection (Fig. 3g). Thus, N4BP1 restricts HIV-1 in both $\mathrm{CD}^{+} \mathrm{T}$ cells and macrophages.

N4BP1 degrades HIV-1 RNA

To decipher the molecular mechanisms underlying the antiviral effect of N4BP1, we investigated whether its inhibitory activity is limited to HIV-1 and related primate lentiviruses. Overexpression of N4BP1 in HEK293T cells also inhibited MLV; genus Gammaretrovirus) and human foamy virus (HFV; genus Spumavirus) (Fig. 4a). However, N4BP1 failed to suppress influenza A virus mRNA expression in HEK293T cells (Supplementary Fig. 6a). Furthermore, N4BP1 overexpression did not reduce production of infectious influenza A virus in HEK293T cells (Supplementary Fig. 6b), arguing against a general and unspecific effect of N4BP1 on viral RNA expression.

Since N4BP1 reduces both HIV-1 mRNA and protein expression levels, we analyzed whether it affects proviral transcription via the long terminal repeat (LTR) using a reporter system expressing luciferase under the control of the viral LTR promoter. While NL4-3 $\Delta e n v$ induced reporter gene expression, co-expression of N4BP1 failed to suppress HIV-1 LTR-mediated gene expression (Supplementary Fig. 7a). In contrast, N4BP1 suppressed HIV-1 expressed under the control of the CMV promoter (pCMV259), but did not affect EGFP expression from the same promoter (Supplementary Fig. 7b and 7c). Together, these results suggest that N4BP1 suppresses HIV-1, but not EGFP, at a post-transcriptional level.

N4BP1 was originally identified as a target of the E3 ubiquitin ligase NEDD4, resulting in its proteasomal degradation in the nucleolus and promyelocytic leukemia (PML) bodies ${ }^{24,25}$. N4BP1 harbors a potential nuclease domain in addition to two KH domains, which represent canonical single-stranded nucleic acid binding domains (Fig. 4b) ${ }^{26}$. The nuclease domain of N4BP1 is highly conserved among mammalian species and structurally predicted to form a catalytic pocket with conserved aspartic acids (Fig. 4c). Using a subgenomic sequence of HIV-1 NL4-3 as substrate, we found that recombinant N4BP1 degrades viral RNA in vitro (Fig. 4d and Supplementary Fig. 8a). Structural modeling of the human N4BP1 RNase domain revealed that it harbors a
catalytic center whose structure and primary amino acid sequence is similar to that of Regnase-1 (Fig. 4e and Supplementary Fig. 8b). A point mutation of Asp623, which is predicted to be essential part of the catalytic center, to Asn (D623N) fully abrogated the RNase activity of N4BP1 (Fig. 4d). Importantly, structural modeling suggests that the D623N mutation does not alter the overall structure of the RNase domain of N4BP1 (Fig. 4e).

Consistently, Northern blot analysis showed that N4BP1 reduces un-, singlyand multi-spliced viral mRNAs in an RNase activity-dependent manner, while ribosomal RNA was not affected (Fig. 4f). In contrast, incoming viral RNA was not degraded as knockdown of N4BP1 did not significantly alter the amount of early or late reverse transcriptase (RT) products or the amount of integrated proviral DNA in infected Jurkat cells (Supplementary Fig. 8c).

To test whether N4BP1 directly binds HIV-1 RNA, we performed an RNA immunoprecipitation (RIP) assay using the N4BP1 D623N mutant, in which the RNA-protein interaction is expected to be stable due to the lack of RNase activity. The RIP-qPCR assays revealed that the N4BP1 D623N mutant binds several HIV-1 mRNA species including splice products expressing Tat/Rev, Vif and Gag (Fig. 4g). In agreement with RNase-dependent restriction, wild-type N4BP1, but not the catalytically inactive mutant D623N suppressed viral protein expression (Fig. 4h and Supplementary Fig. 8d) and infectious HIV-1 yield (Fig. 4i) without affecting cell viability (Supplementary Fig. 8e and 8f). Collectively, these data demonstrate that N4BP1 restricts HIV-1 replication by binding and degrading viral mRNA species.

MALT1 degrades N4BP1 in T cells upon TCR-mediated activation.

Antiretroviral restriction factors are often counteracted by HIV-1 accessory proteins. N4BP1, however, inhibited wild-type HIV-1 NL4-3 and a mutant lacking all four accessory proteins (NL4-3 $\Delta 4$) with similar efficiencies (Supplementary Fig. 9). Thus,
we next examined N4BP1 expression levels in activated $\mathrm{CD4}^{+} \mathrm{T}$ cells that are highly permissive for HIV-1 replication and resting T cells thought to represent the main reservoir of latent HIV-1. Interestingly, N4BP1 protein levels were drastically decreased in primary $\mathrm{CD}^{+}{ }^{+}$cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin or by treatment with anti-CD3/CD28 antibodies, but not with IFN- γ or IL-2 (Fig. 5a). Kinetic analysis revealed that N4BP1 levels started to decrease at 0.5 h after PMA/ionomycin stimulation and remained undetectable for at least 8 hours (Fig. 5b). Notably, N4BP1 mRNA levels were not markedly affected by PMA/ionomycin treatment (Supplementary Fig. 10a). In support of N4BP1 protein degradation, a ~ 72 kDa cleavage product appeared in PMA/ionomycin-treated cells (Fig. 5b) just above non-specific bands (65 kD and 40 kD) which is also present in N4BP1 KO cells (Fig. 2f). Although N4BP1 was reported to undergo NEDD4-mediated polyubiquitination ${ }^{25}$, proteasome inhibitor treatment did not prevent PMA/ionomycin-mediated degradation of N4BP1 (Supplementary Fig. 10b). Further experiments revealed that PMA alone, but not ionomycin, is sufficient to decrease N4BP1 levels (Supplementary Fig. 10c). Similar to T cell receptor (TCR) signals, PMA activates signaling pathways via the CARMA1-BCL10-MALT1 signalosome ${ }^{27}$. MALT1 is known to cleave RNA binding proteins Regnase-1 and Roquin proteins ${ }^{28,29}$. Consistent with a previous report, overexpression of Regnase-1 also suppressed infectious HIV-1 NL4-3 production, whereas expression Roquin-1 or -2 had no inhibitory effect (Supplementary Fig. 10d). We therefore hypothesized that N4BP1 might also be cleaved by MALT1. Indeed, knockout of MALT1 in Jurkat cells abrogated degradation of N4BP1 in response to stimulation (Fig. 5c). Furthermore, the MALT1 inhibitor zVRPR-fmk, but not a pan-caspase inhibitor zVAD-fmk, suppressed cleavage of N4BP1 (Fig. 5d). Thus, the protease activity of MALT1 is essential for N4BP1 cleavage upon T cell activation.

MALT1 cleaves N4BP1 at R509

The appearance of a $\sim 72 \mathrm{kDa}$ cleavage product (Fig. 5b) suggested that the MALT1 cleavage site(s) is located in the central region of N4BP1, between the KH and RNase domains (Fig. 5e). Thus, we generated a series of C-terminally truncated variants to determine the exact position of the cleavage site (Fig. 5e). Immunoblot analysis revealed that the electrophoretic mobility of an N4BP1 mutant comprising the N-terminal 500 amino acids was close to that of MALT1 cleaved N4BP1 (Fig. 5f). MALT1 specifically cleaves after arginine residues ${ }^{27}$, and analysis of previously identified MALT1 substrates revealed a putative [S/P]-R-G consensus target sequence for this protease (Fig. 5g and Supplementary Fig. 10e). N4BP1 harbors a highly conserved SRG motif at positions 508-510 (Fig. 5h), and R509A mutant N4BP1 was not cleaved by MALT1 expressed together with BCL10 (Fig. 5i). Furthermore, PMA/ionomycin stimulation of Jurkat cells induced cleavage of WT Flag-N4BP1, while the Flag-N4BP1 R509A mutant was resistant to cleavage (Fig. 5j). Notably, mutation of R509A rendered N4BP1 resistant to MALT1 cleavage without impairing its antiviral activity (Fig. 5k).

Degradation of N4BP1 promotes reactivation of latent HIV-1

Degradation of N4BP1 by MALT1 might be involved in the reactivation of latent HIV-1 by T cell activation. To investigate this possibility, we first examined N4BP1 expression in three different human T cell lines harboring latent HIV-1 proviruses ${ }^{30-32}$. N4BP1 was constitutively expressed and downmodulated upon PMA stimulation in all cell lines tested (Supplementary Fig. 11a-c). As expected, PMA-induced degradation of N4BP1 was abrogated in MALT1 knockout JNLGFP, J-Lat10.6 and J-Lat5A8 cells (Fig. 6a, 6b, Supplementary Fig. 11d). Thus, MALT1 is required for PMA-induced degradation of N4BP1 in latently HIV-1 infected T cells. MALT1-knockout JNLGFP, J-Lat10.6 and J-Lat5A8 cells showed significantly lower levels of HIV-1 reactivation than control cells in response to PMA stimulation (Fig. 6c, 6d, and Supplementary Fig. 11e). After
induced expression of N4BP1 in J-Lat10.6 and JNLGFP cells by a Tet-On system, wild-type but not R509A N4BP1 was degraded in response to PMA stimulation (Fig. 6e and 6f). Intriguingly, the MALT1-resistant N4BP1 R509A mutant suppressed the reactivation of J-Lat10.6 and JNLGFP cells more efficiently than WT N4BP1 as examined by the changes in HIV-1 p24 levels in the culture supernatants (Fig. 6e and 6f). We further established N4BP1 KO JNLGFP cells (Fig. 6g), and reconstituted them with WT N4BP1 or the R509A mutant thereof using the inducible Tet-On system (Fig. 6h). Consistent with the overexpression data, JNLGFP cells reconstituted with R509A N4BP1 potently suppressed reactivation of HIV-1, whereas cells reconstituted with wild-type N4BP1 failed to do so. (Fig. 6h and 6i). Thus, inactivation of N4BP1 by MALT1 supports latency reversal upon activation of latently HIV-1 infected T cells (Supplementary Fig. S12).

Discussion

Our study demonstrates that HIV-1 latency and reactivation are controlled by N4BP1 at the post-transcriptional level. Notably, two mechanisms may contribute to the maintenance of viral latency by N4BP1: First, N4BP1 generally degrades spliced- and un-spliced HIV-1 transcripts, thereby preventing their translation into viral proteins and progeny virion formation. Second, N4BP1 may continuously keep HIV-1 Tat levels below the threshold required for reactivation and efficient transcription of viral genes. Intriguingly, N4BP1 is rapidly inactivated by MALT1 in response to stimuli inducing HIV-1 reactivation, indicating that changes in MALT1 activation levels regulate HIV-1 reactivation. Thus, manipulation of MALT1 activity may be a promising approach to control HIV-1 latency and reactivation. Notably, treatment with the MALT1 inhibitor MI-2 has previously been shown to induce death of latently HIV-1 infected cells, and death rates were further increased by PMA stimulation ${ }^{33}$. However, specificity of MALT1 inhibition and the MALT1 targets involved in this process remained unclear. Thus, further studies are required to decipher the suitability of MALT1 as a target for therapeutic intervention.

An important open question is how N4BP1 specifically recognizes retroviral RNA, without degrading for example Influenza A virus or ribosomal RNAs. Given that multi-spliced HIV-1 RNA (encoding Tat and Rev) as well as singly or un-spliced viral mRNAs are degraded, N4BP1 might target motifs or structures in un-spliced viral mRNA, the tat/rev encoding region or end modifications found in all three mRNA classes. The frequency of CG dinucleotides is markedly suppressed in the genomes of HIV-1 as well as other vertebrate viruses, thereby attenuating ZAP-mediated restriction ${ }^{17}$. Given that N4BP1 suppresses various lenti- and retro-viruses including HIV-1, sequence motif(s) other than CG dinucleotides could be recognized by N4BP1.

N4BP1 is localized in the nucleus especially in the nucleolus and/or PML bodies ${ }^{25}$. Intriguingly, HIV-1 transcripts are specifically re-localized into nucleoli for viral gene
expression ${ }^{34}$. In addition, latent HIV-1 was reported to colocalize with PML bodies, with PML binding to the latent HIV-1 LTR promoter ${ }^{35}$. Degradation of PML led to the activation of viral transcription together with the release of histone methyltransferase G9a ${ }^{35}$. Given that HIV-1 RNA is suppressed by N4BP1, it is tempting to speculate that N4BP1 co-transcriptionally degrades viral mRNA in PML bodies, thereby contributing to the maintenance of latency. Although MALT1 is majorly present in the cytoplasm, this protein harbors a nuclear export signal (NES), and is reported to shuttle between nucleus and cytoplasm ${ }^{36}$. Thus, MALT1 might cleave N4BP1 in the nucleus.

Our data suggest that N4BP1 is not directly counteracted by HIV-1 accessory proteins. However, it is possible that HIV-1 has evolved means to evade N4BP1. Furthermore, expression of N4BP1 was diminished in T cells stimulated with PMA/ionomycin or via TCR-CD3/CD28 ligation. Considering that HIV-1 replicates efficiently in activated but not in quiescent $\mathrm{CD} 4^{+} \mathrm{T}$ cells, it is tempting to speculate that reduction of N4BP1 facilitates HIV-1 replication in activated T cells. We discovered that cleavage and inactivation of N4BP1 in T cells is mediated by the protease MALT1 and identified R509 as its cleavage site. Previously described MALT1 substrates include host mRNA regulators such as Regnase-1 and Roquin. These proteins are critical for controlling immune reactions as they destabilize host mRNAs encoding proinflammatory cytokines and proteins involved in T cell activation ${ }^{37,38}$. It is intriguing to explore the function of N4BP1 in the control of immune responses and future studies will uncover the functional roles of N4BP1 in regulating host mRNAs in vivo.

A recent study determining type I interferomes of fibroblasts in multiple vertebrate species identified 62 evolutionarily conserved interferon-stimulated genes (ISGs) ${ }^{12}$. Interestingly, N4BP1 was also among these core ISGs. Upon IFN- α stimulation, N4BP1 suppresses HIV-1 infection by inducing its expression and/or altering its RNase activity. Additionally, the MALT1-cleavage site as well as the RNase
domain are conserved among the N4BP1 orthologs of different mammalian species, consistent with IFN-inducibility. These notions imply that the function of N4BP1 in antiviral immunity is conserved among different species. Given that human N4BP1 suppresses a variety of retroviruses, but not influenza A virus, it is tempting to speculate that N4BP1 might have an ancestral function in specifically controlling retroviral infection. Furthermore, it will be interesting to explore whether N4BP1 is involved in the post-transcriptional silencing of endogenous retroviruses.

In this study, we identified N4BP1 as a HIV-1 restriction factor by screening proteins that harbor potential RNA binding domains. As our screening approach did not include all RNA binding proteins, it is possible that additional anti-retroviral RNA binding factors remain to be discovered. Furthermore, an over-expression-based screening approach may fail to identify antiviral proteins that are endogenously expressed to high levels, if over-expression does not further increase their abundance. Therefore, further studies are required to elucidate the role of RNA binding proteins in restriction of HIV-1, e.g. by using more complete sets of RNA binding proteins and/or loss of function screening systems.

In summary, we identified N4BP1 as an RNase that functions as an antiretroviral restriction factor by degrading various HIV-1 mRNA species. Although further studies are required to precisely define the molecular mechanisms underlying target RNA recognition by N4BP1, our findings clearly demonstrate that N4BP1 is a potent effector of type I IFN-mediated anti-HIV-1 activity.

Methods

Cell culture, Proviral Constructs and Transfection.

Jurkat cells and THP-1 cells were obtained from the ATCC and grown in RPMI-1640 medium (Nacalai Tesque) supplemented with 10% fetal calf serum (FCS) and $50 \mu \mathrm{M}$ β-mercaptoethanol (Nacali Tesque). HEK293T cells were obtained from ATCC and grown in DMEM supplemented with 10% fetal calf serum (FCS). TZM-bl cells and J-Lat10.6 cells were obtained from the NIH AIDS Research and Reference Reagent Program and maintained in DMEM medium (Nacalai tesque) supplemented with 10% fetal calf serum (FCS) or in RPMI-1640 medium (Nacalai Tesque) supplemented with 10% fetal calf serum (FCS) and $50 \mu \mathrm{M} \beta$-mercaptoethanol (Nacali Tesque) respectively. J-Lat5A8 cells were kindly provided by Warner C. Greene from the Gladstone Institute of Virology and cultured in RPMI-1640 supplemented with 10\% fetal calf serum. JNLGFP cells were kindly provided by David N. Levy from the New York University College of Dentistry and cultured in RPMI1640 supplemented with 10% of FCS. Cell lines were not validated further or tested for micoplasma in our laboratory. Plasmid transfection experiments for HEK293T cells were performed using Polyethylenimine Max Mw 40000 (polysciences). Plasmid transfection experiments for Jurkat cells were performed using Neon Transfection System (Invitrogen) according to the manufacturer's protocol. HEK293T cells were transfected 24 h after seeding in 12-well plates at a confluence of 70%. Cells and supernatants were harvested 48 hours post-transfection. The pCMV-SPORT6 expression plasmids used for the screening of genes encoding proteins potentially harboring RNA binding domains listed in Supplementary Table 1 represent verified full-length cDNA Clones (Open Biosystems) obtained through the Mammalian Gene Collection (MGC). Regnase-1 and Roquin-1 expression plasmids have been described previously ${ }^{39}$. The Roquin-2 expression plasmid was kindly provided by Dr. Hidenori Ichijo (The University of Tokyo). Replication competent HIV-1 particles were obtained by transfecting HEK293T cells with the following HIV-1 infectious plasmids:
pNL4-3 (cat\#114) ${ }^{40}$ was obtained through the NIH AIDS Reagent Program. HIV-1 clones pCH 058 (cat\#11856) ${ }^{41}$ and pAD17 (cat\#12423) ${ }^{42}$ were obtained through the NIH AIDS Reagent Program from Dr. Beatrice Hahn (University of Pennsylvania). The SIVcpz molecular clone MB897 ${ }^{43}$, as well as HIV-1 pCH058 (6-month), pCH077 (6-month), $\mathrm{pCH} 440, \mathrm{pCH} 200 \mathrm{v} 2$, pCH 534 and CH 042 were kindly provided by Beatrice Hahn ${ }^{44-46}$. The HIV-1 AD8 infectious molecular clone was obtained from Cathleen Collins (UCSD, San Diego) and has been described previously ${ }^{47}$. The Moloney Leukemia Virus strain pMLV48 was kindly provided by Dr. Komano Atsushi (Nagoya Medical Center). The Human Foamy virus strain HSRV13 was kindly provided by David Russel (University of Washington). pCMV259 was kindly provided by Junichi Sakuragi (Osaka University) ${ }^{48}$. Forty eight hours post-transfection, culture supernatants were harvested, then filtrated, and stocked as a viral solution. For the replication assay, empty vector or N4BP1 expressing Jurkat cells were seeded at 2×10^{5} cells in 48 well plate. Then, they were inoculated with HIV-1 NL4-3. Primary CD4 ${ }^{+}$T cells were isolated from human blood from 3 healthy donors by Ficoll Paque gradient centrifugation and negative selection using the RosetteSep ${ }^{\text {TM }}$ Human CD4 ${ }^{+}$T cell Enrichment cocktail (Stem Cell Technologies) and cultured in RPMI1640. Monocytes were separated from PBMCs by plastic adherence and differentiated into monocyte-derived macrophages (MDM) using AB-serum (10\%) and macrophage colony stimulating factor (M-CSF, R\&D Systems; 15 $\mathrm{ng} / \mathrm{ml}$). Primary human macrophages were differentiated from human peripheral blood mononuclear cells from 3 healthy donors. PBMCs were seeded onto the plate in serum free RPMI-1640 for 3 hours at $37{ }^{\circ} \mathrm{C}$. Non-adherent cells in the supernatants were discarded and adherent monocytes were cultured in RPMI-1640 with 10% FCS and M-CSF (15 ng/ml, PeproTech) for 6 days.

Generation of Virus Stocks

HEK293T cells were sown in 6-well plates and transfected with proviral HIV-1 DNA (5
$\mu \mathrm{g}$) at a confluence of $70-80 \%$ using a standard calcium phosphate transfection protocol. For mock infection controls, HEK293T cells were treated with transfection reagents only. Supernatants were harvested 40 h post transfection.

Infectivity Assay

Infectious HIV-1 released into the cell culture supernatant was quantified by infection of TZM-bl reporter cells. Appropriate virus dilutions were added to 5×10^{3} TZM-bl cells per well of a 96 -well plate. The cells were harvested 48 hours post-infection, and a β-galactosidase assay was performed using the Galacto-Star Mammalian Reporter Gene Assay System (Applied Biosystems) according to the manufacturer's protocol. Galactosidase activity was quantified as relative light units per second (RLU/s) using a 1420 ALBOSX multilabel counter (Perkin Elmer).

Plasmid Construction

The cDNA of human N4BP1 was ligated into pFlag-CMV2 (Invitrogen), pEFs-Flag-SBP, or CSII-CMV-MCS-IRES2-Bsd for mammalian cell expression. The site-directed mutant expression vectors including pFlag-CMV2 N4BP1 D623N or R509A and pEFs-Flag-SBP D623N were generated using the Quick change lighting Site-Directed Mutagenesis Kit (Agilent). Deletion mutant cDNAs encoding amino acids 1-700 ($\Delta 1$), 1-600 ($\Delta 2$), 1-500 $(\Delta 3)$ and 1-400 $(\Delta 4)$ of N4BP1 were inserted into the pFlag-CMV2 vector. A lentiviral packaging plasmid, CSII-CMV-MCS-IRES2-Bsd was provided by Dr. Miyoshi in Keio University. N4BP1 and its R509A mutant were inserted into the pInducer20, a Tet-on doxycycline-inducible lentiviral expression plasmid.

Immunoblotting

HEK293T cells were seeded in 12 well plates. Cell free viral solutions were pelleted by ultracentrifugation of the culture supernatants at $40,000 \mathrm{rpm}$ for 1 hour at $4^{\circ} \mathrm{C}$ by using

TL-100 (Beckman), and then lysed in the Immunoblot lysis buffer. Cell lysates were mixed with $3 x$ loading sample buffer supplemented with $15 \% \beta$-mercaptoethanol. Protein samples were resolved on a 5-20\% NuPAGE gel (Invitrogen). Proteins were transferred from the SDS-PAGE gel to Immobilon-PVDF membranes (Merck Millipore). Proteins were labeled with antibodies against HIV-1 Env (1:2000; 16H3, Cat\#12559, NIH AIDS Research and Reference Reagent program), p24 (1:2000, polyclonal; ViroStat), Vif (1:2000; \#319; NIH AIDS Research and Reference Reagent program), Nef (1:2000; 3D12, ThermoFisher), Vpr (1:2000; 8D1, Cosmo Bio), Vpu (1:2000; \#969, NIH AIDS Research and Reference Reagent program), Flag (1:1000; monoclonal; F7425, Sigma, or polyclonal; F7425, Sigma), Mouse IgG Isotype Control (1:1000; \#31903, ThermoFisher); β-Actin (1:1000; polyclonal; sc-1615, Santa Cruz), MALT1 (1:1000; \#2494, Cell Signaling Technology), GAPDH (1:1000; sc-47724, Santa Cruz), α-Tubulin (1:1000; T9026, Sigma), IкB α (1:1000; C-21, Santa Cruz), GFP (1:1000; ab290, Abcam) and N4BP1 (1:2000, ab197079, Abcam). The anti-N4BP1 antibody recognizes the N-terminal portion of N4BP1 (aa 250-300).

Drug Treatment

Jurkat cells and THP-1 cells were stimulated with IFN- α (Sigma Aldrich, $1000 \mathrm{U} / \mathrm{ml}$). Jurkat cells were stimulated with $50 \mathrm{ng} / \mathrm{ml}$ Phorbol 12-myristate 13-acetate (PMA: Sigma Aldrich) with or without 500 nM ionomycin (Sigma Aldrich). Human primary $\mathrm{CD}^{+} \mathrm{T}$ cells were stimulated with IFN- α subtypes ($50 \mathrm{ng} / \mathrm{ml}$) (kindly provided by Kathrin Sutter, University Duisburg-Essen) or IL-27 (R\&D Systems; Cat\# 2526; $5 \mathrm{ng} / \mathrm{ml}$) for 72 hours, IFN- γ (SIGMA Aldrich; $50 \mathrm{ng} / \mathrm{ml}$), IL-2 (Miltenyi Biotech; $100 \mathrm{U} / \mathrm{ml}$) or anti-CD3/CD28 beads (Dynabeads Human T-Activator CD3/CD28, Gibco) for 24 hours. JNLGFP, J-Lat5A8 and J-Lat 10.6 cells were stimulated with $10-50 \mathrm{ng} / \mathrm{ml}$ PMA for 24 hours. zVRPR-fmk (Enzo Life Sciences), a MALT1 inhibitor, zVAD-fmk (R\&D systems), a Pan-Caspase inhibitor and MG132 (Merck Millipore), proteasome inhibitor, were used
at concentrations of $100 \mu \mathrm{M}, 10 \mu \mathrm{M}$ and $0.001-10 \mu \mathrm{M}$, respectively.

RNA Isolation, RT and Quantitative RT-PCR

Total RNA was isolated using Trizol reagent (Invitrogen). Reverse transcription was performed using ReverTra Ace (TOYOBO) according to the manufacturer's instruction. The relative RNA expression levels of IFNB, 18S, N4BP1, tat/rev, vif, gag, HIV-1 total RNA, BST2, and ISG15, MLV gag, SIVcpz gag, HSRV13 gag and Influenza A segment 4 (HA) were measured by SYBR Green Real-Time PCR in Applied Biosystems Step One Plus. Viral RNA in supernatants was extracted using the ZR viral RNA kit (ZymoResearch). The sequences of the primers used in qPCR are shown in Supplementary Table 2.

Humanized Mice

NOD.Cg-Prkdc $c^{\text {scid }} I I 2 r g^{\text {tm } 1 S u g} / J i c ~\left(N O D / S C I D ~ I l 2 r g{ }^{\text {null }}\right.$) mice were obtained from the Central Institute for Experimental Animals (Kanagawa, Japan). The mice were maintained under specific-pathogen-free conditions and were handled in accordance with Regulations on Animal Experimentation at Kyoto University. The study protocol was approved by the Animal Experimentation Committee in Kyoto University. Human CD34 ${ }^{+}$hematopoietic stem cells (HSCs) were isolated from human fetal liver as previously described ${ }^{49}$. To generate humanized mice (NOG-hCD34 mice), human fetal liver-derived CD34 ${ }^{+}$cells $\left(5 \times 10^{4}\right.$ to 12×10^{4} cells) were intrahepatically injected into newborn NOG mice aged 0 to 2 days after X-irradiation (10 cGy per mouse) in an RX-650 X-ray cabinet system (Faxitron X-ray Corporation). Humanized mice were randomly assigned to HIV-1 infection or mock treatment.

Generation of N4BP1 or MALT1 Knockout Cells by the CRISPR/Cas9 System
N4BP1 knockout Jurkat cells were generated by transiently transfecting
pX330-U6-Chimeric_BB-CBh-hSpCas9 plasmid (Addgene) with Neon Transfection System according to the manufacturer's protocol. N4BP1 coding exon was targeted using the following sgRNA target site: 5^{\prime} - AGATATAAAAGAAACTACTG -3'. Single clones were obtained by limiting dilution in 96 -well U-bottomed culture plates. Control cells were obtained following transfection of the plasmid without sgRNA. For generating MALT1 knockout Jurkat cells, cells were delivered with the sgRNA and Cas9 expressing lentivirus vector (LentiCrispr v2 puro: Addgene) targeting the MALT1 coding sequences; sgRNA1 5'-GCAGTGCATGTAAAAGATGC-3', sgRNA2 5'-ATTCAGCCAGTGGTCACAGC-3'. Control cells were obtained by transduction of lenticrispr v2 expressing non-targeting control sgRNA; 5'GGCCGATAATGATCCGACCG -3. Two days after transduction, cells were cultured with $1 \mu \mathrm{~g} / \mathrm{ml}$ Puromycin for 10 days. Knockout of N4BP1 or MALT1 was examined by immunoblot analysis.

Establishment of Stably N4BP1 Expressing Cells

Stably N4BP1 expressing Jurkat cells were generated by transfection with CSII Bsd IRES MCS-N4BP1 using the Neon Transfection System. Three days after transfection, N4BP1 expressing cells were selected by culturing them in $10 \mu \mathrm{~g} / \mathrm{ml}$ blasticidin-containing RPMI-1640 for 14 days. Control cells were prepared by transfecting an empty plasmid. In some experiments, single clones were obtained by limiting dilution in 96 -well U-bottomed culture plates. Stably N4BP1 expressing HEK293T cells and control cells were generated by transfection with CSII Bsd IRES MCS-N4BP1 and empty plasmid, respectively. For inducible expression of N4BP1, N4BP1 KO cells, JNLGFP, N4BP1 KO JNLGFP or J-Lat10.6 cells were prepared by pseudotyped lentivirus vector transduction with pInducer20 vector with or without wild-type or R509A mutant N4BP1 followed by selection in G418.

siRNA Transfection and Infection of Macrophages and Jurkat cells

On days 7 and 10 of differentiation, MDM were transfected with N4BP1-specific or non-targeting control siRNA using Lipofectamine RNAiMAX (Life technologies) followed by infection at day 10 . All siRNAs were provided in lyophilized state by ThermoFisher (\#18638, \#18639, \#18640) or Eurofins Genomics (non-targeting control: UUCUCCGAACGUGUCCACGUdTdT) and suspended in nuclease-free water to reach a final concentration of $20 \mu \mathrm{M}$. siRNA transfection was performed in 12 -well plates with three technical replicates for each sample. For one well, $2.25 \mu 1$ siRNA were mixed with $150 \mu \mathrm{l}$ Opti-MEM and $6 \mu \mathrm{l}$ Lipofectamine RNAiMAX were mixed with $150 \mu \mathrm{l}$ Opti-MEM. These two solutions were then mixed and incubated at room temperature for 10 min . Afterwards, $300 \mu \mathrm{l}$ of the mixture was dropped on the well containing 1 ml of cell culture medium. Medium was changed 18 h after each transfection. 3 and 6 days post infection, macrophage culture supernatants were harvested and used to infect TZM-bl reporter cells. To this end, 6,000 TZM-bl cells were sown in 96 -well plates and infected in triplicate with cell culture supernatants containing infectious virus. Three days later, infection rates were determined using a galactosidase screen kit (GalScreen-Applied Bioscience) according to the manufacturer's instructions. β-galactosidase activities were quantified as relative light units per second (RLU/s) using an Orion Microplate Luminometer. For knockdown in Jurkat cells, cells were transfected with N4BP1-specific siRNA (s18640) or negative control siRNA using NEON according to the manufacturer's protocol. Differentiated human macrophages were transfected with siRNA on days 6 and 8 after isolation. Cells were transfected with N4BP1-specific siRNA (s18638-18640) or negative control siRNA using Lipofectamin RNAiMAX (Life technologies) according to the manufacturer's instructions.

Structure Modeling.

The PIN RNase domain of human N4BP1 was modeled with the SFAS threading meta
server (http://sysimm.ifrec.osaka-u.ac.jp/sfas2/) using human Regnase-1 (PDB Identifier 3 v 32 , chain B) as a template. The conservation heatmap was constructed by aligning the top 1000 hits from the NCBI nr database to human N4BP1 using MAFFT (PMID: 23329690), and computing the sequence identity to human N4BP1. The sequence identity was expressed as a temperature factor in the human N4BP1 model PDB file and displayed in PyMOL (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.).

Generation of Recombinant N4BP1 and N4BP1-D623N Proteins

HEK293T cells were transfected with pEFs_Flag-SBP-N4BP1 or pEFs_Flag-SBP-N4BP1-D623N using polyethyleneimine "MAX" (Polysciences). Three days after transfection, cells were lysed in NF-lysis buffer [20 mM Tris (pH 7.5), 150 mM $\mathrm{NaCl}, 0.25 \mathrm{M}$ Sucrose, 0.5% (v / v) NP-40, 1% (v/v) Tween 20] containing 1 mM DTT, protease inhibitor cocktail (Nacalai Tesque), phosphatase inhibitor cocktail (EDTA free) (Nacalai Tesque) and $50 \mu \mathrm{~g} / \mathrm{ml}$ RNase A. SBP-tagged proteins were captured by Streptavidin Mag Sepharose (GE Healthcare) and eluted with T buffer (20 mM HEPES (pH 7.5), $150 \mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.05 \%(\mathrm{v} / \mathrm{v})$ Tween 20) containing 1 mM DTT, 0.1 x protease inhibitor cocktail (EDTA free) (Nacalai Tesque), $0.1 \times$ phosphatase inhibitor cocktail (Nacalai Tesque) and 2 mM d-desthiobiotin (Sigma-Aldrich).

In vitro RNA Cleavage Assay

The in vitro RNA cleavage assay has been previously described ${ }^{39}$. Briefly, recombinant N4BP1 protein and in vitro transcribed $5^{\prime}-\left[{ }^{32} \mathrm{P}\right]$-labelled viral RNA (tat, rev and nef subgenomic RNA of HIV-1 NL4-3) ${ }^{50}$ or a 513 base RNA fragment from the pBluescript ${ }^{\circledR}$ vector) were mixed in cleavage buffer (25 mM HEPES, 50 mM potassium acetate, 5 mM DTT, 5 mM magnesium acetate and $0.2 \mathrm{U} / \mathrm{ml}$ RNasin (Promega)) for 60 \min at 37 degrees. The cleaved RNA was analyzed by denaturing 6% polyacrylamide-TBE-urea gels (Invitrogen) and autoradiography. The sequence used for
in vitro transcription and the in vitro cleavage assay is shown in Supplementary Table 3.

Northern Blotting.

Using Trizol reagent, total RNA was isolated from HEK293T cells 48 hours post-transfection with pNL4-3 together with N4BP1 expression plasmid, D623N or empty plasmid. Extracted RNA was electrophoretically separated, transferred to Hybond-N+ (GE healthcare), and hybridized with the probe derived from a fragment of pNL4-3. ${ }^{32}$ P-labeled probe was generated from the 422-nt XhoI/BamHI restriction fragment in the 3 ' UTR of pNL4-3, which is present in all HIV-1 mRNAs. HIV-1 primary RNA transcripts, generated by alternative splicing, were detected as three major bands representing three different sizes.

RNA-Immunoprecipitation and qPCR Analysis

HEK293T cells seeded at 3×10^{6} in 10 cm plates were transfected with $5 \mu \mathrm{~g}$ of pNL4-3 together with $5 \mu \mathrm{~g}$ of a plasmid expressing the N4BP1 D623N mutant. Flag-tagged N4BP1 was immunoprecipitated with an anti-Flag antibody (Sigma) or control mouse IgG isotype controls (Thermo Fisher) 48 hours after transfection. N4BP1 interacting HIV-1 RNA was extracted using Trizol, quantified by RT-qPCR and normalized to 18 S RNA bound in a non-specific manner.

Analysis of Global Protein Synthesis

Control and N4BP1 KO Jurkat cells were cultured for 1 day. As negative control, some control cells were treated with a protein synthesis inhibitor, Cycloheximide (Cayman Chemical) for 30 min . Then the cells were harvested, and translating polypeptides were labeled with O-Propargyl-Puromycin (OPP) for 30 min at $37^{\circ} \mathrm{C}$ followed by staining with 5 FAM Azide using the Protein Synthesis Assay kit (Cayman Chemical) according to the manufacturer's instruction. The cells were analyzed by Flow cytometry
(FACSVerse; BD). The data analysis was performed using FlowJo (LCC).

HIV-LTR Reporter Gene Assay.

TZM-bl cells cells were transfected with pGL3-HIV-LTR-Luc plasmid or pGL3-empty plasmid together with N4BP1 expression plasmid or empty control plasmid. 24 h post-transfection, cells were lysed and luciferase activities in the lysates were determined using the Dual-luciferase reporter assay system (Promega).

Detection of Early RT products, Late RT product and Integrated Proviral DNA

Quantification of HIV-1 early RT (R/U5), late RT (U5/gag) and integrated products by real-time PCR was done by following a published protocol (Suzuki et al., 2003). Briefly, virus was treated with DNase-I (TAKARA) at a concentration of $20 \mathrm{mg} / \mathrm{ml}$ in the presence of 10 mM MgCl 2 at the room temperature. Heat-inactivated $\left(65^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$ virus was used as a negative control for infection. Jurkat cells were transfected with N4BP1 or control siRNA. One day after transfection, Jurkat cells were exposed to HIV-1 NL4-3 (MOI 0.1) or heat inactivated HIV-1 at $37^{\circ} \mathrm{C}$ for 2 hours. Total DNA was isolated 12 hours after infection, by using DNeasy Blood \& Tissue Kits (QIAGEN) according to the manufacturer's instructions. Early RT products, late RT products and integrated DNA were quantified by real-time PCR as described previously (Suzuki et al., 2003).

Influenza Infection Experiment

HEK293T cells stably expressing N4BP1 or control plasmid were infected with Influenza A virus PR8 or WSN strain for 24 hours before total RNA or culture media were harvested. Total RNA was subjected to qPCR analysis to measure the expression levels of viral mRNA for segment 4 (HA). The viral growth in the culture media was titrated by using plaque assays on Madin-Darby canine kidney (MDCK) cells.

Statistical Analysis and Reproducibility.

Statistical analyses were conducted using Prism 8 (GraphPad, La Jolla, CA, USA) or Excel for Office365. Statistical significance was calculated with an unpaired two-tailed Student's t-test. Data are presented as the mean \pm s.d.. A P value of <0.05 was considered statistically significant. The screening of RBPs restricting HIV-1 was repeated and the results were confirmed in an independent experiment (Fig. 1a). The in vivo experiment with humanized mice (Fig. 2e) was performed once. The data for HIV-1 yield in MDM treated with N4BP1-specific siRNAs (Fig. 3g) and p24 production comparing between WT or R509A mutant N4BP1 reconstituted JNLGFP cells (Fig. 6h) are pooled from three independent experiments. Other In vitro experiments were representative of 2-5 independent experiments with similar results.

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

Acknowledgements

We thank all colleagues in our laboratory for helpful discussion, M. Tsuji and J. Hasegawa for secretarial assistance, as well as R. Linsenmeyer and J. A. van der Merwe for excellent technical assistance. We thank Kathrin Sutter (University of Duisburg-Essen, Germany) for providing IFN α subtypes and Cathleen Collins (UCSD, USA), Beatrice Hahn (University of Pennsylvania, USA), Warner C. Greene (Gladstone Institute for Virology and immunology, USA), David N. Levy (New York University of Dentistry), Hung Fan (UC Irvine, USA) and David Russell (University of Washington, USA) for providing plasmids. This work was supported by the Agency for Medical Research and Development (AMED) under Grant Numbers JP16gm0410017 (to O.T.), 18fk0410014h0001 (to O.T.), JP18fm0208006h002 (to K.S.), JP18fk0410019h0001 (to K.S.) and JP18fk0410014h0001 (to Y.K.); the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 18H05278 (to O.T.), 16H06429 (to K.S.), 16 K 21723 (to K.S.), and 17 H 05813 (to K.S.), and 18 H 02662 (to K.S.), Joint Usage/Research Center Program of Institute for Frontier Life and Medical Sciences Kyoto University (to O.T., K.S. and Y.K.); and Core-to-Core Program. This work was also supported by grants from Takeda Science Foundation and The Uehara Memorial Foundation (to O.T.). D.S. was supported by the DFG priority program "Innate Sensing and Restriction of Retroviruses" (SPP 1923) and the junior professorship programme of the state Baden-Wuerttemberg. FK is also supported by SPP 1923, DFG CRC 1279 and an Advanced ERC grant (Anti-Virome).

Author Contributions

D.Y., K.S., D.S. and O.T. designed the study. D.Y. designed, carried out and analyzed experiments. T.I., T.I., L.K., S.J., E.R., D.H., N.M, K.A, T.U and T.M. provided technical and intellectual assistance. S.M. and T.N. conducted influenza infection experiments. A.Y. provided recombinant proteins. D.S. performed structural modeling
and bioinformatic analysis. D.Y., D.S. and O.T. wrote the manuscript. K.S, F.K., Y.K. and O.T. supervised the study.

Competing interests

The authors declare no competing financial interests.

References

1 Simon, V., Bloch, N. \& Landau, N. R. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 16, 546-553, doiः10.1038/ni. 3156 (2015).
2 Krapp, C. et al. Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity. Cell Host Microbe 19, 504-514, doi:10.1016/j.chom.2016.02.019 (2016).
3 Goujon, C. et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502, 559-562, doi:10.1038/nature12542 (2013).
4 Kane, M. et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502, 563-566, doi:10.1038/nature12653 (2013).
5 Liu, Z. et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14, 398-410, doi:10.1016/j.chom.2013.08.015 (2013).
6 Stremlau, M. et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427, 848-853, doi:10.1038/nature02343 (2004).

7 Neil, S. J., Zang, T. \& Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425-430, doi:10.1038/nature06553 (2008).
8 Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245-252, doi:10.1016/j.chom.2008.03.001 (2008).
$9 \quad$ Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658-661, doi:10.1038/nature10195 (2011).
10 Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654-657, doi:10.1038/nature10117 (2011).
11 Doyle, T., Goujon, C. \& Malim, M. H. HIV-1 and interferons: who's interfering with whom? Nat Rev Microbiol 13, 403-413, doi:10.1038/nrmicro3449 (2015).

12 Shaw, A. E. et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol 15, e2004086, doi:10.1371/journal.pbio. 2004086 (2017).

13 Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. \& Fitzgerald, K. A. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 14, 361-376, doi:10.1038/nri3682 (2014).

14 Mino, T. \& Takeuchi, O. Post-transcriptional regulation of cytokine mRNA controls the initiation and resolution of inflammation. Biotechnol Genet Eng Rev 29, 49-60, doi:10.1080/02648725.2013.801236 (2013).

Gao, G., Guo, X. \& Goff, S. P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703-1706, doi:10.1126/science. 1074276 (2002).

16 Zhu, Y. et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 108, 15834-15839, doi:10.1073/pnas. 1101676108 (2011).
17 Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550, 124-127, doi:10.1038/nature24039 (2017).
18 Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379-382, doi:10.1038/nature10623 (2011).

19 Liu, S. et al. MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc Natl Acad Sci U SA 110, 19083-19088, doi:10.1073/pnas. 1316208110 (2013).
20 Gerstberger, S., Hafner, M. \& Tuschl, T. A census of human RNA-binding proteins. Nat Rev Genet 15, 829-845, doi:10.1038/nrg3813 (2014).
21 Castello, A. et al. Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell 149, 1393-1406, doi:10.1016/j.cell.2012.04.031 (2012).
22 Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18, 1682-1687, doi:10.1038/nm. 2964 (2012).

23 Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9, 87, doi:10.1186/1742-4690-9-87 (2012).
24 Murillas, R., Simms, K. S., Hatakeyama, S., Weissman, A. M. \& Kuehn, M. R. Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J Biol Chem 277, 2897-2907, doi:10.1074/jbc.M110047200 (2002).

25 Sharma, P., Murillas, R., Zhang, H. \& Kuehn, M. R. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 123, 1227-1234, doi:10.1242/jcs. 060160 (2010).
26 Marco, A. \& Marin, I. CGIN1: a retroviral contribution to mammalian genomes. Mol Biol Evol 26, 2167-2170, doi:10.1093/molbev/msp127 (2009).
27 Thome, M. Multifunctional roles for MALT1 in T-cell activation. Nat Rev Immunol 8, 495-500, doi:10.1038/nri2338 (2008).

28 Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 153, 1036-1049, doi:10.1016/j.cell.2013.04.034
(2013).

29 Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote $\mathrm{T}(\mathrm{H}) 17$ differentiation. Nat Immunol 15, 1079-1089, doiः10.1038/ni. 3008 (2014).
30 Jordan, A., Bisgrove, D. \& Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. $E M B O J 22,1868-1877$, doi:10.1093/emboj/cdg188 (2003).
31 Kutsch, O., Benveniste, E. N., Shaw, G. M. \& Levy, D. N. Direct and quantitative single-cell analysis of human immunodeficiency virus type 1 reactivation from latency. J Virol 76, 8776-8786 (2002).
32 Chan, J. K., Bhattacharyya, D., Lassen, K. G., Ruelas, D. \& Greene, W. C. Calcium/calcineurin synergizes with prostratin to promote NF-kappaB dependent activation of latent HIV. PLoS One 8, e77749, doi:10.1371/journal.pone. 0077749 (2013).

33 Li, H., He, H., Gong, L., Fu, M. \& Wang, T. T. Short Communicationः Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor. AIDS Res Hum Retroviruses 32, 174-177, doi:10.1089/AID.2015.0343 (2016).
34 Michienzi, A., Cagnon, L., Bahner, I. \& Rossi, J. J. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci USA 97, 8955-8960 (2000).

35 Lusic, M. et al. Proximity to PML Nuclear Bodies Regulates HIV-1 Latency in CD4+T Cells. Cell Host \& Microbe 13, 665-677, doi:10.1016/j.chom.2013.05.006 (2013).

36 Nakagawa, M. et al. MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10. Blood 106, 4210-4216, doi:10.1182/blood-2004-12-4785 (2005).
37 Fu, M. \& Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol 17, 130-143, doi:10.1038/nri.2016.129 (2017).

38 Takeuchi, O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip Rev RNA 9, doi:10.1002/wrna. 1449 (2018).
39 Mino, T. et al. Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell 161, 1058-1073, doi:10.1016/j.cell.2015.04.029 (2015).
Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated
retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59, 284-291 (1986).

41 Salazar-Gonzalez, J. F. et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 206, 1273-1289, doi:10.1084/jem. 20090378 (2009).
42 Salazar-Gonzalez, J. F. et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J Virol 82, 3952-3970, doi:10.1128/JVI.02660-07 (2008).
43 Van Heuverswyn, F. et al. Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon. Virology 368, 155-171, doi:10.1016/j.virol.2007.06.018 (2007).
44 Fenton-May, A. E. et al. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 10, 146, doi 10.1186/1742-4690-10-146 (2013).

45 Parrish, N. F. et al. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U SA 110, 6626-6633, doi:10.1073/pnas. 1304288110 (2013).
46 Parrish, N. F. et al. Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin alpha 4 beta 7. Plos Pathogens 8, doi:ARTN e1002686
10.1371/journal.ppat. 1002686 (2012).

47 Mashiba, M., Collins, D. R., Terry, V. H. \& Collins, K. L. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production. Cell Host Microbe 16, 722-735, doi:10.1016/j.chom.2014.10.014 (2014).
48 McBride, M. S. \& Panganiban, A. T. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J Virol 70, 2963-2973 (1996).
49 Nakano, Y. et al. HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation. PLoS Pathog 13, e1006348, doi:10.1371/journal.ppat. 1006348 (2017).
50 Gringhuis, S. I. et al. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat Immunol 18, 225-235, doi:10.1038/ni. 3647 (2017).

Figure Legends

Fig. 1. Identification of N4BP1 as an antiretroviral restriction factor.

a, HEK293T cells were co-transfected with pNL4-3 and one of 62 expression plasmids (Supplementary Table 1) encoding putative RNA binding proteins. Forty-eight hours post transfection, cell culture supernatants were harvested and used to infect TZM-bl reporter cells to determine infectious virus yield. The data values of two technical replicates.
b, HEK293T cells were transfected with either pNL4-3 or pAD17 together with increasing amounts of N4BP1 expression plasmid. Expression of HIV-1 Env and Gag, and N4BP1 in cell lysates as well as Gag p24 in the culture supernatants was determined by immunoblot analysis 48 hours post-transfection. β-Actin was used as the loading control. The upper panel shows infectious virus yield relative to the empty vector control determined by the TZM-bl reporter assay. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
c, HEK293T cells were co-transfected with proviral clones of HIV-1 together with increasing amounts of vector expressing N4BP1. 48 hours post-transfection, a TZM-bl reporter assay was performed to measure the production of infectious virus in supernatants. Infectious virus yield relative to the empty vector control is shown as mean \pm s.d of biological replicates $(\mathrm{n}=3)$. TF, transmitted founder virus; CC chronic control virus; $6-\mathrm{mo}$, virus isolated 6 months post infection.
P values were calculated using unpaired two-tailed Student's t-test. *P <0.05; ***P $<$ 0.005 .

Fig. 2. N4BP1 is upregulated upon IFN stimulation and restricts viral replication in T cells.
a, N4BP1 mRNA levels were measured by RT-qPCR in Jurkat cells treated with IFN- α from human leukocytes $(1000 \mathrm{U} / \mathrm{ml})$ for the indicated periods of time. Data are shown as mean \pm s.d. of biological replicates $(\mathrm{n}=3)$.
b, Immunoblot analysis of N4BP1 in cell lysates from Jurkat cells treated with IFN- α for 48 hours. β-Actin was used as the loading control.
c, $N 4 B P 1 \mathrm{mRNA}$ levels were measured by RT-qPCR in primary human $\mathrm{CD} 4^{+} \mathrm{T}$ cells treated with IFN- α for 24 h . Individual points and means \pm s.d. are shown ($\mathrm{n}=3$). ${ }^{*} \mathrm{P}<$ $0.05 ; * * * P<0.005$.
d, Expression levels of IFNB1, N4BP1, BST-2 and ISG15 mRNAs were measured by qPCR in Jurkat cells infected with HIV-1 NL4-3 (MOI 0.01). Data are shown as mean \pm s.d. of biological replicates $(\mathrm{n}=3)$.
e, N4BP1 mRNA levels in spleens from humanized mice 6 weeks after HIV-1 infection (n $=8)$ or mock treatment $(\mathrm{n}=6)$.
f. Immunoblot analysis of N4BP1 in cell lysates from control and N4BP1-knockout Jurkat cells (left panel). N.S. Non-specific. Replication of HIV-1 NL4-3 (MOI 0.01) in N4BP1 knockout or control Jurkat cell lines (right panel). Infectivity of HIV-1 in the culture supernatants was measured by TZM-bl assay.
g, Immunoblot analysis of N4BP1 in cell lysates from control cells and N4BP1-knockout Jurkat cells inducibly reconstituted with N4BP1 by using the Tet-on system and doxycycline stimulation (Dox) for 24 hours (left panel). Replication of HIV-1 NL4-3 (MOI 0.01) in control or N4BP1 knockout Jurkat cell lines reconstituted with or without N4BP1 by Dox treatment (right panel). Infectivity of HIV-1 in the culture supernatants was measured by TZM-bl assay.
h, Immunoblot analysis of Jurkat cells stably expressing FLAG-tagged N4BP1 (left panel). Replication of HIV-1 NL4-3 (MOI 0.01 or 0.001) in FLAG-N4BP1 expressing or control Jurkat cell lines (right panel). Infectivity of HIV-1 in the culture supernatants was measured by TZM-bl assay.
P values were calculated using unpaired two-tailed Student's t-test. ${ }^{*} \mathrm{P}<0.05 ; * * \mathrm{P}<0.01$; ***P <0.005.

Fig. 3. N4BP1 is upregulated upon IFN stimulation and restricts HIV-1 infection in macrophages

a, Expression levels of $N 4 B P 1$ or BST-2 mRNA were measured by RT-qPCR in macrophage-like THP-1 cells stimulated with IFN- α for the indicated periods of time. Data are shown as mean \pm s.d. of biological replicates $(n=3)$.
b, Immunoblot analysis of N4BP1 and β-Actin in cell lysates from macrophage-like THP- 1 cells stimulated with IFN- α for 48 hours.
c, Expression levels of N4BP1 mRNA were measured by RT-qPCR in human primary MDMs stimulated with IFN- α for 24 hours. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
d, Expression levels of N4BP1 in human primary MDMs upon stimulation of IFN- α for 48 hours were determined by immunoblotting.
e, N4BP1 expression levels were normalized to β-Actin levels and the unstimulated sample was set to $100 \% . \mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
f, Representative immunoblot analysis of human MDMs transfected with control siRNA or three different N4BP1-specific siRNAs (left panel). N4BP1 expression levels were normalized to β-Actin levels and the control siRNA sample was set to 100%. Data are shown as mean values \pm s.d. of 5 independent experiments.
g, Human MDMs treated with control or N4BP1-specific siRNA (\#18638-\#18640) were infected with HIV-1 AD8 and analyzed for infectious virus production $3(\mathrm{n}=9)$ and $6(\mathrm{n}=$ 7) days post-infection (dpi). Shown are mean percentages \pm s.d. relative to those detected in control cells (100%).
P values were calculated using unpaired two-tailed Student's t-test. $* \mathrm{P}<0.05 ; * * \mathrm{P}<0.01$; *** $\mathrm{P}<0.005$.

Fig. 4. N4BP1 is a cellular RNase degrading HIV-1 RNA

a, The expression levels of viral mRNA were measured by RT-qPCR in HEK293T cells cotransfected with an N4BP1 expression plasmid or an empty vector control together with the indicated viral infectious clones. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
b, Domain architecture of human N4BP1.
c, A structural modeling of the RNase domain of N4BP1. Colors highlight the evolutionary conservation of amino acids. D623, D704, D705 and D723 forming the catalytic center of the RNase are indicated (Left panel). Amino acid sequence alignment of the partial RNase domain of N4BP1 orthologs from various species. "*"Fully conserved residue, ":"conservation between groups of strongly similar properties, "." conservation between groups of weakly similar properties (right panel).
d, Purified N4BP 1, but not its D623N mutant, cleaves [$\left.{ }^{32} \mathrm{P}\right]$-labeled RNA derived from a subgenomic sequence of HIV-1 NL4-3 in vitro.
e, Structural models of the RNase domains (residues 616-775) in WT and D623N human N4BP1.
f, Northern blot analysis of HIV viral RNAs in HEK293T cells co-transfected with pNL4-3 and vectors expressing N4BP1 or N4BP1 D623N. Ribosomal 28S and 18S RNAs were included as loading controls.
g, RNA-IP-qPCR assay in HEK293T cells transfected with pNL4-3 together with or without Flag-tagged N4BP1. Flag-tagged N4BP1 D623N was immunoprecipitated with anti-Flab Ab or control IgG 48 hours after transfection and co-precipitated RNAs were quantified by RT-qPCR. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
h, HEK293T cells were cotransfected with pNL4-3 and vectors expressing N4BP1 or N4BP1 D623N. Shown are the immunoblots of cellular extracts and viral particles in the culture supernatants.
i, Infectious virus yield of HIV-1 NL4-3 in HEK293T cells transfected with pNL4-3
together with expression plasmids for N4BP1 WT, N4BP1 D623N or an empty vector control as assessed by TZM-bl reporter assay. Infectious virus yield relative to the empty vector control is shown. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
P values were calculated using unpaired two-tailed Student's t-test. *P $<0.05,{ }^{* *} \mathrm{P}<$ $0.001, * * * \mathrm{P}<0.005$.

Fig. 5. TCR stimulation induces MALT1-mediated degradation of N4BP1

a, Immunoblot analysis of N4BP1 levels in primary $\mathrm{CD}^{+} \mathrm{T}$ cells treated with IFN- $\gamma(50 \mathrm{ng} / \mathrm{ml})$, IL-2 ($100 \mathrm{U} / \mathrm{ml}$), PMA ($50 \mathrm{ng} / \mathrm{ml}$) plus ionomycin (500 nM) or anti-CD3/CD28 antibody-coated beads for 24 hours.
b, N4BP1 protein levels in Jurkat cells stimulated with PMA plus ionomycin for the indicated periods of time were determined by immunoblotting.
c, Immunoblot analysis of N4BP1 in parental or MALT1-deficient Jurkat cells stimulated with PMA plus ionomycin for 1 hour.
d, N4BP1 protein levels in Jurkat cells stimulated with PMA plus ionomycin for 1 hour with zVAD-fmk, a pan-caspase inhibitor $(10 \mu \mathrm{M})$ or $\mathrm{zVRPR}-\mathrm{fmk}$, a MALT1 inhibitor ($100 \mu \mathrm{M}$).
\mathbf{e}, Schematic representations of N4BP1 and its mutants. The epitope of the N4BP1-specific antibody used in the present study is indicated.
f, The apparent molecular weight of N4BP1 and its truncation mutants was determined by immunoblotting of transfected HEK293T cells.
g, Sequence-logo plot representing the amino acid frequencies at positions P4 to P3' in 16 previously identified MALT1 cleavage sites (Supplementary Fig. 10e).
h, Localization of the potential MALT1 cleavage site in N4BP1. Multiple sequence alignment of different N4BP1 orthologs . "*"Fully conserved residue, "." conservation between groups of weakly similar properties.
i, Cleavage of N4BP1 in HEK293T cells transfected with the indicated N-terminally Flag-tagged N4BP1 variants. Degradation of N4BP1 and emergence of the 72 kDa cleavage product were monitored by immunoblot with an anti-Flag antibody. j, N4BP1 levels were determined by immunoblotting of Jurkat cells transfected with an empty vector or expression plasmids for Flag-N4BP1.
\mathbf{k}, HEK293T cells were co-transfected with pNL4-3 and vectors expressing WT or mutant N4BP1. 48 hours post-transfection, a TZM-bl reporter assay was performed. Infectious virus yield relative to the empty vector control is shown. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown. P values were calculated using unpaired two-tailed Student's t-test. ${ }^{* * *} \mathrm{P}<0.005$.

Fig. 6. MALT1-mediated degradation of N4BP1 in latently HIV-1 infected cells contributes to viral reactivation.

a-b, Immunoblot analysis of N4BP1 and MALT1 in cell lysates from MALT1-deficient J-Lat10.6 (a), JNLGFP (b) or control cells stimulated with or without PMA ($50 \mathrm{ng} / \mathrm{ml}$) for 24 hours.
c-d, The expression levels of tat/rev and gag mRNA were quantified by qPCR in MALT1-deficient J-Lat10.6 (c) or JNLGFP cells (d) stimulated with PMA ($50 \mathrm{ng} / \mathrm{ml}$) for the indicated periods of time. Data are shown as mean \pm s.d. of biological replicates $(\mathrm{n}=$ $3)$.
e-f, Immunoblot analysis of N4BP1 and Gag p24 proteins in cell lysates or culture supernatants from J-Lat10.6 (e) or JNLGFP cells (f), which inducibly express N4BP1 or N4BP1 R509A by the Tet-on system treating with Dox and were stimulated with PMA $(10 \mathrm{ng} / \mathrm{ml})$ for 24 hours. The levels of Gag p24 in the supernatants were quantified and indicated as the percentage of Dox $(-)$ controls.
g, Immunoblot analysis of N4BP1 in control and N4BP1 KO JNLGFP cells generated by the CRISPR/Cas9 system. β-Actin was used as loading control.
h-i, N4BP1 KO JNLGFP cells were inducibly reconstituted with WT or R509A N4BP1 by the Tet-on system via Dox treatment, followed by stimulation with PMA ($10 \mathrm{ng} / \mathrm{ml}$) for 24 hours. Cell lysates and culture supernatants were collected and immunoblot analysis was performed to determine the expression of N4BP1, Gag and β-Actin proteins (h). The ratio of p24 expression in the culture supernatants between Dox (-) controls and Dox (+) WT or R509A N4BP1 expressing cells examined in (h) is shown in $(\mathbf{i})(\mathrm{n}=3)$. Individual points and means \pm s.d. are shown.
P values were calculated using unpaired two-tailed Student's t-test. ${ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<$ $0.001, * * * \mathrm{P}<0.005$.

a

Figure 1

d

e
h

N4BP1 overexpressing clones

Cont $1 \begin{array}{llll} & 2 & 3 & 4\end{array}$

Figure2
a
b

Human MDM

Figure 3

j

k

Figure 5

Supplemental Information for

N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation

Daichi Yamasoba ${ }^{1,2,5}$, Kei Sato ${ }^{3,6,7}$, Takuya Ichinose ${ }^{1,2,5}$, Tomoko Imamura², Lennart Koepke ${ }^{8}$, Simone Joas ${ }^{8}$, Elisabeth Reith ${ }^{8}$, Dominik Hotter ${ }^{8}$, Naoko Misawa ${ }^{3}$, Kotaro Akaki¹,2, Takuya Uehata ${ }^{1,2}$, Takashi Mino ${ }^{1,2}$, Sho Miyamoto ${ }^{4}$, Takeshi Noda4, Akio Yamashita ${ }^{9}$, Daron M. Standley ${ }^{10}$, Frank Kirchhoff ${ }^{8}$, Daniel Sauter ${ }^{8}$, Yoshio Koyanagi ${ }^{3}$ and Osamu Takeuchi ${ }^{1,2^{*}}$
${ }^{1}$ Department of Medical Chemistry, Graduate School of Medicine, ${ }^{2}$ Laboratory of Infection and Prevention, ${ }^{3}$ Laboratory of Systems Virology, ${ }^{4}$ Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, ${ }^{5}$ Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
${ }^{6}$ CREST, Japan Science and Technology Agency, Saitama 322-0012, Japan.
${ }^{7}$ Department of Systems Virology, Institute for Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
${ }^{8}$ Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
${ }^{9}$ Department of Molecular Biology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
${ }^{10}$ Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3 Yamada-oka, Suita, Osaka 565-0871, Japan
*e-mail: otake@mfour.med.kyoto-u.ac.jp.

Supplementary Figure 1. N4BP1 inhibits various clones of HIV-1, HIV-2 and SIVcpzPtt.

HEK293T cells were transfected with proviral clones expressing NL4-3, AD17 (TF), CH058 (TF), CH200v2 (TF), CH058 (6-mo), CH077 (6-mo), CH042 (CC), CH534 (CC), CH440 (CC), GH123 (HIV-2) or MB897 (SIVcpzPtt) (250 ng each), together with the N4BP1 expression plasmid (250 ng). Forty eight hours post-transfection, a TZM-bl reporter assay was performed to measure the production of infectious virus in the cell culture supernatants. Infectious virus yields normalized to the empty vector control are shown as mean values \pm s.d. of biological replicates ($\mathrm{n}=3$). P values were calculated using unpaired two-tailed Student's t-test. ***P < 0.005 .
a

Supplementary Figure 2. N4BP1 expression is induced by various IFN- α subtypes in human primary CD4 ${ }^{+} T$ cells.
(a) Immunoblot analysis for the expression of N4BP1 in human primary CD4+ T cells stimulated with indicated IFN- α subtypes ($50 \mathrm{ng} / \mathrm{ml}$ each) or IL-27 ($5 \mathrm{ng} / \mathrm{ml}$) for 3 days. β Actin was used as loading controls. Data are representative of three independent experiments.
(b) N4BP1 expression levels were determined by immunoblotting as shown in (a) and normalized to β-actin levels. The unstimulated sample was set to 100%. Data shown are mean values \pm s.d. of immunoblot data derived from 3 individual donors. P values were calculated using unpaired two-tailed Student's t-test. *P < 0.05; **P <0.01; ** $P<0.005$.
a

Supplementary Figure 3. N4BP1 deficiency in Jurkat cells does not affect growth, cell death or global protein synthesis
(a) N4BP1 KO Jurkat cells (clones 1 and 2) and control (Cont) cells were cultivated for 2 and 4 days and changes in cell numbers are shown. Data are shown as mean \pm s.d. of biological replicates ($\mathrm{n}=3$).
(b) Cells in a were analyzed by Flow cytometry (FACSVerse; BD) after propidium iodide staining. Individual points and means \pm s.d. are shown $(n=3)$.
(c) Control and N4BP1 KO Jurkat cells were cultured for 1 day. As negative control, some control cells were treated with a protein synthesis inhibitor, Cycloheximide (Cayman Chemical) for 30 min . Then the cells were harvested, and translating polypeptides were labeled with O-Propargyl-Puromycin (OPP) for 30 min at $37^{\circ} \mathrm{C}$ followed by staining with 5 FAM Azide using the Protein Synthesis Assay kit (Cayman Chemical). The cells were analyzed by Flow cytometry (FACSVerse; BD). Representative histograms for the levels of translating polypeptides (FAM) are shown (Left panel). Mean Fluorescence Intensities from the experiments were shown in the right panel. $\mathrm{n}=3$ biologically independent samples. Individual points and means \pm s.d. are shown.

Supplementary Figure 4. N4BP1 deficiency does not affect the expression of a set of house keeping genes, genes involved in cell cycling, apoptosis, IFN responses, IL17A and IL22 in N4BP1 KO Jurkat cells.
(a) Total RNA was prepared from control and N4BP1 KO Jurkat cells cultured for 1 day, and expression levels of the indicated genes including house-keeping genes (GAPDH, ACTB or HPRT), the anti-apoptotic gene BCL2, cell cycle-related genes (MYC, CDK9, CCNT1, CDK2 and BRD4), IFNB and inflammatory and anti-inflammatory genes (NFKBIA, IL17A and IL22) were determined by RT-qPCR. Individual points and means \pm s.d. are shown. Data are from $\mathrm{n}=3$ biologically independent samples.
(b) Cell lysates were prepared from control and N4BP1 KO Jurkat cells cultured for 1 day, and the expression of N4BP1, GAPDH, Tubulin- α and $l_{\kappa} B \alpha$ proteins was determined by immunoblot analysis. β-actin was used as loading controls. Data are representative of two independent experiments
a
N4BP1

b
HIV-1 total RNA
IFNB
C
HIV-1 total RNA

Supplementary Figure 5. N4BP1 restricts HIV-1 in Jurkat cells.

(a) N4BP1 expression levels were determined by RT-qPCR in Jurkat cells transfected with N4BP1 specific siRNA for 72 hours. $n=3$ biological replicates. Individual points and means \pm s.d. are shown.
(\mathbf{b} and \mathbf{c}) siRNA-treated Jurkat cells were infected with HIV-1 NL4-3. Seventy two hours postinfection, IFNB and viral mRNA expression levels in the cell lysates (b) and the culture supernatants (c) were determined by qPCR. $n=3$ biological replicates. Individual points and means \pm s.d. are shown.
(d) Immunoblot analysis for Flag-tagged N4BP1, endogenous N4BP1 and β-Actin in cell lysates from Jurkat cells stably expressing N4BP1.
(e) Expression levels of tat/rev, vif or gag RNA were measured by qPCR in Jurkat cells stably expressing N4BP1 or the respective parental cell line following infection with HIV-1 for the indicated periods. Data are shown as mean values \pm s.d. of technical replicates $(n=3)$.
(f) N4BP1-stably expressing Jurkat cells and control cells were infected with VSV-Gpseudotyped HIV-1 NL4-3 Δ env. Forty eight hours post infection, culture supernatants (Sup) and cell lysates were collected and analyzed by immunoblotting for the expression of Gag p24 in the culture supernatants (Sup), and N4BP1 and β-Actin in cell lysates.
P values were calculated using unpaired two-tailed Student's t-test. ${ }^{*} \mathrm{P}<0.05$; ${ }^{* *} \mathrm{P}<0.01$; ${ }^{* * *} \mathrm{P}<0.005$. n.s. not significant. Data are representative three (a-e) and two (f) independent experiments.

Supplementary Figure 6. N4BP1 does not suppress influenza virus.
(a) HEK293T cells stably expressing N4BP1 or control cells were infected with Influenza A virus (PR8 strain) for 24 hours before the expression level of viral mRNA for segment 4 (HA) was measured by qPCR. N.D., Not detected. $n=3$ biological replicates. Individual points and means \pm s.d. are shown.
(b) HEK293T cells stably expressing N4BP1 or control cells were infected with Influenza A virus (WSN strain) at an MOI of 1×10^{-3}, and the culture media were harvested 24 hours postinfection. The virus titers were determined by using plaque assays on MDCK cells. Individual points and means \pm s.d. are shown. Data are from $\mathrm{n}=3$ biologically independent samples.

Supplementary Figure 7. N4BP1 inhibits HIV-1 at the post-transcriptional level.
(a) LTR promotor activity was determined in TZM-bl cells cotransfected with N4BP1 and HIV-1 NL4-3 Δ env expressing plasmids. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
(b) Schematic representation of plasmids used in (c). The pEGFPC1 plasmid (Clontech) expresses EGPF protein under the control of CMV promoter. pCMV259 expresses HIV-1 NL4-3 under the CMV promoter instead of LTR (pNL4-3).
(c) HEK293T cells were transfected with pEGFP-C1 or pCMV259 together with or without Flag-N4BP1 plasmids. Expression of Gag p24 in the culture supernatants (Sup) as well as the expression of Flag-N4BP1, GFP, Gag and β-Actin in the cell lysates were determined by immunoblotting 48 hours after transfection. Data are representative of two independent experiments.

Supplementary Figure 8. N4BP1 inhibits HIV-1 at the late stage depending on its RNase activity.

(a) Purified N4BP1 was subjected to the in vitro cleavage assay using [$\left.{ }^{32} \mathrm{P}\right]$-labeled RNA derived from a part of the pBluescript vector.
(b) Multiple sequence alignment of the N4BP1 and Regnase-1 RNase domains. Arrows indicate conserved Asp residues in the catalytic domain.
(c) N4BP1 knockdown Jurkat cells exposed to HIV-1 NL4-3 (MOI; 0.1) or heat-inactivated HIV-1 NL4-3 at 37° C for 2 hours. Total DNA was isolated 12 hours after treatment, and amounts of early RT (R/U5) and late RT (U5/gag) products and integrated provirus were quantified by qPCR in. $\mathrm{n}=3$ biological replicates. Individual points and means \pm s.d. are shown.
(d) HEK293T cells were cotransfected with pNL4-3 and vectors expressing N4BP1 or N4BP1 D623N. Shown are the immunoblots for the expression of Vif, Vpu, Nef and Vpr in cell lysates prepared 48 hours after transfection.
(e and f) HEK293T cells were transfected with WT or D623N N4BP1 plasmids and cells were counted (e) or analyzed by flow cytometry after propidium iodide staining (f) 48 h later. Data are mean \pm s.d. of biological replicates. Data are representative three (c and d) and two (a) independent experiments.

Supplementary Figure 9. N4BP1 is not antagonized by accessory proteins of HIV-1 NL4-3.

HEK293T cells were transfected with an expression plasmid for N4BP1, Tetherin or empty vector together with NL4-3 wild type or NL4-3 $\Delta 4$. The latter does not express any of the accessory proteins encoded by HIV-1 (i.e. Vpu, Vif, Vpr and Nef). Infectious virus production was measured by TZM-bl assay 48 hours after transfection $=3$ biological replicates. Individual points and means \pm s.d. are shown. P values were calculated using unpaired twotailed Student's t-test. ${ }^{* * *} \mathrm{P}<0.005$. n.s. not significant.

C

N4BP1

d

e
Previously reported
Protein MALT1 cleavage sites

```
mRoquin-2 LIPRGTD
hRoquin-2 LISRTDS
mRoquin-1 LIPRGTD... MVPRGSQ
hRoquin-1 LIPRGTD... MVPRGSQ
mRegnase-1 LVPRGGS
hRegnase-1 LVPRGGG
hA20 GASRGEA
mBcl-10 LRSRALS
hBcl-10 LRSRTVS
mRelB LVSRGPA
hRelB LVSRGPA
hNIK CLSRGAH
mCYLD FMSRGVG
hCYLD FMSRGVG
hHOIL1 LQPRGPL
mHOIL1 LQSRGPL
```


Supplementary Figure 10. N4BP1 is degraded by MALT1 and contribution of other MALT1 substrates in the inhibition of HIV-1.

(a) Expression levels of N4BP1 mRNA were determined by RT-qPCR in Jurkat cells stimulated with PMA ($50 \mathrm{ng} / \mathrm{ml}$) plus ionomycin ($1 \mu \mathrm{M}$) for the indicated periods of time. Data are shown as mean \pm s.d. of biological replicates $(\mathrm{n}=3)$.
(b) N4BP1 expression levels were determined by immunoblotting in cell lysates from Jurkat cells stimulated with PMA plus ionomycin for 1 hour with or without the indicated concentrations of proteasome inhibitor MG132. β-Actin was used as loading controls. Data are representative of three independent experiments.
(c) Immunoblot analysis of N4BP1 in cell lysates from Jurkat cells stimulated with PMA (50 $\mathrm{ng} / \mathrm{ml}$), ionomycin ($1 \mu \mathrm{M}$) or PMA plus ionomycin for 1 hour. β-Actin was used as loading controls. Data are representative of three independent experiments.
(d) HEK293T cells were co-transfected with pNL4-3 and the indicated expression plasmids encoding Regnase-1, Rouqin-1 and Roquin-2. Forty eight hours post-transfection, a TZM-bl reporter assay was performed to measure the production of infectious virus in the cell culture supernatants. Infectious virus yields normalized to the empty vector control are shown as mean values \pm s.d. derived from of biological replicates ($n=3$). P values were calculated using unpaired two-tailed Student's t-test. ***P < 0.005 .
(e) Previously reported MALT1 substrate proteins and their cleavage sites.
a

b

e

c

d

Supplementary Figure 11. MALT1 contributes to viral reactivation in latently infected cells.
(\mathbf{a}, \mathbf{b} and \mathbf{c}) Immunoblot analysis of N4BP1 in cell lysates from J-Lat10.6 (a), JNLGFP (b) or J-Lat5A8 (c) cells stimulated with PMA ($50 \mathrm{ng} / \mathrm{ml}$) for the indicated periods of time. β-Actin was used as loading controls. Data are representative of three independent experiments.
(d) Immunoblot analysis of N4BP1 and MALT1 in cell lysates from MALT1-deficient or control J-Lat5A8 cells stimulated with PMA ($50 \mathrm{ng} / \mathrm{ml}$) for 24 hours. β-Actin was used as loading controls. Data are representative of three independent experiments.
(e) Expression of tat/rev and gag mRNAs was quantified by qPCR in MALT1-deficient or control J-Lat5A8 cells stimulated with PMA ($50 \mathrm{ng} / \mathrm{ml}$) for the indicated periods. Data are shown as mean \pm s.d. of biological replicates ($n=3$). P values were calculated using unpaired two-tailed Student's t-test. ${ }^{* *} \mathrm{P}<0.01 ;{ }^{* * *} \mathrm{P}<0.005$.

Supplementary Figure 12. Schematic model of the function of N4BP1 in inhibiting HIV1 infection and its regulation in HIV-1 reactivation.

Supplementary Table 1. Genes used for the screening of proteins harboring RNA binding domains and inhibiting HIV-1 infection.

No	Gene Name	Accession Number	No	Gene Name	Accession Number
1	GPATCH4	BC056904	32	ZC3H7A	BC027330
2	GPATCH2	BC042193	33	IREBP1	BC018103
3	GPATCH2	BC063474	34	ZCCHC17	BC050609
4	FTSJD2	BC031890	35	ZC3H8	BC032001
5	PINX1	BC015479	36	HNRNPC	BC103758
6	KIAA0391	BC032221	37	CPSF4	BC050738
7	RBM5	BC046643	38	CPSF4L	BC004603
8	ZCCHC4	BC016914	39	Zc3h15	BC031845
9	NKRF	BC047878	40	Zc3h14	BC024824
10	GPATCH8	BC019948	41	Zc3h11a	BC005786
11	GPATCH4	BC056904	42	ZFP36L1	BC018340
12	GPATCH3	BC096468	43	TIAL1	BC010496
13	SRRD	BC017682	44	Zc3h18	BC030495
14	RBM10	BC004674	45	HNRNPD	BC011172
15	RBM6	BC026129	46	Zcchc6	BC023880
16	ARFRP1	BC010713	47	Zc3h6	BC043311
17	ARFPR1	BC021513	48	HNRNPK	BC006694
18	ZCCHC9	BC032736	49	N4BP1	BC004022
19	PNPT1	BC027228	50	PCBP3	BC042440
20	QKI	BC019917	51	PCBP4	BC010694
21	ANKHD1	BC040231	52	KHDRBS1	BC002051
22	FXR1	BC019139	53	RNF141	BC018104
23	TARDBP	BC071657	54	RNF11	BC020964
24	YTHDC1	BC053863	55	RNF32	BC015416
25	YTHDC1	BC041119	56	PCBP2	BC107688
26	RIG-I	BC015946	57	RNF7	BC008627
27	FUBP1	BC014763	58	RNF138	BC018107
28	ZCCHC7	BC036940	59	RNF6	BC034688
29	ZCCHC11	BC048301	60	IGF2BP3	BC065269
30	ZCCHC18	BC017627,	61	RNF213	BC032220
31	ZC3H7A	BC046363	62	MEX3b	BC111545

Supplementary Table 2. RT-qPCR Primer Sets

Accession No	Gene	Forward	Reverse
AF324493.2	Tat/Rev	5'-ATGGCAGGAAGAAGCGGAG-3'	5'-ATTCCTTCGGGCCTGTCG-3'
AF324493.2	Gag2	5'-GTGTGGAAAATCTCTAGCAGTGG-3'	5'-CGCTCTCGCACCCATCTC-3'
AF324493.2	Gag3	5'-GTGTGGAAAATCTCTAGCAGTGG -3'	5'-CGCTCTCGCACCCATCTC -3'
AF324493.2	Vif	5'-GGCGACTGGGACAGC -3'	5'-CACACAATCATCACCTGCC -3'
NM_153029.4	N4BP1	5'- CCCGATGATCCTCTGGGAAG -3'	5'- TTTGGCAGGGCACTGAGTAG -3'
NM_004335.4	Tetherin	5'- GTGTCGCAATGTCACCCATC -3'	5'- GGGAAGCCATTAGGGCCATC - $\mathbf{3}^{\prime}$
NM_002176.4	IFN- β	5'- TTGTTGAGAACCTCCTGGCT - $\mathbf{3}^{\prime}$	5'- TGACTATGGTCCAGGCACAG -3'
X03205.1	18S	5'- CGGACAGGATTGACAGATTG -3'	5'- CAAATCGCTCCACCAAGTAA -3'
NM_005101.4	ISG15	5'- ACTCATCTTTGCCAGTACAGGAG -3'	5'- CAGCATCTTCACCGTCAGGTC -3'
NC_002017.1	$\begin{gathered} \text { Influenza A } \\ \text { (segment 4; } \\ \text { HA) } \\ \hline \end{gathered}$	5'- GGCCCAACCACAACACAACC -3	5'- AGCCCTCCTTCTCCGTCAGC -3
AF324493.2	HIV-1 Total	5'- CCTCAGATGCTGCATATAAG -3	5'- CAGGCTCAGATCTGGTCTAA -3
NC_001501	MLV gag	5'- GTCTGAGAATATGGGCCAGA -3	5'- CTTGATCTTAACCTGGGTGA-3
X52154.1	SIVcpzPtt	5'- ACATCTAGTATGGGCCGGAA -3	5'- TTCTGGAGAACCAATGTCTACC - $\mathbf{3}^{\prime}$
Y07723.1	HFV gag	5'- ACTTGATGTTGAAGCTCTGG -3'	5'- ATCCTTCAGTAAGGCGAAGA -3'
NM_001256799.2 NM_001289745.2 NM_001289746.1 NM_001357943.1 NM_002046.7	GAPDH	5'- GTTGCCATCAATGACCCCTTCATTGACC - 3^{\prime}	5'- CAGCATCGCCCCACTTGATTTTGG -3'
NM_001101.5	АСТВ	5'- GCGAGAAGATGACCCAGATC - 3^{\prime}	5'- CCAGTGGTACGGCCAGAGG -3'
NM_000194.3	HPRT1	5'- TATGGCGACCCGCAGCCCT -3'	5'- CATCTCGAGCAAGACGTTCAG -3'
NM_000633.2 NM_000657.2	BCL2	5'- TCCCTCGCTGCACAAATACTC -3'	5'- ACGACCCGATGGCCATAGA -3'
NM_001354870.1 NM 002467.6	cMYC	5'- GCGTCCTGGGAAGGGAGATCCGGAGC -3'	5'- TTGAGGGGCATCGTCGCGGGAGGC TG - 3^{\prime}
NM_001261.3	CDK9	5'- ATGGCAAAGCAGTACGACTCG -3'	5'- GCAAGGCTGTAATGGGGAAC - 3^{\prime}
NM_001240.4	CCNT1	5'- ACAACAAACGGTGGTATTTCACT - $\mathbf{}^{\prime}$	5'- CCTGCTGGCGATAAGAAAGTT - $\mathbf{3}^{\prime}$

NM_001277842.1			
NM_001290230.1			
NM_001798.5	CDK2	5'- TTTGCTGAGATGGTGACTCG -3'	5'- CTTCATCCAGGGGAGGTACA -3'
NM_052827.3			
NM_001330384.1			
NM_014299.2	BDR4	5'- ACCTCCAACCCTAACAAGCC - $\mathbf{}^{\prime}$	5'- TTTCCATAGTGTCTTGAGCACC - $\mathbf{3}^{\prime}$
NM_058243.2			
NM_020529.2	NFKBIA	5'- GAGGAGTACGAGCAGATGGTC - $\mathbf{}^{\prime}$	5'- CAGGTTGTTCTGGAAGTTGAG -3'
NM_002190.3	IL17A	5'- CAACCGATCCACCTCACCTT -3'	5'- GGCACTTTGCCTCCCAGAT - 3^{\prime}
NM_020525.5	IL22	5'- GCAGGCTTGACAAGTCCAACT -3'	5'- GCCTCCTTAGCCAGCATGAA -3'

Supplementary Table 3. Sequence used for in vitro transcription and in vitro cleavage assay (Fig. 4d).

GGTCTCTCTGGTAAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCA CTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTCAAAGTAGTGTGTGCCCGTCTGTTG TGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGC AGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGTAAAGCCAGAGGAGATCTCTCGACG CAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGAAGA AGCGGAGACAGCGACGAAGAGCTCATCAGAACAGTCAGACTCATCAAGCTTCTCTATCA AAGCAACCCACCTCCCAATCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGA AGGTGGAGAGAGAGACAGAG

Uncropped Raw Blots

Figure 1b HIV-1 NL4-3
Anti-p24

Anti-Env

Figure 1b HIV-1 AD17

Figure 2h

Figure 3b

Anti-N4BP1

Figure 3d

Figure $3 f$

Figure 4f

Figure 4h
Anti-p24

$130-$
$90-$

Figure 4 g

Figure 5a

Figure 5b

Figure 5c
Anti-N4BP1

Anti-MALT1

Figure 5d

Anti-N4BP1

Anti- β-Actin

Figure $5 f$

Figure $5 i$
Anti-Flag

Anti- β-Actin

* Bcl-2 carry over

Figure 5 j
Anti-N4BP1
Anti- β-Actin

Figure 6a

Figure 6b

Figure $6 e$

Figure $6 f$

Figure 6 g
Anti-N4BP1 Anti- β-Actin

Figure 6h

Supplementary Figure 2a
Anti-N4BP1 Anti- β-Actin

Supplementary Figure 5d

Supplementary Figure 5 f

Anti- β-Actin

Supplemental Figure 7c

Anti-GFP Anti- β-Actin
Anti-p24
Anti-N4BP1 Anti-p24

Supplemental Figure 8d

Anti-Nef

Anti-Vif

Supplemental Figure 10c
Anti-N4BP1 Anti- β-Actin

Supplemental Figure 11c

Anti-N4BP1 Anti- β-Actin

