3,058 research outputs found

    Technique for manufacturing nickel electrodes

    Get PDF
    A method of manufacturing nickel electrodes distinctive for its use of a composite material for the electrode made up of nickel compound, electrode material, cobalt in metal form or cobalt in compound form is investigated. The composite is over-discharged (same as reverse charging) in an alkaline solution. After dealkalization, synthetic resin adhesive is added and the electrode is formed. Selection of the cobalt compound is made from a group consisting of cobalt oxide, cobalt hydroxide, cobalt carbonate and cobalt sulfate. The method upgrades plate characteristics by using an active material in a non-sintered type nickel electrode, which is activated by electro-chemical effect

    Stability of Spinmotive Force in Perpendicularly Magnetized Nanowires under High Magnetic Fields

    Full text link
    Spinmotive force induced by domain wall motion in perpendicularly magnetized nanowires is numerically demonstrated. We show that using nanowires with large magnetic anisotropy can lead to a high stability of spinmotive force under strong magnetic fields. We observe spinmotive force in the order of tens of microvolt in a multilayered Co/Ni nanowire and in the order of several hundred microvolt in a FePt nanowire; the latter is two orders of magnitude greater than that in permalloy nanowires reported previously. The narrow structure and low mobility of a domain wall under magnetic fields in perpendicularly magnetized nanowires permits downsizing of spinmotive force devices.Comment: submitted to Applied Physics Letter

    Spin accumulation created electrically in an n-type germanium channel using Schottky tunnel contacts

    Full text link
    Using high-quality Fe3_{3}Si/n+n^{+}-Ge Schottky-tunnel-barrier contacts, we study spin accumulation in an nn-type germanium (nn-Ge) channel. In the three- or two-terminal voltage measurements with low bias current conditions at 50 K, Hanle-effect signals are clearly detected only at a forward-biased contact. These are reliable evidence for electrical detection of the spin accumulation created in the nn-Ge channel. The estimated spin lifetime in nn-Ge at 50 K is one order of magnitude shorter than those in nn-Si reported recently. The magnitude of the spin signals cannot be explained by the commonly used spin diffusion model. We discuss a possible origin of the difference between experimental data and theoretical values.Comment: 4 pages, 3 figures, To appear in J. Appl. Phy

    Modelling Electron Spin Accumulation in a Metallic Nanoparticle

    Full text link
    A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin-relaxation, the model leads to a spin-accumulation in the nanoparticle, a difference (Δμ\Delta\mu) between the chemical potentials of spin-up and spin-down electrons, proportional to the current and the Julliere's tunnel magnetoresistance. Taking into account an energy dependent spin-relaxation rate Ω(ω)\Omega (\omega), Δμ\Delta\mu as a function of bias voltage (VV) exhibits a crossover from linear to a much weaker dependence, when ∣e∣Ω(Δμ)|e|\Omega (\Delta\mu) equals the spin-polarized current through the nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon emission and Elliot-Yafet mechanism, the model leads to a crossover from linear to V1/5V^{1/5} dependence. The crossover explains recent measurements of the saturation of the spin-polarized current with VV in Aluminum nanoparticles, and leads to the spin-relaxation rate of ≈1.6MHz\approx 1.6 MHz in an Aluminum nanoparticle of diameter 6nm6nm, for a transition with an energy difference of one level spacing.Comment: 37 pages, 7 figure

    Effects of tape covering and vine vigor on development of surface callus in girdle of grapevine

    Get PDF
    The effects of vine vigor (shoot growth) and covering the girdle surface with plastic tape on the development of a surface callus (SC) in the girdle of grapevine were studied by histological observation. The SC was formed in a tape-covering treatment but was not formed unless the girdle surface was covered with plastic tape (exposing treatment). Histological observation revealed that in the tape-covering treatment, callus cells developed mainly from the ray parenchyma cells on the girdle surface 2 days after girdling (DAG), leading to the formation of the SC, which grew and filled the girdle portion by 7 DAG. When 16 vines were divided into three categories based on scaffold branch length, vines with 7.5 m scaffold branches developed shorter shoots with smaller internode diameters than did vines with 4.5 and 6.0 m scaffold branches. In vines with 7.5 m scaffold branches, the SC covered a smaller area of the girdle surface than in vines with 4.5 and 6.0 m scaffold branches. The length and diameter of the shoot were significantly correlated (r2 = 0.75** and 0.70**, respectively) with the ratio of the girdle area covered by the SC to the whole girdle area (SC covering ratio). These results show that the SC originates mainly from the ray parenchyma cells and that SC development is strongly affected by vine vigor. Consequently, to ensure SC development, girdling should be done by tape covering in vines with shoot diameters larger than 8 mm.

    Comments on Drinfeld Realization of Quantum Affine Superalgebra Uq[gl(m∣n)(1)]U_q[gl(m|n)^{(1)}] and its Hopf Algebra Structure

    Full text link
    By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain Drinfeld current realization for quantum affine superalgebra Uq[gl(m∣n)(1)]U_q[gl(m|n)^{(1)}]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.Comment: Some errors and misprints corrected and a remark in section 4 removed. 12 pages, Latex fil

    Uq[sl(2∣1)^]U_q[\hat{sl(2|1)}] Vertex Operators, Screen Currents and Correlation Functions at Arbitrary Level

    Get PDF
    Bosonized q-vertex operators related to the 4-dimensional evaluation modules of the quantum affine superalgebra Uq[sl(2∣1)^]U_q[\hat{sl(2|1)}] are constructed for arbitrary level k=αk=\alpha, where α≠0,−1\alpha\neq 0, -1 is a complex parameter appearing in the 4-dimensional evaluation representations. They are intertwiners among the level-α\alpha highest weight Fock-Wakimoto modules. Screen currents which commute with the action of Uq[sl(2∣1)^]U_q[\hat{sl(2|1)}] up to total differences are presented. Integral formulae for N-point functions of type I and type II q-vertex operators are proposed.Comment: Latex file 18 page

    Highly anisotropic strain dependencies in PrIr2_2Zn20_{20}

    Get PDF
    We report thermal expansion and magnetostriction of the cubic non-Kramers system PrIr2_2Zn20_{20} with a non-magnetic Γ3\varGamma_{3} ground state doublet. In previous experiments, antiferroquadrupolar order at \hbox{TQ=0.11T_{\mathrm{Q}}=0.11\,K} and a Fermi liquid state around Bc≈5B_{\mathrm{c}}\approx5\,T for \hbox{B∥[001]\boldsymbol{B}\parallel[001]}, indicative of possible ferrohastatic order, were discovered. For magnetic fields \hbox{B∥[001]\boldsymbol{B}\parallel[001]}, the low temperature longitudinal and transverse thermal expansion and magnetostriction are highly anisotropic. The resulting volume strain is very small, indicating that the Pr valence remains nearly constant as a function of magnetic field. We conclude that the Fermi liquid state around BcB_{\mathrm{c}} forms through a very little change in c-f hybridization. This result is in sharp contrast to Ce- and Yb-based Kramers Kondo lattices which show significantly larger volume strains due to the high sensitivity of the Kondo temperature to hydrostatic pressure.Comment: 8 pages, 8 figure
    • …
    corecore