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Abstract. A tree generates a complicated stress distribution inside the stem during its 

formation, which is called “residual growth stress (RGS)”. The RGS often induces warp in a 

sawn lumber such as bow, crook, and other deformation, which causes severe losses of 

materials and benefits in the sawmill industry. Generally, warp becomes more serious in the 

lumber “without pith” than in the lumber “with pith”. In Japan, 50% of conifer plantations 

are ready to produce large-diameter logs of which diameter is more than 30 cm. The use of 

those logs inevitably leads to the production of the lumber “without the pith”, so we are 

concerned about the problems due to lumber warp in future sawmill industry using large-

diameter logs. Based on those practical background, this study presents a computational 

procedure to predict warp of the squared lumber, such as a beam, a bearer, and so forth, 

when those lumbers are sawn from the log and/or the thick plank. Using the derived 

procedure, 2-D patterns of the RGSs in the sawn lumbers and their changes during sawing 

processes are simulated. Simulated results will be experimentally verified by measuring the 

warp of the sawn lumber, as well as by measuring the RGS distributions in a log.  
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1 INTRODUCTION 

Tree generates a 2-D stress distribution in a thin layer of the newly formed wood beneath 

the bark during the cell wall maturation. This is called “surface growth stress” or “growth 

stress”. The surface growth stress induces a distribution of counteractive stress in the older 

wood, which is superimposed on the pre-existing stress. As a result of repetition of the 

thickening growth, 3-D stress distribution is induced in the log, which is called “residual 

growth stress (RGS)” [1,2]. A balance of the RGS in a green log is disturbed by sawing, 

which causes bow, crook, twist and/or other warps in the sawn lumbers. Warp of the sawn 

lumber is not serious when the pith is centered on the cross-section of it, as in a lumber-with-

pith. However, in a lumber-without-pith, the warp becomes more severe [3,4].  

Many researchers consider that the warps of sawn lumber is primalily affected by the 

normal component of the RGS along the longitudinal direction because of a strong degree of 

longitudinal anisotropy in wood, and they have explained the effect of the longitudinal RGS 

on the warps of the primary sawing products using the elasto-mechanical and/or the finite 

element models [5-9]. However, the roles of the magnitude and shape of the RGS on the 

warps of the sawn lumbers have not been fully revealed. In addition, research has not 

progressed to link those theoretical/mathematical considerations to proposals for practical 

sawing procedures. 

From that background, this study presents a computational procedure to predict warp of 

the long squared lumber, when those lumbers are sawn from a four-sided cant. Then, 

numerical experiments on the effect of magnitude and shape of the longitudinal RGS in a log 

on the warp of the sawn lumber were made. Moreover, it was discussed how the different 

sawing patterns would affect the production efficiency of the straight lumber when we 

manufacture the products from the four-sided cant by quartering with correction sawing. Fifty 

percent of the conifer plantations in Japan have reached the main cutting age, and most of the 

logs produced have large diameters of more than 30 cm. The use of large-diameter logs 

inevitably involves the production of the lumber without pith. This study is expected to 

present some useful suggestion to solve the problems of warps of the sawn lumbers in the 

future sawmill industry.  

2 NUMERICAL MODELLING 

2.1  Log and lumber models  

Logs A (diameter φ = 0.49 [m]) and B (φ = 0.34 [m]) with a length of 4 [m] are virtually 

used that have straight and cylindrical shapes in the longitudinal direction and the circular 

shapes without eccentricity in the cross-section. From each log, a four-sided cant with a 

constant thickness and width is virtually produced as shown in Figure 1.  

Each four-sided cant is further subdivided into small lumbers in a way as shown in Figure 

2. An O-ξη Cartesian coordinate system is set on the cross-section A of the sawn lumber 

whose origin O is located at the geometrical centroid of A. At the same time, the ζ-axis is set 

to pass through the origin O, parallel to the pith line, so as to constitute an O-ξηζ right-handed 

Cartesian coordinate system in the sawn lumber. It is assumed that kerf width has been 

neglected in the simulations for convenience.  
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Figure 1 (left figure): Virtually introduced logs and four-sided cants. A four-sided cant having a thickness 

of 12 [cm] and a width of 48 [cm] is produced from the log A, and is represented as [T12, R48]. From 

the log B, a four-sided cant with a thickness of 24 [cm] on each side is represented as [T24, R24]. 

    

Figure 2 (right figure): A sawn squared lumber taken from the four-sided cant and O-ξη Cartesian 

coordinate system set on the domain A corresponding to the cross-section of the sawn lumber. Origin 

O of the coordinate system is located at the centroid of A.  

2.2  Distribution of inherent strain in a log 

   A tree generates a distribution of the normal strain called the inherent strain (αζ) on an 

arbitrary cross-section in the log. This induces the RGS inside the log. At an any point in the 

log, RGS (σζ) is calculated by using the formula σζ = −Eζ αζ, where Eζ is the Young’s modulus 

of the wood along the direction of ζ-axis at that point. Many researchers have considered that 

the inherent strain can be observed as the elastic released strain of the RGS [1]. 
 

 
 

Figure 3: Measurement of deflection of the sawn lumber cut from the four-sided cant. The sawn lumber shows 

warp, which is measured as deflection δ at half the length of the sawn lumber. 

 

Wood in the log shows polar anisotropy in its mechanical properties, and then both αζ and 

Eζ are distributed axisymmetrically from the pith to the bark, and uniformly along the 

direction of ζ-axis. Therefore, the RGS (σζ) will be distributed axisymmetrically in the radial 

direction, while uniformly along the direction of ζ-axis in the log.  

Sawing disturbs the balance of the RGS in a log or a lumber, which often causes lumber 

warps. In a four-sided cant, the remaining RGS still maintains line-symmetry with respect to 

both ξ- and η-axes on the cross-section because the origin O of the O-ξη Cartesian coordinate 
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system is located at the pith (see Figure 1). Therefore, no warp would occur in the four-sided 

cant. On the other hand, sawn lumber often shows warp in the η-ζ plane due to losing the line-

symmetry of the remaining RGS with respect to the ξ-axis (see Figures 2 and 3). The 

deflection of the warp of the sawn lumber is represented by δ as shown in Figure 3, which can 

be simulated based on the "beam theory" as follows [10]. 

2.3  How to formulate the warp of the sawn lumber cut from the four-sided cant 

The discussion is started from the following simplified constitutive equation correlating 

the normal stress σζ, the normal strain due to displacement εζ, and the inherent strain αζ at an 

arbitrary point on the cross-section of the log, or the four-sided cant, or the sawn lumber, 
 

𝜎𝜁 = 𝐸𝜁(𝜀𝜁 − 𝛼𝜁) ,       (1)    
 

where Eζ is the Young’s modulus. The strain εζ is given as follows: 
 

𝜀𝜁 = {

0   (in the log)                                       

     𝑠0      (in the four-sided cant)                    

𝑠0 + 𝑠1 + 𝜀𝑏   (in the sawn lumber) .

(2) 

 

where s0 is a normal strain uniformly induced over the cross-section of the four-sided cant 

when it is cut from the log: s1 is a normal strain uniformly induced over the cross-section of 

the sawn lumber when it is cut from the four-sided cant: εb is a bending strain on the cross-

section of the sawn lumber, which is caused by the pure bending due to the inherent strain αζ.  

Bending strain εb is represented by multiplying the curvature of bending (1/ρ) by the 

signed distance (η) from the ξ-axis to the measured point on the cross-section A (see Figure 

2); then, Eq.(1) can be rewritten as the following formula,  
 

𝜎𝜁(𝜉, 𝜂) = 𝐸𝜁(𝜉, 𝜂) (
𝜂

𝜌
+ 𝑠 − 𝛼𝜁(𝜉, 𝜂))       in 𝐴 ,         (3)  

  

where s (= s0 + s1) is a normal strain uniformly induced on the cross-section A when the sawn 

lumber is separated from “the log”.  

On the cross-section A, the axial force Nζ and the bending moment Mξ are calculated as 
 

𝑁𝜁 = ∬ 𝜎𝜁(𝜉, 𝜂)
𝐴

𝑑𝜉𝑑𝜂         (4),            𝑀𝜉 = ∬ 𝜎𝜁(𝜉, 𝜂)
𝐴

𝜂𝑑𝜉𝑑𝜂 .        (5) 

 

Since the tree log is a polar anisotropic material, the neutral axis on the cross-section A of 

the sawn lumber often deviates from the centroid. In the present study, the origin O of the O-

ξη coordinate system is located not at the center of the neutral axis, but at the centroid of the 

cross-section A as shown in Figure 2. The condition Nζ = 0 is adopted as the equilibrium 

condition of the axial load. Furthermore, Mξ = 0 is also assumed as the equilibrium condition 

of the moment. Then, Eqs. (3), (4), and (5) are transformed into a system of simultaneous 

linear equations with respect to curvature 1/ρ and axial strain s, which is solved as follows.  
 

1

𝜌
=

𝐼𝐾 − 𝐽𝐻

𝐼2 − 𝐽𝐿
 ,  𝑠 =

𝐻𝐼 − 𝐾𝐿

𝐼2 − 𝐽𝐿
 ,      (6) 
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where  𝐼 = ∬ 𝐸𝜁(𝜉, 𝜂)
𝐴

𝜂𝑑𝜉𝑑𝜂,    𝐽 = ∬ 𝐸𝜁(𝜉, 𝜂)
𝐴

𝑑𝜉𝑑𝜂,    𝐾 = ∬ 𝐸𝜁(𝜉, 𝜂)𝛼𝜁(𝜉, 𝜂)
𝐴

𝑑𝜉𝑑𝜂, 

𝐿 = ∬ 𝐸𝜁(𝜉, 𝜂)
𝐴

𝜂2𝑑𝜉𝑑𝜂,   and   𝐻 = ∬ 𝐸𝜁(𝜉, 𝜂)𝛼𝜁(𝜉, 𝜂)𝜂
𝐴

𝑑𝜉𝑑𝜂 .                (7) 

 
It is assumed that αζ(ξ, η) and Eζ(ξ, η) are given on the domain A in advance. 

2.4  Conditions that distributions of αζ(ξ, η) and Eζ(ξ, η) must satisfy 

Based on the assumption of polar anisotropy, αζ and Eζ can be expressed as αζ (r) and Eζ(r), 

respectively, on the cross-section A of the log where O-rθz cylindrical coordinate system is set. 

These functions must satisfy Eq.(8), which is an equilibrium condition of axial stress σζ (r) on 

the cross-section A of the log. Therefore, under the condition of Eq.(8), various r-

dependencies are tested for αζ (r) and Eζ (r). 
 

∫ 𝜎𝜁(𝑟)𝑑𝐴 

𝐴

= ∫ [−𝐸𝜁(𝑟)𝛼𝜁(𝑟)]𝑑𝐴 

𝐴

= −2𝜋 ∫ 𝐸𝜁(𝑟)𝛼𝜁(𝑟)𝑟𝑑𝑟

𝑅

0

= 0   (in a log)        (8) 

2.5 r-dependencies of  αζ (r) and Eζ (r) 

With reference to the previous authors’ results using sugi, r-dependency of Eζ(r) is 

virtually assumed as the following conditions [11-13]. Those are (1) Eζ(r) is a monotonously 

increasing function of r. (2) Eζ(r) becomes constant after xylem maturation. (3) The function 

shape of Eζ(r) depends on neither the cambial age nor the log diameter. In the present 

simulation, the following function is tentatively assumed as Eζ(r).  
 

Eζ(r) = (E0 −E∞)∙exp( −18.05r) + E∞                                   (9) 
 

Here, it is assumed E0 = Eζ(0) = 3 [GPa] and E∞ = Eζ(∞) = 10 [GPa].  

Previous authors reported that released strain, which is a convenient indicator of the 

inherent strain, often represents the maximum positive value near the pith, thereafter, it 

monotonously decreases with the distance from the pith, and shows the minimum value (i.e., 

maximum negative value) at the outermost surface of the xylem (e.g., [14, 15]). In the present 

study, it is assumed that the function αζ(r) is monotonously decreasing for r. As for the 

magnitude of range of αζ(r) in the domain of 0 ≤ r ≤ R, a quantity Δα (= αζ(0)−αζ(R)) is 

introduced, where αζ(0) is the value of inherent strain at the pith (r=0), and αζ(R) at the xylem 

surface (r=R). Thus, the function forms of αζ(r) are arbitrarily assumed as follows.  
 

(𝐚) linear type;   𝛼𝜁(𝑟) = −
𝛥𝛼

𝑅
𝑟 + 𝛼𝜁(0), (𝐛) Japanese bell type;  𝛼𝜁(𝑟) = −

𝛥𝛼

𝑅2
𝑟2 + 𝛼𝜁(0), 

(𝐜) trumpet pavillon type;   𝛼𝜁(𝑟) =
𝛥𝛼

𝑅2
(𝑟 − 𝑅)2 + 𝛼𝜁(𝑅)                           (10)     

 

In the simulation, we first assume the values of Δα and R as well as the function Eζ(r); 

thereafter, we determine the values of αζ(0) and αζ(R) so that αζ(r) in Eq.(10) satisfies Eq.(8). 

Thus, the functional shape of the mechanically possible αζ(r) can be determined. Figure 4 

shows graphs of αζ(r) in Eq.(10) to be used for the present simulation. The numbers 1 to 5 in 

each figure represent various values of Δα, which increase in the order of 1, 2,..., 5.  
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2.6  Numerical method for calculating Eq.(7) 

As shown in Figure 5, the rectangular cross-section A of the sawn lumber is subdivided 

into 2×n vertical and 2×m horizontal, for a total of 4×m×n microelements. The Cartesian 

coordinate system O-ξη is set on the rectangular cross-section A. The origin O is the centroid 

of the cross-section A. Then, three types of coordinates are given to the point at the centroid of 

each microelement: “element coordinates (i, j)”, “Cartesian coordinates (ξi, ηj)”, and “R 

coordinates (rij)”. Suffices “i” and “j” take the following integers, “−m, −m+1, ∙·∙·, −1, 0, 1, ∙∙∙∙, 

m−1, m” and “−n, −n+1, ∙·∙·, −1, 0, 1, ∙∙∙∙, n−1, n”, respectively. The R coordinate (rij) means 

the actual distance from the pith S to the centroid of the (i, j)-th element.  
 

              (Figure 4)                                                 (Figure 5) 

      
Figure 4 (left figure): An example of radial distribution of the inherent strain in a log (see Eq.(10)). The 

numbers 1 to 5 in the figures represent values of Δα: 1, 0.1549 [%];  2, 0.1949 [%]; 3, 0.2349 [%]; 4, 

0.2749 [%]; 5, 0.3149 [%]. 

Figure 5  (right figure): Grid segmentation of the domain A of surface integrations in Eq.(7).  
 
Based on Figure 5, Eq.(7) is converted into the following piecewise quadrature on A.  

 

𝐼 ≃ ∑ 𝐸𝑖𝑗𝜂𝑗Δ𝜉Δ𝜂

𝑖𝑗

,  𝐽 ≃ ∑ 𝐸𝑖𝑗Δ𝜉Δ𝜂

𝑖𝑗

,  𝐾 ≃ ∑ 𝐸𝑖𝑗𝛼𝑖𝑗Δ𝜉Δ𝜂

𝑖𝑗

,  𝐿 ≃ ∑ 𝐸𝑖𝑗𝜂𝑗
2Δ𝜉Δ𝜂

𝑖𝑗

,  𝐻 ≃ ∑ 𝐸𝑖𝑗𝛼𝑖𝑗𝜂𝑗Δ𝜉Δ𝜂

𝑖𝑗

  

(11) 

where Eij = Eζ(ξi, ηj), αij = αζ(ξi, ηj), Δξ = a/m, and Δη = h/n.  
 
When we calculate eqs.(6) using eqs.(11), the number of subdivisions (2m×2n) on the 

cross-section A must be determined in advance. When the simulation was performed 

assuming a plausible value for the parameter in Eq. (11), it was found that the number of 

subdivisions hardly affects the values of 1/ρ and s if 2m×2n ≥ 12×20 (= 240) [10].  

3 EXAMPLES OF SIMULATION  

3.1 Examples 

Simulation 1: Changes in 2-D distributions of the RGS during the sawing process 

Four-sided cants [T12, R48] and [T24, R24] were taken from the log A and B, 

respectively. Thereafter, each four-sided cant was cut into two equal parts (two “halved 

cants”) along the pith (see Figures 6 and 7). In Simulation 1, 2-D distributions of the RGS in 
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the cross-section of each four-sided cant before and after separation from the log, and after 

cutting along the pith were calculated using Eqs.(6) and (11). Results were compared among 

the types of the inherent strain distributions in logs. 
 

Simulation 2: Determining the optimal sawing pattern 

A four-sided cant [T12, R48] was evenly quartered followed by correction sawing as 

shown in Figure 8. Simulation 2 consists of two sawing patterns A and B, and each sawing 

pattern consists of two sawing steps. At each step, it was promised that the warp of the 

resulting sawn lumber must be straightened by the correction sawing before being sent to the 

next step or shipping if the absolute value of the deflection (δ) exceeds 8 [mm]. The criterion 

“δc = 8 [mm]” is 0.2 [%] of the whole length of the sawn lumber (4 [m]), which is introduced 

with reference to “Japan Agricultural Standard for the structural lumber 2007”. Finally, 

widths of the final products (= straightened quartered cants) and production yield from the 

four-sided cant [T12, R48] were calculated in each sawing pattern. Results were compared 

between two sawing patterns, as well as among the types of inherent strain distributions. 

3.2 Result of Simulation 1  

In the present calculations, an experimentally feasible value of 0.1949 % was applied to 

Δα. The results of simulations were visualized using a color bar as shown in Figures 6 and 7. 

In the unprocessed log (α), the sign of RGS changed from compression to tension at the radial 

position where the r/R is about 2/3. In a four-sided cant which was separated from the log (β), 

the transition point from compressive stress to tensile stress shifted to the radial position 

where r/R is about 1/2. This is because the four-sided cant elongated uniformly in the axial 

direction due to separation, causing an axial strain s0 (see Eq. (2)).  

 

       
 

Figure 6: Result of Simulation 1. Four-sided cant [T12, R48] is cut along its pith. As the value of Δα, An 

experimentally feasible value of 0.1949 [%] was commonly applied in the simulation. Types of 

inherent strain distributions are (a) Linear,  (b) Japanese bell, and (c) Trumpet pavillon. Sawing steps 

are α: in the unprocessed log, β: in the separated four-sided cant, and  γ: in the halved cant. 

 
By cutting the four-sided cant along the pith, the resulting sawn lumber (halved cant γ) 

showed warp. At the same time, the RGS on the cross section of the halved cant was 

becoming more uniform. However, the state of the remaining RGS in the halved cant was 
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dependent on the type of inherent strain distribution and even more greatly on the size and/or 

shape of the four-sided cant.  

 

     

 
  

If the inherent strain distribution was linear or Japanese-bell type, weak compressive 

stress remained in a red-colored circular or elliptical domain centered on the centroid of the 

halved cant. On the other hand, if the inherent strain distribution was trumpet-pavillon type, 

the distribution of the remaining RGS showed rather a complicated shape. In such a case, 

when the halved cant is further sawn, further warping may occur due to rearrangement of the 

remaining RGS. 

3.3 Result of Simulation 2  

In Simulation 2, an experimentally feasible value of 0.1949 [%] was commonly applied as 

Δα. At the first step of the sawing pattern A, a large part of RGS was released as shown in γ 

in Figure 8 (left); as the result, the halved cants showed warps of which deflections were 

13.43~15.82 [mm] in absolute values. Thus, correction sawing was applied to those halved 

cants. At the second step of the sawing pattern A, the corrected halved cant was further cut 

into two parts along the central axis (δ in Figure 8 (left)). Then, warps occurred in those 

resulting quartered cants, of which deflections were below the criterion “δc = 8 [mm]” 

regardless of the type of the inherent strain distribution [10]. This is because more than 90 [%] 

of strain energy had been already released at the first sawing step, which was noticeable in the 

halved cant with the inherent strain distribution of the linear type [10]. That said, deflections 

were marginally smaller than the criterion “δc = 8 [mm]” in the quartered cants with the 

inherent strain distributions of Japanese-bell and trumpet-pavillon types. In any case, no 

further correction was required at the second step in the sawing pattern A. 

At the first step of the sawing pattern B, a quartered cant was taken from each bark-side of 

the four-sided cant, which showed warp (γ in Figure 8 (right)). The deflections of warps 

exceeded the criterion “δc = 8 [mm]” in the quartered cants with the inherent strain 

distributions of the linear and the Japanese-bell types. Thus, correction sawing was applied to 

those quartered cants. While, in the quartered cant with the inherent strain distribution of the 

trumpet-pavillon type, the deflection was marginally below than the criterion “δc = 8 [mm]”, 

meaning no correction sawing is required.  

Figure 7: Result of Simulation 1. Four-sided cant 

[T24, R24] is cut along its pith. As the value of Δα, 

0.1949 [%] is commonly applied in the simulation. 

Types of inherent strain distributions are (a) Linear, 

(b) Japanese bell, and (c) Trumpet pavillon. Sawing 

steps are α: in the unprocessed log, β: in the 

separated four-sided cant, and  γ: in the halved cant. 
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In the inner-side lumber, a large amount of RGS still remained after the first step of the 

sawing pattern B (see γ in Figure 8 (right)). At the second step, it was further cut along the 

pith, which caused warps (δ in Figure 8 (right)). The deflections of those quartered cants (= 

pith-side cants) exceeded the criterion “δc = 8 [mm]” in the cases with the inherent strain 

distributions of the linear and the trumpet-pavillon types. Correction sawing was applied to 

those quartered cants. While, in the case with the inherent strain distribution of the Japanese-

bell type, the deflection was marginally smaller than the criterion “δc = 8 [mm]”.   

Results of Simulation 2 were summarized in Table 1. It is concluded that the Sawing 

pattern A is better performance than the Sawing pattern B in that it requires fewer correction 

sawings and that it produces lumbers as straight as possible in higher yields. 
 

                       (Sawing pattern A)                                         (Sawing pattern B)  

   
Figure 8. Result of Simulation 2. Four-sided cant [T12, R48] is finally quartered with correction 

sawings by two sawing patterns A and B. As the value of Δα, 0.1949 [%] is commonly applied 

in the simulation. The above-mentioned results are examples for the inherent strain distribution 

of linear type, assuming the criterion “δc = 8 [mm]”. Sawing steps are α: at the unprocessed log, 

β: at the separated four-sided cant [T12, R48], γ: at the first sawing step followed by correction 

sawing, δ: at the second sawing step followed by correction sawing. 

 
Table 1. Widths of the cross-section of the corrected quartered cants produced in Simulation 2. 

 

 

4 EXAMPLES OF VERIFICATIONS 

4.1 Examples 

Experiment 1: Warp of sawn lumber when the four-sided cant was cut along the pith 

Fifteen green logs of sugi (Cryptomeria japonica) with a top diameter of 0.37 ~ 0.42 [m] 

and a length of 4 [m], planted in Ibaraki, Japan, were used. Each log were devided into two 

logs with a length of 2 [m]. From the top half log, a four-sided cant with thickness of 12 [cm] 

Type of inherent strain a: Linear b: Japanese-

bell

c: Trumpet-

pavillon

a: Linear b: Japanese-

bell

c: Trumpet-

pavillon

Width of corrected quartered cant  (pith-side) [mm] 112.7 112.1 113.3 104.5 97.0 120.0

            remained deflection of warp (pith-side)[mm] 1.1 7.5 5.2 <1 <1 7.96

Width of corrected quartered cant  (bark-side) [mm] 112.7 112.1 113.3 107.1 120.0 102.0

          remained deflection of warp (bark-side) [mm] <1 6.7 5.6 <1 7.8 <1

Production yield for the four-sided cants [%] 
1) 93.9 93.4 94.4 88.2 90.4 92.5

Note: 1) Volumetric ratio of production of corrected quartered cants to the four-sided cant.

Sawing patern A Sawing patern B
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was sampled, which was further cut into two halved cants along the pith. Then, deflection of 

warp due to cutting (δ) was measured at half the length of each halved cant by using a dial-

gage device, which was transformed into the curvature 1/ρ by the formula, 
 

1

𝜌
=

8δ

𝐿2 + 4𝛿2
≈

8δ

𝐿2
  ,  𝛿 ≈

𝐿2

8
(

1

𝜌
) ,                    (12)   

  
where L (= 1.5 [m]) is the span length of the device.  

From the bottom half log, a quartersawn board with thickness of 4 [cm] was taken, and 

normal component of the released strain in ζ direction (𝛼̂𝜁) was measured by the strain gauge 

method. Measurement points were set radially every 2 cm from the pith to both bark sides 

[14,15]. Thereafter, a rectangular specimen with a size of 10 (ξ-width) × 5 (η-thickness) × 100 

[mm3] (ζ-length) was taken from each measurement point of the released strain, and was used 

for measurement of the Young’s modulus in ζ direction (𝐸̂𝜁) by the tensile test.  

We assumed that both 𝛼̂𝜁 and 𝐸̂𝜁 are axisymmetric with respect to the pith, and that both 

radial distribution patterns are the same in the top and bottom logs. The value of 𝛼̂𝜁  was 

tentatively adopted as the inherent strain (αζ) in each tested log. Both 𝛼̂𝜁 and 𝐸̂𝜁 were applied 

to Eqs. (6) and (11) to simulate the curvature of warp of the halved cant.   
 

Experiment 2: Four-sided cants were evenly quartered in three sawing patterns 

In this experiment, total 33 four-sided cants were prepared from 33 green logs of sugi 

(Cryptomeria japonica) with a top diameter of 0.34 ~ 0.38 [m] and a length of 2 [m], which 

were evenly devided into three groups. As shown in Figure 9 (right), these three groups were 

assigned to test the three types of sawing patterns A, B, and C, respectively. In each sawing 

pattern, the warp due to cutting was measured on the outer surface of the material marked 

with an asterisk after cutting in the order of the numbers.   
 

   (Experiment 1)                                                                   (Experiment 2) 
 

        
Figure 9: Scheme of experiment. In Experiment 1 (left figure), we examined whether the observed 

curvatute of the halved cant could be reproduced by applying the measured values of 𝛼̂𝜁  and 𝐸̂𝜁 to 

Eqs.(6) and (11). In Experiment 2 (right figure), the warp is measured on the outer surface of the 

material marked with an asterisk just after cutting in the order of the numbers. 

4.2 Result of Experiment 1 

As can be seen from Figure 10, experimental results of the curvatures of the halved cants 

were highly corelated with the simulated results: this means that the warp of sawn lumber can 

be reproduced from the measured distributions of the inherent strain and the Young’s 

modulus by the simulation using Eqs. (6) and (11). At the same time, Figure 10 gives a certain 
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propriety to the assumption that 𝛼̂𝜁  and 𝐸̂𝜁  have axisymmetric distributions in a tested log, 

which has been supported by the authors’ separate experiment even with some errors and 

exceptions [16].  

The simulation gave more or less lower values in the curvature of warp in the halved cant 

than the observation.  
 

   (Experiment 1)                                                                      (Experiment 2) 

     
   Figure 10: Results of verifications by Experiment 1 (left figure) and Experiment 2 (right 

figure) using large-diameter logs of sugi (Cryptomeria japonica). 

4.3 Result of Experiment 2 

As can be seen from Figure 10 (right), the deflection of warp depended on the sawing 

pattern. In Sawing pattern A, a large warp was generated by the cutting at the first sawing step 

(“1” in the uppermost figure), and as a result, the RGS was almost released (see Figure 8). 

The average warp newly generated at the second sawing step (“2” in the uppermost figure) 

was almost 0; however, if anything, it can be said that the warp that has occurred at often 

recovered slightly at this stage.  

In the sawing patterns B and C, a certain amount of the RGS still remained at the first 

sawing step because the sawn lumber was not yet divided along the pith. The remaining RGS 

will be released at the subsequent step, and the additional warp also increased. Considering 

that the warp must be corrected by correction sawing, in the Sawing pattern A, if correction 

sawing is performed immediately after “1”, it is no more required at the subsequent step “2”. 

Considering the number of operation of the correction sawing, it can be said that the Sawing 

pattern A was the most optimal among three tested sawing patterns. 
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