112 research outputs found

    Interference of CLN6 mutants

    Get PDF
    CLN6 (Ceroid Lipofuscinosis, Neuronal, 6) is a 311-amino acid protein spanning the endoplasmic reticulum membrane. Mutations in CLN6 are linked to CLN6 disease, a hereditary neurodegenerative disorder categorized into the neuronal ceroid lipofuscinoses. CLN6 disease is an autosomal recessive disorder and individuals affected with this disease have two identical (homozygous) or two distinct (compound heterozygous) CLN6 mutant alleles. Little has been known about CLN6’s physiological roles and the disease mechanism. We recently found that CLN6 prevents protein aggregate formation, pointing to impaired CLN6’s anti-aggregate activity as a cause for the disease. To comprehensively understand the pathomechanism, overall anti-aggregate activity derived from two different CLN6 mutants needs to be investigated, considering patients compound heterozygous for CLN6 alleles. We focused on mutant combinations involving the S132CfsX18 (132fsX) prematurely terminated protein, produced from the most frequent mutation in CLN6. The 132fsX mutant nullified anti-aggregate activity of the P299L CLN6 missense mutant but not of wild-type CLN6. Wild-type CLN6’s resistance to the 132fsX mutant was abolished by replacement of amino acids 297–301, including Pro297 and Pro299, with five alanine residues. Given that removal of CLN6’s C-terminal fifteen amino acids 297–311 (luminal tail) did not affect the resistance, we suggested that CLN6’s luminal tail, when unleashed from Pro297/299-mediated conformational constraints, is improperly positioned by the 132fsX mutant, thereby blocking the induction of anti- aggregate activity. We here reveal a novel mechanism for dissipating CLN6 mutants’ residual functions, providing an explanation for the compound heterozygosity-driven pathogenesis

    Glucocorticoid Impaired the Wound Healing Ability of Endothelial Progenitor Cells by Reducing the Expression of CXCR4 in the PGE2 Pathway

    Get PDF
    Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear.Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs.Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully

    A Computational Approach To Predict Warp Of Sawn Lumber Due To Residual Growth Stress In A Log

    Get PDF
    A tree generates a complicated stress distribution inside the stem during its formation, which is called 'residual growth stress (RGS)'. The RGS often induces warp in a sawn lumber such as bow, crook, and other deformation, which causes severe losses of materials and benefits in the sawmill industry. Generally, warp becomes more serious in the lumber 'without pith' than in the lumber 'with pith'. In Japan, 50% of conifer plantations are ready to produce large-diameter logs of which diameter is more than 30 cm. The use of those logs inevitably leads to the production of the lumber 'without the pith', so we are concerned about the problems due to lumber warp in future sawmill industry using largediameter logs. Based on those practical background, this study presents a computational procedure to predict warp of the squared lumber, such as a beam, a bearer, and so forth, when those lumbers are sawn from the log and/or the thick plank. Using the derived procedure, 2-D patterns of the RGSs in the sawn lumbers and their changes during sawing processes are simulated. Simulated results will be experimentally verified by measuring the warp of the sawn lumber, as well as by measuring the RGS distributions in a log

    Glucocorticoid Impaired the Wound Healing Ability of Endothelial Progenitor Cells by Reducing the Expression of CXCR4 in the PGE2 Pathway

    Get PDF
    Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear.Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs.Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully

    Effect of switching from sevelamer hydrochloride to lanthanum carbonate on metabolic acidosis in dialysis patients

    Get PDF
    Treatments for hyperphosphatemia in dialysis patients include dietary therapy and oral administration of phosphate binders; however, it has recently been suggested that oral administration of sevelamer hydrochloride, a phosphate binder, may cause metabolic acidosis. Owing to the decreased supply of sevelamer hydrochloride after the Eastern Japan Great Earthquake Disaster on March 11, 2011, hyperphosphatemia patients switched to another phosphate binder, lanthanum carbonate. Here, we retrospectively evaluated the effect of this medication substitution on metabolic acidosis in patients on maintenance hemodialysis. 32 patients, who underwent maintenance hemodialysis at Nagasaki Kidney Center in Japan, were enrolled in our study and followed to evaluate the effect of switching medication on metabolic acidosis at 3 months after switching from sevelamer hydrochloride to lanthanum carbonate. The mean dose of sevelamer hydrochloride prior to the earthquake disaster was 3 g/day, and the mean dose of lanthanum carbonate thereafter was 0.9 g/day. Three months after the medication was changed, the concentration of bicarbonate ion did not increase significantly (p = 0.186), whereas pH and base excess increased significantly (p = 0.007 and p = 0.036, respectively). In this study, although the HCO3 - level was not significantly changed, the pH and base excess were significantly increased. Our findings indicate that lanthanum carbonate ameliorates metabolic acidosis
    corecore